Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Gelfand pairs). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Université Catholique de Louvain

1. Ciobotaru, Corina Gabriela. Analytic aspects of locally compact groups acting on Euclidean buildings.

Degree: 2014, Université Catholique de Louvain

The research topic of my doctoral thesis explores the world of totally disconnected locally compact (t.d.l.c.) groups through the interaction with several geometric and harmonic… (more)

Subjects/Keywords: Locally compact groups; Gelfand pairs; Unitary representations; The Howe-Moore property

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ciobotaru, C. G. (2014). Analytic aspects of locally compact groups acting on Euclidean buildings. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/142464

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ciobotaru, Corina Gabriela. “Analytic aspects of locally compact groups acting on Euclidean buildings.” 2014. Thesis, Université Catholique de Louvain. Accessed March 07, 2021. http://hdl.handle.net/2078.1/142464.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ciobotaru, Corina Gabriela. “Analytic aspects of locally compact groups acting on Euclidean buildings.” 2014. Web. 07 Mar 2021.

Vancouver:

Ciobotaru CG. Analytic aspects of locally compact groups acting on Euclidean buildings. [Internet] [Thesis]. Université Catholique de Louvain; 2014. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2078.1/142464.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ciobotaru CG. Analytic aspects of locally compact groups acting on Euclidean buildings. [Thesis]. Université Catholique de Louvain; 2014. Available from: http://hdl.handle.net/2078.1/142464

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


East Carolina University

2. Zhu, Yi. Random Walks on Finite Fields and Heisenberg Groups.

Degree: MA, Mathematics, 2011, East Carolina University

 Let H be a finite group and [mu] a probability measure on H. This data determines an invariant random walk on H beginning from the… (more)

Subjects/Keywords: Mathematics; Gelfand pairs; Heisenberg group; Random walks (Mathematics); Spherical functions; Finite fields (Algebra); Invariants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhu, Y. (2011). Random Walks on Finite Fields and Heisenberg Groups. (Masters Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/3603

Chicago Manual of Style (16th Edition):

Zhu, Yi. “Random Walks on Finite Fields and Heisenberg Groups.” 2011. Masters Thesis, East Carolina University. Accessed March 07, 2021. http://hdl.handle.net/10342/3603.

MLA Handbook (7th Edition):

Zhu, Yi. “Random Walks on Finite Fields and Heisenberg Groups.” 2011. Web. 07 Mar 2021.

Vancouver:

Zhu Y. Random Walks on Finite Fields and Heisenberg Groups. [Internet] [Masters thesis]. East Carolina University; 2011. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10342/3603.

Council of Science Editors:

Zhu Y. Random Walks on Finite Fields and Heisenberg Groups. [Masters Thesis]. East Carolina University; 2011. Available from: http://hdl.handle.net/10342/3603


Louisiana State University

3. Dann, Susanna. Paley-Wiener theorems with respect to the spectral parameter.

Degree: PhD, Applied Mathematics, 2011, Louisiana State University

 One of the important questions related to any integral transform on a manifold M or on a homogeneous space G/K is the description of the… (more)

Subjects/Keywords: Gelfand pairs; Vector valued Fourier transform; Euclidean motion group; Paley-Wiener theorem; Projective limits

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dann, S. (2011). Paley-Wiener theorems with respect to the spectral parameter. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07052011-113126 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3986

Chicago Manual of Style (16th Edition):

Dann, Susanna. “Paley-Wiener theorems with respect to the spectral parameter.” 2011. Doctoral Dissertation, Louisiana State University. Accessed March 07, 2021. etd-07052011-113126 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3986.

MLA Handbook (7th Edition):

Dann, Susanna. “Paley-Wiener theorems with respect to the spectral parameter.” 2011. Web. 07 Mar 2021.

Vancouver:

Dann S. Paley-Wiener theorems with respect to the spectral parameter. [Internet] [Doctoral dissertation]. Louisiana State University; 2011. [cited 2021 Mar 07]. Available from: etd-07052011-113126 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3986.

Council of Science Editors:

Dann S. Paley-Wiener theorems with respect to the spectral parameter. [Doctoral Dissertation]. Louisiana State University; 2011. Available from: etd-07052011-113126 ; https://digitalcommons.lsu.edu/gradschool_dissertations/3986


University of Minnesota

4. Zhang, Lei. Automorphic forms on certain affine symmetric spaces.

Degree: PhD, Mathematics, 2011, University of Minnesota

 In this thesis, we consider automorphic periods associated to certain affine symmetric spaces such as the symmetric pairs. In this thesis, we consider automorphic periods… (more)

Subjects/Keywords: Automorphic forms; Distinguished tame supercuspidal representation; Gelfand pairs; Number theory; special value of L-function; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, L. (2011). Automorphic forms on certain affine symmetric spaces. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/109867

Chicago Manual of Style (16th Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Doctoral Dissertation, University of Minnesota. Accessed March 07, 2021. http://purl.umn.edu/109867.

MLA Handbook (7th Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Web. 07 Mar 2021.

Vancouver:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2021 Mar 07]. Available from: http://purl.umn.edu/109867.

Council of Science Editors:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/109867

.