Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Galois theory)`

.
Showing records 1 – 30 of
115 total matches.

Search Limiters

Dates

- 2016 – 2020 (24)
- 2011 – 2015 (47)
- 2006 – 2010 (21)

▼ Search Limiters

1.
McBride, Anna Christine.
Some new aspects of the *Galois* * theory*.

Degree: 1913, University of Missouri

URL: https://doi.org/10.32469/10355/16155

► Realizing that the *Galois* *theory* of algebraic equations as commonly presented seems artificial, abstract, and intricate, we have been led in the following paper to…
(more)

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McBride, A. C. (1913). Some new aspects of the Galois theory. (Thesis). University of Missouri. Retrieved from https://doi.org/10.32469/10355/16155

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

McBride, Anna Christine. “Some new aspects of the Galois theory.” 1913. Thesis, University of Missouri. Accessed June 07, 2020. https://doi.org/10.32469/10355/16155.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

McBride, Anna Christine. “Some new aspects of the Galois theory.” 1913. Web. 07 Jun 2020.

Vancouver:

McBride AC. Some new aspects of the Galois theory. [Internet] [Thesis]. University of Missouri; 1913. [cited 2020 Jun 07]. Available from: https://doi.org/10.32469/10355/16155.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McBride AC. Some new aspects of the Galois theory. [Thesis]. University of Missouri; 1913. Available from: https://doi.org/10.32469/10355/16155

Not specified: Masters Thesis or Doctoral Dissertation

Oregon State University

2. Brown, Robert Wallace. Solvability of equations by radicals.

Degree: MS, Mathematics, 1952, Oregon State University

URL: http://hdl.handle.net/1957/11686

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brown, R. W. (1952). Solvability of equations by radicals. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/11686

Chicago Manual of Style (16^{th} Edition):

Brown, Robert Wallace. “Solvability of equations by radicals.” 1952. Masters Thesis, Oregon State University. Accessed June 07, 2020. http://hdl.handle.net/1957/11686.

MLA Handbook (7^{th} Edition):

Brown, Robert Wallace. “Solvability of equations by radicals.” 1952. Web. 07 Jun 2020.

Vancouver:

Brown RW. Solvability of equations by radicals. [Internet] [Masters thesis]. Oregon State University; 1952. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1957/11686.

Council of Science Editors:

Brown RW. Solvability of equations by radicals. [Masters Thesis]. Oregon State University; 1952. Available from: http://hdl.handle.net/1957/11686

Oregon State University

3.
Danielson, Lynda Major.
The *galois* *theory* of iterated binomials.

Degree: PhD, Mathematics, 1995, Oregon State University

URL: http://hdl.handle.net/1957/16688

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Danielson, L. M. (1995). The galois theory of iterated binomials. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/16688

Chicago Manual of Style (16^{th} Edition):

Danielson, Lynda Major. “The galois theory of iterated binomials.” 1995. Doctoral Dissertation, Oregon State University. Accessed June 07, 2020. http://hdl.handle.net/1957/16688.

MLA Handbook (7^{th} Edition):

Danielson, Lynda Major. “The galois theory of iterated binomials.” 1995. Web. 07 Jun 2020.

Vancouver:

Danielson LM. The galois theory of iterated binomials. [Internet] [Doctoral dissertation]. Oregon State University; 1995. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1957/16688.

Council of Science Editors:

Danielson LM. The galois theory of iterated binomials. [Doctoral Dissertation]. Oregon State University; 1995. Available from: http://hdl.handle.net/1957/16688

4.
Mastin, Millicent Gay.
Classical *Galois* * theory*.

Degree: 1972, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/mastin_millicent_1972.pdf

► The purpose of this thesis is to examine the correspondence between groups of automorphsims and fields and to prove the Fundamental Theorem of *Galois* *Theory*.…
(more)

Subjects/Keywords: Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mastin, M. G. (1972). Classical Galois theory. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/mastin_millicent_1972.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mastin, Millicent Gay. “Classical Galois theory.” 1972. Thesis, NC Docks. Accessed June 07, 2020. http://libres.uncg.edu/ir/uncg/f/mastin_millicent_1972.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mastin, Millicent Gay. “Classical Galois theory.” 1972. Web. 07 Jun 2020.

Vancouver:

Mastin MG. Classical Galois theory. [Internet] [Thesis]. NC Docks; 1972. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/uncg/f/mastin_millicent_1972.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mastin MG. Classical Galois theory. [Thesis]. NC Docks; 1972. Available from: http://libres.uncg.edu/ir/uncg/f/mastin_millicent_1972.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Louisiana State University

5. Chapman, David H. On Greenberg's question: an algebraic and computational approach.

Degree: PhD, Applied Mathematics, 2011, Louisiana State University

URL: etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462

Greenberg asked whether arithmetically equivalent number fields share the same Iwasawa invariants. In this dissertation it is shown that the problem naturally breaks up into four cases, depending on properties of Galois groups. This analysis is then used to give a positive answer to Greenberg’s question in some nontrivial examples.

Subjects/Keywords: number theory; Galois theory; Iwasawa theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chapman, D. H. (2011). On Greenberg's question: an algebraic and computational approach. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462

Chicago Manual of Style (16^{th} Edition):

Chapman, David H. “On Greenberg's question: an algebraic and computational approach.” 2011. Doctoral Dissertation, Louisiana State University. Accessed June 07, 2020. etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462.

MLA Handbook (7^{th} Edition):

Chapman, David H. “On Greenberg's question: an algebraic and computational approach.” 2011. Web. 07 Jun 2020.

Vancouver:

Chapman DH. On Greenberg's question: an algebraic and computational approach. [Internet] [Doctoral dissertation]. Louisiana State University; 2011. [cited 2020 Jun 07]. Available from: etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462.

Council of Science Editors:

Chapman DH. On Greenberg's question: an algebraic and computational approach. [Doctoral Dissertation]. Louisiana State University; 2011. Available from: etd-07072011-104742 ; https://digitalcommons.lsu.edu/gradschool_dissertations/462

6.
Lima, Marcos Goulart.
Teoria algébrica de números e o grupo de * Galois*.

Degree: Mestrado, Matemática, 2009, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;

►

Nessa dissertação provamos que se n é um inteiro par ou primo, então o Grupo de *Galois* de \'x POT.n ́- \'x POT.n - 1\"...-…
(more)

Subjects/Keywords: Algebraic theory of numbers; Galois; Galois; Teoria algébrica de números

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lima, M. G. (2009). Teoria algébrica de números e o grupo de Galois. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;

Chicago Manual of Style (16^{th} Edition):

Lima, Marcos Goulart. “Teoria algébrica de números e o grupo de Galois.” 2009. Masters Thesis, University of São Paulo. Accessed June 07, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;.

MLA Handbook (7^{th} Edition):

Lima, Marcos Goulart. “Teoria algébrica de números e o grupo de Galois.” 2009. Web. 07 Jun 2020.

Vancouver:

Lima MG. Teoria algébrica de números e o grupo de Galois. [Internet] [Masters thesis]. University of São Paulo; 2009. [cited 2020 Jun 07]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;.

Council of Science Editors:

Lima MG. Teoria algébrica de números e o grupo de Galois. [Masters Thesis]. University of São Paulo; 2009. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20052009-163236/ ;

University of Western Ontario

7.
Ataei Jaliseh, Masoud.
* Galois* 2-Extensions.

Degree: 2015, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/3381

► The inverse *Galois* problem is a major question in mathematics. For a given base field and a given finite group G, one would like to…
(more)

Subjects/Keywords: Galois Theory; Class Field Theory; Massey Products; Galois Extensions of Local Fields.; Algebra; Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ataei Jaliseh, M. (2015). Galois 2-Extensions. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3381

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Thesis, University of Western Ontario. Accessed June 07, 2020. https://ir.lib.uwo.ca/etd/3381.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ataei Jaliseh, Masoud. “Galois 2-Extensions.” 2015. Web. 07 Jun 2020.

Vancouver:

Ataei Jaliseh M. Galois 2-Extensions. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Jun 07]. Available from: https://ir.lib.uwo.ca/etd/3381.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ataei Jaliseh M. Galois 2-Extensions. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/3381

Not specified: Masters Thesis or Doctoral Dissertation

UCLA

8. Ventullo, Kevin Patrick. On the Gross-Stark and Iwasawa Main Conjectures.

Degree: Mathematics, 2014, UCLA

URL: http://www.escholarship.org/uc/item/3xs1w5vb

► Let F be a totally real number field, p a rational prime, and χ a finite order totally odd abelian character of Gal(F̅/F) such that…
(more)

Subjects/Keywords: Mathematics; Galois Representations; L-functions; Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ventullo, K. P. (2014). On the Gross-Stark and Iwasawa Main Conjectures. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3xs1w5vb

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ventullo, Kevin Patrick. “On the Gross-Stark and Iwasawa Main Conjectures.” 2014. Thesis, UCLA. Accessed June 07, 2020. http://www.escholarship.org/uc/item/3xs1w5vb.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ventullo, Kevin Patrick. “On the Gross-Stark and Iwasawa Main Conjectures.” 2014. Web. 07 Jun 2020.

Vancouver:

Ventullo KP. On the Gross-Stark and Iwasawa Main Conjectures. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Jun 07]. Available from: http://www.escholarship.org/uc/item/3xs1w5vb.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ventullo KP. On the Gross-Stark and Iwasawa Main Conjectures. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/3xs1w5vb

Not specified: Masters Thesis or Doctoral Dissertation

UCLA

9.
Lang, Jaclyn Ann.
Images of *Galois* representations associated to p-adic families of modular forms.

Degree: Mathematics, 2016, UCLA

URL: http://www.escholarship.org/uc/item/4nj4h2bt

Ribet and Momose described the effect of extra twists on the image of Galois representations associated to classical modular forms in the 1980s. We prove analogous results for the Galois representations associated to Hida families of modular forms.

Subjects/Keywords: Mathematics; deformation theory; Galois representation; Hida family

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lang, J. A. (2016). Images of Galois representations associated to p-adic families of modular forms. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/4nj4h2bt

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lang, Jaclyn Ann. “Images of Galois representations associated to p-adic families of modular forms.” 2016. Thesis, UCLA. Accessed June 07, 2020. http://www.escholarship.org/uc/item/4nj4h2bt.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lang, Jaclyn Ann. “Images of Galois representations associated to p-adic families of modular forms.” 2016. Web. 07 Jun 2020.

Vancouver:

Lang JA. Images of Galois representations associated to p-adic families of modular forms. [Internet] [Thesis]. UCLA; 2016. [cited 2020 Jun 07]. Available from: http://www.escholarship.org/uc/item/4nj4h2bt.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lang JA. Images of Galois representations associated to p-adic families of modular forms. [Thesis]. UCLA; 2016. Available from: http://www.escholarship.org/uc/item/4nj4h2bt

Not specified: Masters Thesis or Doctoral Dissertation

McGill University

10.
Cohen, Gerard Elie.
Infinite *Galois* *theory*.

Degree: MS., Department of Mathematics., 1965, McGill University

URL: http://digitool.library.mcgill.ca/thesisfile117572.pdf

► After the new impulse given to the *theory* of algebraic equations by the discoveries of Lagrange and Vandermonde in 1770, Ruffini tried to solve the…
(more)

Subjects/Keywords: Mathematics.; Galois theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cohen, G. E. (1965). Infinite Galois theory. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile117572.pdf

Chicago Manual of Style (16^{th} Edition):

Cohen, Gerard Elie. “Infinite Galois theory.” 1965. Masters Thesis, McGill University. Accessed June 07, 2020. http://digitool.library.mcgill.ca/thesisfile117572.pdf.

MLA Handbook (7^{th} Edition):

Cohen, Gerard Elie. “Infinite Galois theory.” 1965. Web. 07 Jun 2020.

Vancouver:

Cohen GE. Infinite Galois theory. [Internet] [Masters thesis]. McGill University; 1965. [cited 2020 Jun 07]. Available from: http://digitool.library.mcgill.ca/thesisfile117572.pdf.

Council of Science Editors:

Cohen GE. Infinite Galois theory. [Masters Thesis]. McGill University; 1965. Available from: http://digitool.library.mcgill.ca/thesisfile117572.pdf

East Carolina University

11.
Kennedy, Kendra.
Diophantine Generation *Galois* *Theory* and Hilbert's Tenth
Problem.

Degree: 2012, East Carolina University

URL: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=13990

► Hilbert's Tenth Problem was a question concerning existence of an algorithm to determine if there were integer solutions to arbitrary polynomial equations over the integers.…
(more)

Subjects/Keywords: Diophantine equations; Hilbert's tenth problem; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, K. (2012). Diophantine Generation Galois Theory and Hilbert's Tenth Problem. (Masters Thesis). East Carolina University. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=13990

Chicago Manual of Style (16^{th} Edition):

Kennedy, Kendra. “Diophantine Generation Galois Theory and Hilbert's Tenth Problem.” 2012. Masters Thesis, East Carolina University. Accessed June 07, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=13990.

MLA Handbook (7^{th} Edition):

Kennedy, Kendra. “Diophantine Generation Galois Theory and Hilbert's Tenth Problem.” 2012. Web. 07 Jun 2020.

Vancouver:

Kennedy K. Diophantine Generation Galois Theory and Hilbert's Tenth Problem. [Internet] [Masters thesis]. East Carolina University; 2012. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=13990.

Council of Science Editors:

Kennedy K. Diophantine Generation Galois Theory and Hilbert's Tenth Problem. [Masters Thesis]. East Carolina University; 2012. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=13990

12.
Kennedy, Kendra.
Diophantine Generation *Galois* *Theory* and Hilbert's Tenth Problem.

Degree: 2012, NC Docks

URL: http://libres.uncg.edu/ir/ecu/f/0000-embargo-holder.txt

► Hilbert's Tenth Problem was a question concerning existence of an algorithm to determine if there were integer solutions to arbitrary polynomial equations over the integers.…
(more)

Subjects/Keywords: Diophantine equations; Hilbert's tenth problem; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, K. (2012). Diophantine Generation Galois Theory and Hilbert's Tenth Problem. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/ecu/f/0000-embargo-holder.txt

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kennedy, Kendra. “Diophantine Generation Galois Theory and Hilbert's Tenth Problem.” 2012. Thesis, NC Docks. Accessed June 07, 2020. http://libres.uncg.edu/ir/ecu/f/0000-embargo-holder.txt.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kennedy, Kendra. “Diophantine Generation Galois Theory and Hilbert's Tenth Problem.” 2012. Web. 07 Jun 2020.

Vancouver:

Kennedy K. Diophantine Generation Galois Theory and Hilbert's Tenth Problem. [Internet] [Thesis]. NC Docks; 2012. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/ecu/f/0000-embargo-holder.txt.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kennedy K. Diophantine Generation Galois Theory and Hilbert's Tenth Problem. [Thesis]. NC Docks; 2012. Available from: http://libres.uncg.edu/ir/ecu/f/0000-embargo-holder.txt

Not specified: Masters Thesis or Doctoral Dissertation

13.
Milstead, Jonathan.
Computing *Galois* groups of Eisenstein polynomials over p-adic fields.

Degree: 2017, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/Milstead_uncg_0154D_12330.pdf

► The most efficient algorithms for computing *Galois* groups of polynomials over global fields are based on Stauduhar’s relative resolvent method. These methods are not directly…
(more)

Subjects/Keywords: Galois theory; Polynomials; p-adic fields; Determinants

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Milstead, J. (2017). Computing Galois groups of Eisenstein polynomials over p-adic fields. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Milstead_uncg_0154D_12330.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Milstead, Jonathan. “Computing Galois groups of Eisenstein polynomials over p-adic fields.” 2017. Thesis, NC Docks. Accessed June 07, 2020. http://libres.uncg.edu/ir/uncg/f/Milstead_uncg_0154D_12330.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Milstead, Jonathan. “Computing Galois groups of Eisenstein polynomials over p-adic fields.” 2017. Web. 07 Jun 2020.

Vancouver:

Milstead J. Computing Galois groups of Eisenstein polynomials over p-adic fields. [Internet] [Thesis]. NC Docks; 2017. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/uncg/f/Milstead_uncg_0154D_12330.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Milstead J. Computing Galois groups of Eisenstein polynomials over p-adic fields. [Thesis]. NC Docks; 2017. Available from: http://libres.uncg.edu/ir/uncg/f/Milstead_uncg_0154D_12330.pdf

Not specified: Masters Thesis or Doctoral Dissertation

University of Exeter

14.
Truman, Paul James.
Hopf-*Galois* module structure of some tamely ramified extensions.

Degree: PhD, 2009, University of Exeter

URL: http://hdl.handle.net/10036/71817

► We study the Hopf-*Galois* module structure of algebraic integers in some finite extensions of p -adic fields and number fields which are at most tamely…
(more)

Subjects/Keywords: Hopf-Galois Structure : Hopf Algebra : Hopf Order : Galois Module Structure : Algebraic Number Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Truman, P. J. (2009). Hopf-Galois module structure of some tamely ramified extensions. (Doctoral Dissertation). University of Exeter. Retrieved from http://hdl.handle.net/10036/71817

Chicago Manual of Style (16^{th} Edition):

Truman, Paul James. “Hopf-Galois module structure of some tamely ramified extensions.” 2009. Doctoral Dissertation, University of Exeter. Accessed June 07, 2020. http://hdl.handle.net/10036/71817.

MLA Handbook (7^{th} Edition):

Truman, Paul James. “Hopf-Galois module structure of some tamely ramified extensions.” 2009. Web. 07 Jun 2020.

Vancouver:

Truman PJ. Hopf-Galois module structure of some tamely ramified extensions. [Internet] [Doctoral dissertation]. University of Exeter; 2009. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10036/71817.

Council of Science Editors:

Truman PJ. Hopf-Galois module structure of some tamely ramified extensions. [Doctoral Dissertation]. University of Exeter; 2009. Available from: http://hdl.handle.net/10036/71817

15. Fernando Neres de Oliveira. O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.

Degree: Master, 2010, Universidade Federal do Ceará

URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;

►

O objetivo principal deste trabalho Ã apresentar alguns resultados, relativos ao nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.Para isso, iremos inicialmente… (more)

Subjects/Keywords: TEORIA DOS NUMEROS; ideais; Galois, teoria de; grupos abelianos; ideals; galois theory; abelian groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Oliveira, F. N. d. (2010). O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;

Chicago Manual of Style (16^{th} Edition):

Oliveira, Fernando Neres de. “O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.” 2010. Masters Thesis, Universidade Federal do Ceará. Accessed June 07, 2020. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;.

MLA Handbook (7^{th} Edition):

Oliveira, Fernando Neres de. “O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico.” 2010. Web. 07 Jun 2020.

Vancouver:

Oliveira FNd. O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico. [Internet] [Masters thesis]. Universidade Federal do Ceará 2010. [cited 2020 Jun 07]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;.

Council of Science Editors:

Oliveira FNd. O nÃmero de classes do subcorpo real maximal de um corpo ciclotÃmico. [Masters Thesis]. Universidade Federal do Ceará 2010. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4954 ;

University of Waikato

16.
Qin, Chao.
Iwasawa *theory* over solvable three-dimensional p-adic Lie extensions
.

Degree: 2018, University of Waikato

URL: http://hdl.handle.net/10289/12250

► Iwasawa *theory* is a powerful tool which describes the mysterious relationship between arithmetic objects (motives) and the special values of L-functions. A precise form of…
(more)

Subjects/Keywords: Iwasawa theory; K-theory; p-adic L-functions; Galois representations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Qin, C. (2018). Iwasawa theory over solvable three-dimensional p-adic Lie extensions . (Doctoral Dissertation). University of Waikato. Retrieved from http://hdl.handle.net/10289/12250

Chicago Manual of Style (16^{th} Edition):

Qin, Chao. “Iwasawa theory over solvable three-dimensional p-adic Lie extensions .” 2018. Doctoral Dissertation, University of Waikato. Accessed June 07, 2020. http://hdl.handle.net/10289/12250.

MLA Handbook (7^{th} Edition):

Qin, Chao. “Iwasawa theory over solvable three-dimensional p-adic Lie extensions .” 2018. Web. 07 Jun 2020.

Vancouver:

Qin C. Iwasawa theory over solvable three-dimensional p-adic Lie extensions . [Internet] [Doctoral dissertation]. University of Waikato; 2018. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10289/12250.

Council of Science Editors:

Qin C. Iwasawa theory over solvable three-dimensional p-adic Lie extensions . [Doctoral Dissertation]. University of Waikato; 2018. Available from: http://hdl.handle.net/10289/12250

University of Pennsylvania

17.
Topaz, Adam.
Commuting-Liftable Subgroups of *Galois* Groups.

Degree: 2013, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/708

► Let n denote either a positive integer or ∞, let ell be a fixed prime and let K be a field of characteristic different from…
(more)

Subjects/Keywords: abelian-by-central; local theory; pro-ell Galois theory; valuations; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Topaz, A. (2013). Commuting-Liftable Subgroups of Galois Groups. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/708

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Topaz, Adam. “Commuting-Liftable Subgroups of Galois Groups.” 2013. Thesis, University of Pennsylvania. Accessed June 07, 2020. https://repository.upenn.edu/edissertations/708.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Topaz, Adam. “Commuting-Liftable Subgroups of Galois Groups.” 2013. Web. 07 Jun 2020.

Vancouver:

Topaz A. Commuting-Liftable Subgroups of Galois Groups. [Internet] [Thesis]. University of Pennsylvania; 2013. [cited 2020 Jun 07]. Available from: https://repository.upenn.edu/edissertations/708.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Topaz A. Commuting-Liftable Subgroups of Galois Groups. [Thesis]. University of Pennsylvania; 2013. Available from: https://repository.upenn.edu/edissertations/708

Not specified: Masters Thesis or Doctoral Dissertation

University of Kansas

18. Lohoefener, Jennifer Lee. A Methodology for Automated Verification of Rosetta Specification Transformations.

Degree: PhD, Electrical Engineering & Computer Science, 2011, University of Kansas

URL: http://hdl.handle.net/1808/7660

► The Rosetta system-level design language is a specification language created to support design and analysis of heterogeneous models at varying levels of abstraction. These abstraction…
(more)

Subjects/Keywords: Computer science; Abstract interpretation; Category theory; Galois connection; Lattice theory; Rosetta

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lohoefener, J. L. (2011). A Methodology for Automated Verification of Rosetta Specification Transformations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/7660

Chicago Manual of Style (16^{th} Edition):

Lohoefener, Jennifer Lee. “A Methodology for Automated Verification of Rosetta Specification Transformations.” 2011. Doctoral Dissertation, University of Kansas. Accessed June 07, 2020. http://hdl.handle.net/1808/7660.

MLA Handbook (7^{th} Edition):

Lohoefener, Jennifer Lee. “A Methodology for Automated Verification of Rosetta Specification Transformations.” 2011. Web. 07 Jun 2020.

Vancouver:

Lohoefener JL. A Methodology for Automated Verification of Rosetta Specification Transformations. [Internet] [Doctoral dissertation]. University of Kansas; 2011. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1808/7660.

Council of Science Editors:

Lohoefener JL. A Methodology for Automated Verification of Rosetta Specification Transformations. [Doctoral Dissertation]. University of Kansas; 2011. Available from: http://hdl.handle.net/1808/7660

University of North Carolina – Greensboro

19. Rudzinski, Sandi. Symbolic computation of resolvents.

Degree: 2017, University of North Carolina – Greensboro

URL: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=22080

► Resolvent polynomials are used in the determination of *Galois* groups of polynomials. The computation of the resolvent usually relies on root approximations requiring a high…
(more)

Subjects/Keywords: Resolvents (Mathematics); Wreath products (Group theory); Polynomials; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rudzinski, S. (2017). Symbolic computation of resolvents. (Masters Thesis). University of North Carolina – Greensboro. Retrieved from http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=22080

Chicago Manual of Style (16^{th} Edition):

Rudzinski, Sandi. “Symbolic computation of resolvents.” 2017. Masters Thesis, University of North Carolina – Greensboro. Accessed June 07, 2020. http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=22080.

MLA Handbook (7^{th} Edition):

Rudzinski, Sandi. “Symbolic computation of resolvents.” 2017. Web. 07 Jun 2020.

Vancouver:

Rudzinski S. Symbolic computation of resolvents. [Internet] [Masters thesis]. University of North Carolina – Greensboro; 2017. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=22080.

Council of Science Editors:

Rudzinski S. Symbolic computation of resolvents. [Masters Thesis]. University of North Carolina – Greensboro; 2017. Available from: http://libres.uncg.edu/ir/listing.aspx?styp=ti&id=22080

Cornell University

20.
Chen, Taoran.
An Inverse *Galois* Deformation Problem
.

Degree: 2018, Cornell University

URL: http://hdl.handle.net/1813/59641

► Suppose ρ̅: \Gal({F̅/F}) → \GL_{2}(\mathbf{k}) is a residual *Galois* representation satisfying several mild conditions, where F is a number field and \mathbf{k} is a finite…
(more)

Subjects/Keywords: Galois representation; number theory; universal deformation ring; Mathematics; deformation theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, T. (2018). An Inverse Galois Deformation Problem . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/59641

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, Taoran. “An Inverse Galois Deformation Problem .” 2018. Thesis, Cornell University. Accessed June 07, 2020. http://hdl.handle.net/1813/59641.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, Taoran. “An Inverse Galois Deformation Problem .” 2018. Web. 07 Jun 2020.

Vancouver:

Chen T. An Inverse Galois Deformation Problem . [Internet] [Thesis]. Cornell University; 2018. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1813/59641.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen T. An Inverse Galois Deformation Problem . [Thesis]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59641

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

21. Palvannan, Bharathwaj. On Selmer groups and factoring p-adic L-functions.

Degree: PhD, 2016, University of Washington

URL: http://hdl.handle.net/1773/36751

► Samit Dasgupta has proved a formula factoring a certain restriction of a 3-variable Rankin-Selberg p-adic L-function as a product of a 2-variable p-adic L-function related…
(more)

Subjects/Keywords: Galois cohomology; Hida Theory; Iwasawa theory; Selmer groups; Mathematics; mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Palvannan, B. (2016). On Selmer groups and factoring p-adic L-functions. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/36751

Chicago Manual of Style (16^{th} Edition):

Palvannan, Bharathwaj. “On Selmer groups and factoring p-adic L-functions.” 2016. Doctoral Dissertation, University of Washington. Accessed June 07, 2020. http://hdl.handle.net/1773/36751.

MLA Handbook (7^{th} Edition):

Palvannan, Bharathwaj. “On Selmer groups and factoring p-adic L-functions.” 2016. Web. 07 Jun 2020.

Vancouver:

Palvannan B. On Selmer groups and factoring p-adic L-functions. [Internet] [Doctoral dissertation]. University of Washington; 2016. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/1773/36751.

Council of Science Editors:

Palvannan B. On Selmer groups and factoring p-adic L-functions. [Doctoral Dissertation]. University of Washington; 2016. Available from: http://hdl.handle.net/1773/36751

22. NC DOCKS at The University of North Carolina at Greensboro; Rudzinski, Sandi. Symbolic computation of resolvents.

Degree: 2017, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/Rudzinski_uncg_0154M_12291.pdf

► Resolvent polynomials are used in the determination of *Galois* groups of polynomials. The computation of the resolvent usually relies on root approximations requiring a high…
(more)

Subjects/Keywords: Resolvents (Mathematics); Wreath products (Group theory); Polynomials; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Rudzinski, S. (2017). Symbolic computation of resolvents. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Rudzinski_uncg_0154M_12291.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Rudzinski, Sandi. “Symbolic computation of resolvents.” 2017. Thesis, NC Docks. Accessed June 07, 2020. http://libres.uncg.edu/ir/uncg/f/Rudzinski_uncg_0154M_12291.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Rudzinski, Sandi. “Symbolic computation of resolvents.” 2017. Web. 07 Jun 2020.

Vancouver:

NC DOCKS at The University of North Carolina at Greensboro; Rudzinski S. Symbolic computation of resolvents. [Internet] [Thesis]. NC Docks; 2017. [cited 2020 Jun 07]. Available from: http://libres.uncg.edu/ir/uncg/f/Rudzinski_uncg_0154M_12291.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

NC DOCKS at The University of North Carolina at Greensboro; Rudzinski S. Symbolic computation of resolvents. [Thesis]. NC Docks; 2017. Available from: http://libres.uncg.edu/ir/uncg/f/Rudzinski_uncg_0154M_12291.pdf

Not specified: Masters Thesis or Doctoral Dissertation

McGill University

23. Ganong, Richard. Profinite groups.

Degree: MS, Department of Mathematics., 1970, McGill University

URL: http://digitool.library.mcgill.ca/thesisfile46654.pdf

Subjects/Keywords: Group theory.; Homology theory.; Galois theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ganong, R. (1970). Profinite groups. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile46654.pdf

Chicago Manual of Style (16^{th} Edition):

Ganong, Richard. “Profinite groups.” 1970. Masters Thesis, McGill University. Accessed June 07, 2020. http://digitool.library.mcgill.ca/thesisfile46654.pdf.

MLA Handbook (7^{th} Edition):

Ganong, Richard. “Profinite groups.” 1970. Web. 07 Jun 2020.

Vancouver:

Ganong R. Profinite groups. [Internet] [Masters thesis]. McGill University; 1970. [cited 2020 Jun 07]. Available from: http://digitool.library.mcgill.ca/thesisfile46654.pdf.

Council of Science Editors:

Ganong R. Profinite groups. [Masters Thesis]. McGill University; 1970. Available from: http://digitool.library.mcgill.ca/thesisfile46654.pdf

The Ohio State University

24.
Sonn, Jack.
On the imbedding problem for non-solvable *Galois* groups of
algebraic number fields : reduction theorems.

Degree: PhD, Graduate School, 1970, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486659302580575

Subjects/Keywords: Mathematics; Algebraic fields; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sonn, J. (1970). On the imbedding problem for non-solvable Galois groups of algebraic number fields : reduction theorems. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486659302580575

Chicago Manual of Style (16^{th} Edition):

Sonn, Jack. “On the imbedding problem for non-solvable Galois groups of algebraic number fields : reduction theorems.” 1970. Doctoral Dissertation, The Ohio State University. Accessed June 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486659302580575.

MLA Handbook (7^{th} Edition):

Sonn, Jack. “On the imbedding problem for non-solvable Galois groups of algebraic number fields : reduction theorems.” 1970. Web. 07 Jun 2020.

Vancouver:

Sonn J. On the imbedding problem for non-solvable Galois groups of algebraic number fields : reduction theorems. [Internet] [Doctoral dissertation]. The Ohio State University; 1970. [cited 2020 Jun 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486659302580575.

Council of Science Editors:

Sonn J. On the imbedding problem for non-solvable Galois groups of algebraic number fields : reduction theorems. [Doctoral Dissertation]. The Ohio State University; 1970. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486659302580575

East Carolina University

25.
Kennedy, Kendra.
Diophantine Generation, *Galois* *Theory*, and Hilbert's Tenth Problem.

Degree: 2012, East Carolina University

URL: http://hdl.handle.net/10342/3847

► Hilbert's Tenth Problem was a question concerning existence of an algorithm to determine if there were integer solutions to arbitrary polynomial equations over the integers.…
(more)

Subjects/Keywords: Mathematics; Diophantine undecidability; Diophantine equations; Hilbert's tenth problem; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kennedy, K. (2012). Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem. (Thesis). East Carolina University. Retrieved from http://hdl.handle.net/10342/3847

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kennedy, Kendra. “Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem.” 2012. Thesis, East Carolina University. Accessed June 07, 2020. http://hdl.handle.net/10342/3847.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kennedy, Kendra. “Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem.” 2012. Web. 07 Jun 2020.

Vancouver:

Kennedy K. Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem. [Internet] [Thesis]. East Carolina University; 2012. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10342/3847.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kennedy K. Diophantine Generation, Galois Theory, and Hilbert's Tenth Problem. [Thesis]. East Carolina University; 2012. Available from: http://hdl.handle.net/10342/3847

Not specified: Masters Thesis or Doctoral Dissertation

University of Pennsylvania

26. Eberhart, Ryan. Branched Covers of Curves With Fixed Ramification Locus.

Degree: 2013, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/750

► We examine conditions under which there exists a non-constant family of finite maps of curves over an algebraically closed field k of fixed degree and…
(more)

Subjects/Keywords: algebraic geometry; branched covers; Galois theory; linear series; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Eberhart, R. (2013). Branched Covers of Curves With Fixed Ramification Locus. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/750

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Eberhart, Ryan. “Branched Covers of Curves With Fixed Ramification Locus.” 2013. Thesis, University of Pennsylvania. Accessed June 07, 2020. https://repository.upenn.edu/edissertations/750.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Eberhart, Ryan. “Branched Covers of Curves With Fixed Ramification Locus.” 2013. Web. 07 Jun 2020.

Vancouver:

Eberhart R. Branched Covers of Curves With Fixed Ramification Locus. [Internet] [Thesis]. University of Pennsylvania; 2013. [cited 2020 Jun 07]. Available from: https://repository.upenn.edu/edissertations/750.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Eberhart R. Branched Covers of Curves With Fixed Ramification Locus. [Thesis]. University of Pennsylvania; 2013. Available from: https://repository.upenn.edu/edissertations/750

Not specified: Masters Thesis or Doctoral Dissertation

Harvard University

27.
Wang Erickson, Carl William.
Moduli of *Galois* Representations.

Degree: PhD, Mathematics, 2013, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709

►

The theme of this thesis is the study of moduli stacks of representations of an associative algebra, with an eye toward continuous representations of profinite… (more)

Subjects/Keywords: Mathematics; Galois representation; moduli; p-adic Hodge theory; pseudorepresentation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang Erickson, C. W. (2013). Moduli of Galois Representations. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709

Chicago Manual of Style (16^{th} Edition):

Wang Erickson, Carl William. “Moduli of Galois Representations.” 2013. Doctoral Dissertation, Harvard University. Accessed June 07, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709.

MLA Handbook (7^{th} Edition):

Wang Erickson, Carl William. “Moduli of Galois Representations.” 2013. Web. 07 Jun 2020.

Vancouver:

Wang Erickson CW. Moduli of Galois Representations. [Internet] [Doctoral dissertation]. Harvard University; 2013. [cited 2020 Jun 07]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709.

Council of Science Editors:

Wang Erickson CW. Moduli of Galois Representations. [Doctoral Dissertation]. Harvard University; 2013. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11108709

University of British Columbia

28.
Margolick, Michael William.
The behaviour of *Galois* Gauss sums with respect to restriction of characters
.

Degree: 1978, University of British Columbia

URL: http://hdl.handle.net/2429/21635

► The *theory* of abelian and non-abelian L-functions is developed with a view to providing an understanding of the Langlands-Deligne local root number and local *Galois*…
(more)

Subjects/Keywords: Gaussian processes; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Margolick, M. W. (1978). The behaviour of Galois Gauss sums with respect to restriction of characters . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/21635

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Margolick, Michael William. “The behaviour of Galois Gauss sums with respect to restriction of characters .” 1978. Thesis, University of British Columbia. Accessed June 07, 2020. http://hdl.handle.net/2429/21635.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Margolick, Michael William. “The behaviour of Galois Gauss sums with respect to restriction of characters .” 1978. Web. 07 Jun 2020.

Vancouver:

Margolick MW. The behaviour of Galois Gauss sums with respect to restriction of characters . [Internet] [Thesis]. University of British Columbia; 1978. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/2429/21635.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Margolick MW. The behaviour of Galois Gauss sums with respect to restriction of characters . [Thesis]. University of British Columbia; 1978. Available from: http://hdl.handle.net/2429/21635

Not specified: Masters Thesis or Doctoral Dissertation

University of Southampton

29. Syddall, Robert Ian. Uniform dessins of low genus.

Degree: PhD, 1997, University of Southampton

URL: https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656

Subjects/Keywords: 510; Maps; Hypermaps; Galois theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Syddall, R. I. (1997). Uniform dessins of low genus. (Doctoral Dissertation). University of Southampton. Retrieved from https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656

Chicago Manual of Style (16^{th} Edition):

Syddall, Robert Ian. “Uniform dessins of low genus.” 1997. Doctoral Dissertation, University of Southampton. Accessed June 07, 2020. https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656.

MLA Handbook (7^{th} Edition):

Syddall, Robert Ian. “Uniform dessins of low genus.” 1997. Web. 07 Jun 2020.

Vancouver:

Syddall RI. Uniform dessins of low genus. [Internet] [Doctoral dissertation]. University of Southampton; 1997. [cited 2020 Jun 07]. Available from: https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656.

Council of Science Editors:

Syddall RI. Uniform dessins of low genus. [Doctoral Dissertation]. University of Southampton; 1997. Available from: https://eprints.soton.ac.uk/426659/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243656

Virginia Tech

30.
Wills, Andrew Johan.
Topics in Inverse *Galois* * Theory*.

Degree: MS, Mathematics, 2011, Virginia Tech

URL: http://hdl.handle.net/10919/32160

► *Galois* *theory*, the study of the structure and symmetry of a polynomial or associated field extension, is a standard tool for showing the insolvability of…
(more)

Subjects/Keywords: Kronecker-Weber Theorem; Rigid Groups; Inverse Galois Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wills, A. J. (2011). Topics in Inverse Galois Theory. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/32160

Chicago Manual of Style (16^{th} Edition):

Wills, Andrew Johan. “Topics in Inverse Galois Theory.” 2011. Masters Thesis, Virginia Tech. Accessed June 07, 2020. http://hdl.handle.net/10919/32160.

MLA Handbook (7^{th} Edition):

Wills, Andrew Johan. “Topics in Inverse Galois Theory.” 2011. Web. 07 Jun 2020.

Vancouver:

Wills AJ. Topics in Inverse Galois Theory. [Internet] [Masters thesis]. Virginia Tech; 2011. [cited 2020 Jun 07]. Available from: http://hdl.handle.net/10919/32160.

Council of Science Editors:

Wills AJ. Topics in Inverse Galois Theory. [Masters Thesis]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/32160