Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Galois Representations). Showing records 1 – 30 of 58 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Degrees

Languages

Country

▼ Search Limiters

1. Rosso, Giovanni. Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer : Generalization of a theorem of Greenberg and Stevens to the case of the symmetric square of a modular form and an application to the Selmer group.

Degree: Docteur es, Mathématiques, 2014, Paris 13; Katholieke universiteit te Leuven (1970-....). Laboratorium voor Levensmeddelentechnologie

Dans cette thèse, on démontre une conjecture de Greenberg et Benois sur les zéros triviaux des fonctions L p-adiques dans certains cas. Pour cela, on… (more)

Subjects/Keywords: Représentations galoisiennes; Galois representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosso, G. (2014). Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer : Generalization of a theorem of Greenberg and Stevens to the case of the symmetric square of a modular form and an application to the Selmer group. (Doctoral Dissertation). Paris 13; Katholieke universiteit te Leuven (1970-....). Laboratorium voor Levensmeddelentechnologie. Retrieved from http://www.theses.fr/2014PA132018

Chicago Manual of Style (16th Edition):

Rosso, Giovanni. “Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer : Generalization of a theorem of Greenberg and Stevens to the case of the symmetric square of a modular form and an application to the Selmer group.” 2014. Doctoral Dissertation, Paris 13; Katholieke universiteit te Leuven (1970-....). Laboratorium voor Levensmeddelentechnologie. Accessed March 07, 2021. http://www.theses.fr/2014PA132018.

MLA Handbook (7th Edition):

Rosso, Giovanni. “Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer : Generalization of a theorem of Greenberg and Stevens to the case of the symmetric square of a modular form and an application to the Selmer group.” 2014. Web. 07 Mar 2021.

Vancouver:

Rosso G. Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer : Generalization of a theorem of Greenberg and Stevens to the case of the symmetric square of a modular form and an application to the Selmer group. [Internet] [Doctoral dissertation]. Paris 13; Katholieke universiteit te Leuven (1970-....). Laboratorium voor Levensmeddelentechnologie; 2014. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2014PA132018.

Council of Science Editors:

Rosso G. Généralisation du théorème de Greenberg-Stevens au cas du carré symétrique d'une forme modulaire et application au groupe de Selmer : Generalization of a theorem of Greenberg and Stevens to the case of the symmetric square of a modular form and an application to the Selmer group. [Doctoral Dissertation]. Paris 13; Katholieke universiteit te Leuven (1970-....). Laboratorium voor Levensmeddelentechnologie; 2014. Available from: http://www.theses.fr/2014PA132018


UCLA

2. Ventullo, Kevin Patrick. On the Gross-Stark and Iwasawa Main Conjectures.

Degree: Mathematics, 2014, UCLA

 Let F be a totally real number field, p a rational prime, and χ a finite order totally odd abelian character of Gal(F̅/F) such that… (more)

Subjects/Keywords: Mathematics; Galois Representations; L-functions; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ventullo, K. P. (2014). On the Gross-Stark and Iwasawa Main Conjectures. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3xs1w5vb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ventullo, Kevin Patrick. “On the Gross-Stark and Iwasawa Main Conjectures.” 2014. Thesis, UCLA. Accessed March 07, 2021. http://www.escholarship.org/uc/item/3xs1w5vb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ventullo, Kevin Patrick. “On the Gross-Stark and Iwasawa Main Conjectures.” 2014. Web. 07 Mar 2021.

Vancouver:

Ventullo KP. On the Gross-Stark and Iwasawa Main Conjectures. [Internet] [Thesis]. UCLA; 2014. [cited 2021 Mar 07]. Available from: http://www.escholarship.org/uc/item/3xs1w5vb.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ventullo KP. On the Gross-Stark and Iwasawa Main Conjectures. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/3xs1w5vb

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Cornell University

3. Lundell, Benjamin. Selmer Groups And Ranks Of Hecke Rings.

Degree: PhD, Mathematics, 2011, Cornell University

 In this work, we investigate congruences between modular cuspforms. Specifically, we start with a given cuspform and count the number of cuspforms congruent to it… (more)

Subjects/Keywords: Galois Representations; Modular Forms; Hecke Rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lundell, B. (2011). Selmer Groups And Ranks Of Hecke Rings. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/29231

Chicago Manual of Style (16th Edition):

Lundell, Benjamin. “Selmer Groups And Ranks Of Hecke Rings.” 2011. Doctoral Dissertation, Cornell University. Accessed March 07, 2021. http://hdl.handle.net/1813/29231.

MLA Handbook (7th Edition):

Lundell, Benjamin. “Selmer Groups And Ranks Of Hecke Rings.” 2011. Web. 07 Mar 2021.

Vancouver:

Lundell B. Selmer Groups And Ranks Of Hecke Rings. [Internet] [Doctoral dissertation]. Cornell University; 2011. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1813/29231.

Council of Science Editors:

Lundell B. Selmer Groups And Ranks Of Hecke Rings. [Doctoral Dissertation]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/29231


University of Cambridge

4. Anastassiades, Christos. Level raising for automorphic representations of GL(2n).

Degree: PhD, 2019, University of Cambridge

 To each regular algebraic, conjugate self-dual, cuspidal automorphic representation Π of {GL}(N) over a CM number field E (or, more generally, to a regular algebraic… (more)

Subjects/Keywords: Number Theory; Automorphic Representations; Galois Representations; Level Raising

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anastassiades, C. (2019). Level raising for automorphic representations of GL(2n). (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/292530

Chicago Manual of Style (16th Edition):

Anastassiades, Christos. “Level raising for automorphic representations of GL(2n).” 2019. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://www.repository.cam.ac.uk/handle/1810/292530.

MLA Handbook (7th Edition):

Anastassiades, Christos. “Level raising for automorphic representations of GL(2n).” 2019. Web. 07 Mar 2021.

Vancouver:

Anastassiades C. Level raising for automorphic representations of GL(2n). [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Mar 07]. Available from: https://www.repository.cam.ac.uk/handle/1810/292530.

Council of Science Editors:

Anastassiades C. Level raising for automorphic representations of GL(2n). [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://www.repository.cam.ac.uk/handle/1810/292530


University of Oxford

5. Green, Benjamin. Galois representations attached to algebraic automorphic representations.

Degree: PhD, 2016, University of Oxford

 This thesis is concerned with the Langlands program; namely the global Langlands correspondence, Langlands functoriality, and a conjecture of Gross. In chapter 1, we cover… (more)

Subjects/Keywords: 512; Number theory; Mathematics; Langlands Program; Automorphic Representations; Galois Representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Green, B. (2016). Galois representations attached to algebraic automorphic representations. (Doctoral Dissertation). University of Oxford. Retrieved from https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056

Chicago Manual of Style (16th Edition):

Green, Benjamin. “Galois representations attached to algebraic automorphic representations.” 2016. Doctoral Dissertation, University of Oxford. Accessed March 07, 2021. https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056.

MLA Handbook (7th Edition):

Green, Benjamin. “Galois representations attached to algebraic automorphic representations.” 2016. Web. 07 Mar 2021.

Vancouver:

Green B. Galois representations attached to algebraic automorphic representations. [Internet] [Doctoral dissertation]. University of Oxford; 2016. [cited 2021 Mar 07]. Available from: https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056.

Council of Science Editors:

Green B. Galois representations attached to algebraic automorphic representations. [Doctoral Dissertation]. University of Oxford; 2016. Available from: https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730056


University of Toronto

6. Enns, John. On mod p local-global compatibility for unramified GL_3.

Degree: PhD, 2018, University of Toronto

 Let F/F+ be a CM number field and w|p a place of F lying over a place of F+ that splits in F. If \rbar:GF → … (more)

Subjects/Keywords: Automorphic representations; Galois representations; Langlands program; Mod p Langlands program; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Enns, J. (2018). On mod p local-global compatibility for unramified GL_3. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/91817

Chicago Manual of Style (16th Edition):

Enns, John. “On mod p local-global compatibility for unramified GL_3.” 2018. Doctoral Dissertation, University of Toronto. Accessed March 07, 2021. http://hdl.handle.net/1807/91817.

MLA Handbook (7th Edition):

Enns, John. “On mod p local-global compatibility for unramified GL_3.” 2018. Web. 07 Mar 2021.

Vancouver:

Enns J. On mod p local-global compatibility for unramified GL_3. [Internet] [Doctoral dissertation]. University of Toronto; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1807/91817.

Council of Science Editors:

Enns J. On mod p local-global compatibility for unramified GL_3. [Doctoral Dissertation]. University of Toronto; 2018. Available from: http://hdl.handle.net/1807/91817

7. Conti, Andrea. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.

Degree: Docteur es, Mathématiques, 2016, Sorbonne Paris Cité

Soit g = 1 ou 2 et p > 3 un nombre premier. Pour le groupe symplectique GSp2g, les systèmes de valeurs propres de Hecke… (more)

Subjects/Keywords: Image de Galois; Familles p-adiques; Formes automorphes; Galois representations; Automorphic forms; P-Adic families

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Conti, A. (2016). Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCD081

Chicago Manual of Style (16th Edition):

Conti, Andrea. “Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed March 07, 2021. http://www.theses.fr/2016USPCD081.

MLA Handbook (7th Edition):

Conti, Andrea. “Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms.” 2016. Web. 07 Mar 2021.

Vancouver:

Conti A. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2016USPCD081.

Council of Science Editors:

Conti A. Grande image de Galois pour familles p-adiques de formes automorphes de pente positive : Big Galois image for p-adic families of positive slope automorphic forms. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCD081


Universiteit Utrecht

8. Karemaker, V.Z. Hecke algebras, Galois representations, and abelian varieties.

Degree: 2016, Universiteit Utrecht

 1.The first part of this thesis treats Hecke algebras for linear algebraic groups over either a number field or a non-archimedean local field of characteristic… (more)

Subjects/Keywords: local/adelic Hecke algebras; surjective Galois representations; supersingular abelian varieties

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karemaker, V. Z. (2016). Hecke algebras, Galois representations, and abelian varieties. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/334199

Chicago Manual of Style (16th Edition):

Karemaker, V Z. “Hecke algebras, Galois representations, and abelian varieties.” 2016. Doctoral Dissertation, Universiteit Utrecht. Accessed March 07, 2021. http://dspace.library.uu.nl:8080/handle/1874/334199.

MLA Handbook (7th Edition):

Karemaker, V Z. “Hecke algebras, Galois representations, and abelian varieties.” 2016. Web. 07 Mar 2021.

Vancouver:

Karemaker VZ. Hecke algebras, Galois representations, and abelian varieties. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2016. [cited 2021 Mar 07]. Available from: http://dspace.library.uu.nl:8080/handle/1874/334199.

Council of Science Editors:

Karemaker VZ. Hecke algebras, Galois representations, and abelian varieties. [Doctoral Dissertation]. Universiteit Utrecht; 2016. Available from: http://dspace.library.uu.nl:8080/handle/1874/334199


Cornell University

9. Miller, Daniel Keegan. Counterexamples related to the Sato-Tate conjecture.

Degree: PhD, Mathematics, 2017, Cornell University

 Let E/\mathbf{Q} be an elliptic curve. The Sato – Tate conjecture, now a theorem, tells us that the angles θp =\cos-1 ≤ ft(\frac{ap}{2√ p})) are equidistributed in [0,π]… (more)

Subjects/Keywords: Dirichlet series; discrepancy; Galois representations; Sato-Tate conjecture; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miller, D. K. (2017). Counterexamples related to the Sato-Tate conjecture. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/51667

Chicago Manual of Style (16th Edition):

Miller, Daniel Keegan. “Counterexamples related to the Sato-Tate conjecture.” 2017. Doctoral Dissertation, Cornell University. Accessed March 07, 2021. http://hdl.handle.net/1813/51667.

MLA Handbook (7th Edition):

Miller, Daniel Keegan. “Counterexamples related to the Sato-Tate conjecture.” 2017. Web. 07 Mar 2021.

Vancouver:

Miller DK. Counterexamples related to the Sato-Tate conjecture. [Internet] [Doctoral dissertation]. Cornell University; 2017. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1813/51667.

Council of Science Editors:

Miller DK. Counterexamples related to the Sato-Tate conjecture. [Doctoral Dissertation]. Cornell University; 2017. Available from: http://hdl.handle.net/1813/51667


University of Waikato

10. Qin, Chao. Iwasawa theory over solvable three-dimensional p-adic Lie extensions .

Degree: 2018, University of Waikato

 Iwasawa theory is a powerful tool which describes the mysterious relationship between arithmetic objects (motives) and the special values of L-functions. A precise form of… (more)

Subjects/Keywords: Iwasawa theory; K-theory; p-adic L-functions; Galois representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Qin, C. (2018). Iwasawa theory over solvable three-dimensional p-adic Lie extensions . (Doctoral Dissertation). University of Waikato. Retrieved from http://hdl.handle.net/10289/12250

Chicago Manual of Style (16th Edition):

Qin, Chao. “Iwasawa theory over solvable three-dimensional p-adic Lie extensions .” 2018. Doctoral Dissertation, University of Waikato. Accessed March 07, 2021. http://hdl.handle.net/10289/12250.

MLA Handbook (7th Edition):

Qin, Chao. “Iwasawa theory over solvable three-dimensional p-adic Lie extensions .” 2018. Web. 07 Mar 2021.

Vancouver:

Qin C. Iwasawa theory over solvable three-dimensional p-adic Lie extensions . [Internet] [Doctoral dissertation]. University of Waikato; 2018. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10289/12250.

Council of Science Editors:

Qin C. Iwasawa theory over solvable three-dimensional p-adic Lie extensions . [Doctoral Dissertation]. University of Waikato; 2018. Available from: http://hdl.handle.net/10289/12250

11. Cantoral Farfan, Victoria. Points de torsion pour les variétés abéliennes de type III : Torsion points for abelian varieties of type III.

Degree: Docteur es, Matématiques. Géométrie arithmétique, 2017, Sorbonne Paris Cité

Le théorème de Mordell-Weil affirme que, pour toute variété abélienne définie sur un corps de nombres, le groupe des points K-rationnels est de type fini.… (more)

Subjects/Keywords: Représentations galoisiennes; Conjecture de Mumford-Tate; Galois representations; Mumford-Tate conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cantoral Farfan, V. (2017). Points de torsion pour les variétés abéliennes de type III : Torsion points for abelian varieties of type III. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2017USPCC113

Chicago Manual of Style (16th Edition):

Cantoral Farfan, Victoria. “Points de torsion pour les variétés abéliennes de type III : Torsion points for abelian varieties of type III.” 2017. Doctoral Dissertation, Sorbonne Paris Cité. Accessed March 07, 2021. http://www.theses.fr/2017USPCC113.

MLA Handbook (7th Edition):

Cantoral Farfan, Victoria. “Points de torsion pour les variétés abéliennes de type III : Torsion points for abelian varieties of type III.” 2017. Web. 07 Mar 2021.

Vancouver:

Cantoral Farfan V. Points de torsion pour les variétés abéliennes de type III : Torsion points for abelian varieties of type III. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2017. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2017USPCC113.

Council of Science Editors:

Cantoral Farfan V. Points de torsion pour les variétés abéliennes de type III : Torsion points for abelian varieties of type III. [Doctoral Dissertation]. Sorbonne Paris Cité; 2017. Available from: http://www.theses.fr/2017USPCC113


Brigham Young University

12. Blackhurst, Jonathan H. Proven Cases of a Generalization of Serre's Conjecture.

Degree: MS, 2006, Brigham Young University

In the 1970's Serre conjectured a correspondence between modular forms and two-dimensional Galois representations. Ash, Doud, and Pollack have extended this conjecture to a correspondence between Hecke eigenclasses in arithmetic cohomology and n-dimensional Galois representations. We present some of the first examples of proven cases of this generalized conjecture.

Subjects/Keywords: Galois representations; number theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Blackhurst, J. H. (2006). Proven Cases of a Generalization of Serre's Conjecture. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd

Chicago Manual of Style (16th Edition):

Blackhurst, Jonathan H. “Proven Cases of a Generalization of Serre's Conjecture.” 2006. Masters Thesis, Brigham Young University. Accessed March 07, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd.

MLA Handbook (7th Edition):

Blackhurst, Jonathan H. “Proven Cases of a Generalization of Serre's Conjecture.” 2006. Web. 07 Mar 2021.

Vancouver:

Blackhurst JH. Proven Cases of a Generalization of Serre's Conjecture. [Internet] [Masters thesis]. Brigham Young University; 2006. [cited 2021 Mar 07]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd.

Council of Science Editors:

Blackhurst JH. Proven Cases of a Generalization of Serre's Conjecture. [Masters Thesis]. Brigham Young University; 2006. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1528&context=etd


Princeton University

13. Varma, Ila. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .

Degree: PhD, 2015, Princeton University

 We prove the compatibility of local and global Langlands correspondences for \GLn up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne and Scholze. More… (more)

Subjects/Keywords: Galois representations; Langlands program; p-adic automorphic forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Varma, I. (2015). On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01g158bk68k

Chicago Manual of Style (16th Edition):

Varma, Ila. “On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .” 2015. Doctoral Dissertation, Princeton University. Accessed March 07, 2021. http://arks.princeton.edu/ark:/88435/dsp01g158bk68k.

MLA Handbook (7th Edition):

Varma, Ila. “On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn .” 2015. Web. 07 Mar 2021.

Vancouver:

Varma I. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . [Internet] [Doctoral dissertation]. Princeton University; 2015. [cited 2021 Mar 07]. Available from: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k.

Council of Science Editors:

Varma I. On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn . [Doctoral Dissertation]. Princeton University; 2015. Available from: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k

14. Bay-Rousson, Hugo. Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory.

Degree: Docteur es, Mathématiques, 2019, Sorbonne université

La première partie de cette thèse concerne la généralisation d'une caractérisation, d'un point de vu Tannakien, des suites exactes de schémas en groupoïdes affines, qui… (more)

Subjects/Keywords: Théorie Tannakienne; Représentations des schémas en groupoïdes; Théorie de Galois différentielle; Tannakian theory; Representations of groupoid schemes; Differential Galois theory; 516.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bay-Rousson, H. (2019). Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2019SORUS044

Chicago Manual of Style (16th Edition):

Bay-Rousson, Hugo. “Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory.” 2019. Doctoral Dissertation, Sorbonne université. Accessed March 07, 2021. http://www.theses.fr/2019SORUS044.

MLA Handbook (7th Edition):

Bay-Rousson, Hugo. “Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory.” 2019. Web. 07 Mar 2021.

Vancouver:

Bay-Rousson H. Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory. [Internet] [Doctoral dissertation]. Sorbonne université; 2019. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2019SORUS044.

Council of Science Editors:

Bay-Rousson H. Isomonodromie en théorie de Galois différentielle : Isomonodromic deformation in differential Galois theory. [Doctoral Dissertation]. Sorbonne université; 2019. Available from: http://www.theses.fr/2019SORUS044

15. Angelakis, Athanasios. Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves : Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiques.

Degree: Docteur es, Mathematiques, 2015, Bordeaux; Universiteit Leiden (Leyde, Pays-Bas)

 Cette thèse traite de deux problèmes dont le lien n’est pas apparent (1) A` quoi ressemble l’abélianisé AK du groupe de Galois absolu d’un corps… (more)

Subjects/Keywords: Groupe de Galois absolu; Théorie du corps de classes; Représentations galoisiennes; Courbes elliptiques; Absolute Galois group; Class field theory; Galois representations; Elliptic curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Angelakis, A. (2015). Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves : Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiques. (Doctoral Dissertation). Bordeaux; Universiteit Leiden (Leyde, Pays-Bas). Retrieved from http://www.theses.fr/2015BORD0180

Chicago Manual of Style (16th Edition):

Angelakis, Athanasios. “Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves : Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiques.” 2015. Doctoral Dissertation, Bordeaux; Universiteit Leiden (Leyde, Pays-Bas). Accessed March 07, 2021. http://www.theses.fr/2015BORD0180.

MLA Handbook (7th Edition):

Angelakis, Athanasios. “Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves : Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiques.” 2015. Web. 07 Mar 2021.

Vancouver:

Angelakis A. Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves : Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiques. [Internet] [Doctoral dissertation]. Bordeaux; Universiteit Leiden (Leyde, Pays-Bas); 2015. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2015BORD0180.

Council of Science Editors:

Angelakis A. Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves : Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiques. [Doctoral Dissertation]. Bordeaux; Universiteit Leiden (Leyde, Pays-Bas); 2015. Available from: http://www.theses.fr/2015BORD0180


Leiden University

16. Angelakis, A. Universal adelic groups for imaginary quadratic number fields and elliptic curves.

Degree: 2015, Leiden University

 The 1st chapter is of an introductory nature. It discusses the basic invariants of algebraic number fields and asks whether or to which extent such… (more)

Subjects/Keywords: Elliptic curves; Galois representations; Class field theory; Absolute Galois group; Elliptic curves; Galois representations; Class field theory; Absolute Galois group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Angelakis, A. (2015). Universal adelic groups for imaginary quadratic number fields and elliptic curves. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/34990

Chicago Manual of Style (16th Edition):

Angelakis, A. “Universal adelic groups for imaginary quadratic number fields and elliptic curves.” 2015. Doctoral Dissertation, Leiden University. Accessed March 07, 2021. http://hdl.handle.net/1887/34990.

MLA Handbook (7th Edition):

Angelakis, A. “Universal adelic groups for imaginary quadratic number fields and elliptic curves.” 2015. Web. 07 Mar 2021.

Vancouver:

Angelakis A. Universal adelic groups for imaginary quadratic number fields and elliptic curves. [Internet] [Doctoral dissertation]. Leiden University; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1887/34990.

Council of Science Editors:

Angelakis A. Universal adelic groups for imaginary quadratic number fields and elliptic curves. [Doctoral Dissertation]. Leiden University; 2015. Available from: http://hdl.handle.net/1887/34990

17. Kiliç, Ammar Yasir. Inequalities on Swan conductors : Inégalités pour les conducteurs de Swan.

Degree: Docteur es, Mathématiques fondamentales, 2019, Université Paris-Saclay (ComUE)

Dans cette thèse, nous nous intéressons aux représentations lisses complexes de groupe de Weil W d'un corps local non archimédien. Si S est une telle… (more)

Subjects/Keywords: Représentations galoisiennes; Conducteurs de Swan; Programme de Langlands; Galois representations; Swan conductors; Langlands program

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kiliç, A. Y. (2019). Inequalities on Swan conductors : Inégalités pour les conducteurs de Swan. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2019SACLS309

Chicago Manual of Style (16th Edition):

Kiliç, Ammar Yasir. “Inequalities on Swan conductors : Inégalités pour les conducteurs de Swan.” 2019. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed March 07, 2021. http://www.theses.fr/2019SACLS309.

MLA Handbook (7th Edition):

Kiliç, Ammar Yasir. “Inequalities on Swan conductors : Inégalités pour les conducteurs de Swan.” 2019. Web. 07 Mar 2021.

Vancouver:

Kiliç AY. Inequalities on Swan conductors : Inégalités pour les conducteurs de Swan. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2019. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2019SACLS309.

Council of Science Editors:

Kiliç AY. Inequalities on Swan conductors : Inégalités pour les conducteurs de Swan. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2019. Available from: http://www.theses.fr/2019SACLS309

18. Savel, Charles. Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1

A une représentation de p-torsion du groupe de Galois absolu d'un corps p-adique, M. Kisin associe un espace de modules, appelé par la suite variété… (more)

Subjects/Keywords: Géométrie algébrique arithmétique; Représentations galoisiennes; Variétés de Kisin; Arithmetic algebraic geometry; Kisin varieties; Galois representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Savel, C. (2015). Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S072

Chicago Manual of Style (16th Edition):

Savel, Charles. “Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd.” 2015. Doctoral Dissertation, Rennes 1. Accessed March 07, 2021. http://www.theses.fr/2015REN1S072.

MLA Handbook (7th Edition):

Savel, Charles. “Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd.” 2015. Web. 07 Mar 2021.

Vancouver:

Savel C. Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2015REN1S072.

Council of Science Editors:

Savel C. Sur la dimension de certaines variétés de Kisin : le cas de la restriction des scalaires de GLd : On the dimension of certain Kisin varieties : the case of the scalar restriction of GLd. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S072


Brigham Young University

19. Rosengren, Wayne Bennett. Lifting Galois Representations in a Conjecture of Figueiredo.

Degree: MS, 2008, Brigham Young University

  In 1987, Jean-Pierre Serre gave a conjecture on the correspondence between degree 2 odd irreducible representations of the absolute Galois group of Q and… (more)

Subjects/Keywords: Galois representations; Serre's Conjecture; Figueiredo; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosengren, W. B. (2008). Lifting Galois Representations in a Conjecture of Figueiredo. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2400&context=etd

Chicago Manual of Style (16th Edition):

Rosengren, Wayne Bennett. “Lifting Galois Representations in a Conjecture of Figueiredo.” 2008. Masters Thesis, Brigham Young University. Accessed March 07, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2400&context=etd.

MLA Handbook (7th Edition):

Rosengren, Wayne Bennett. “Lifting Galois Representations in a Conjecture of Figueiredo.” 2008. Web. 07 Mar 2021.

Vancouver:

Rosengren WB. Lifting Galois Representations in a Conjecture of Figueiredo. [Internet] [Masters thesis]. Brigham Young University; 2008. [cited 2021 Mar 07]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2400&context=etd.

Council of Science Editors:

Rosengren WB. Lifting Galois Representations in a Conjecture of Figueiredo. [Masters Thesis]. Brigham Young University; 2008. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2400&context=etd

20. Lombardo, Davide. Galois representations and Mumford-Tate groups attached to abelian varieties : Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne.

Degree: Docteur es, Mathématiques fondamentales, 2015, Université Paris-Saclay (ComUE)

Soient K un corps de nombres et A une variété abélienne sur K dont nous notons g la dimension. Pour tout premier ℓ, le module… (more)

Subjects/Keywords: Répresentations galoisiennes; Variétés abéliennes; Conjecture de Mumford-Tate; Galois representations; Abelian varieties; Mumford-Tate conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lombardo, D. (2015). Galois representations and Mumford-Tate groups attached to abelian varieties : Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2015SACLS196

Chicago Manual of Style (16th Edition):

Lombardo, Davide. “Galois representations and Mumford-Tate groups attached to abelian varieties : Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne.” 2015. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed March 07, 2021. http://www.theses.fr/2015SACLS196.

MLA Handbook (7th Edition):

Lombardo, Davide. “Galois representations and Mumford-Tate groups attached to abelian varieties : Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne.” 2015. Web. 07 Mar 2021.

Vancouver:

Lombardo D. Galois representations and Mumford-Tate groups attached to abelian varieties : Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2015. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2015SACLS196.

Council of Science Editors:

Lombardo D. Galois representations and Mumford-Tate groups attached to abelian varieties : Représentations galoisiennes et groupe de Mumford-Tate associé à une variété abélienne. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2015. Available from: http://www.theses.fr/2015SACLS196


University of Melbourne

21. McAndrew, Angus William. Galois representations and theta operators for Siegel modular forms.

Degree: 2015, University of Melbourne

 Modular forms are powerful number theoretic objects, having attracted much study and attention for the last 200 years. In the modern area, one of their… (more)

Subjects/Keywords: number theory; representation theory; algebraic geometry; Galois representations; modular forms; Siegel modular forms; Serre's conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McAndrew, A. W. (2015). Galois representations and theta operators for Siegel modular forms. (Masters Thesis). University of Melbourne. Retrieved from http://hdl.handle.net/11343/57014

Chicago Manual of Style (16th Edition):

McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Masters Thesis, University of Melbourne. Accessed March 07, 2021. http://hdl.handle.net/11343/57014.

MLA Handbook (7th Edition):

McAndrew, Angus William. “Galois representations and theta operators for Siegel modular forms.” 2015. Web. 07 Mar 2021.

Vancouver:

McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Internet] [Masters thesis]. University of Melbourne; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/11343/57014.

Council of Science Editors:

McAndrew AW. Galois representations and theta operators for Siegel modular forms. [Masters Thesis]. University of Melbourne; 2015. Available from: http://hdl.handle.net/11343/57014


Leiden University

22. Brau Avila, Julio. Galois representations of elliptic curves and abelian entanglements.

Degree: 2015, Leiden University

 This thesis deals primarily with the study of Galois representations attached to torsion points on elliptic curves. In the first chapter we consider the problem… (more)

Subjects/Keywords: Abelian entanglements; Elliptic curves; Galois representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brau Avila, J. (2015). Galois representations of elliptic curves and abelian entanglements. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/37019

Chicago Manual of Style (16th Edition):

Brau Avila, Julio. “Galois representations of elliptic curves and abelian entanglements.” 2015. Doctoral Dissertation, Leiden University. Accessed March 07, 2021. http://hdl.handle.net/1887/37019.

MLA Handbook (7th Edition):

Brau Avila, Julio. “Galois representations of elliptic curves and abelian entanglements.” 2015. Web. 07 Mar 2021.

Vancouver:

Brau Avila J. Galois representations of elliptic curves and abelian entanglements. [Internet] [Doctoral dissertation]. Leiden University; 2015. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/1887/37019.

Council of Science Editors:

Brau Avila J. Galois representations of elliptic curves and abelian entanglements. [Doctoral Dissertation]. Leiden University; 2015. Available from: http://hdl.handle.net/1887/37019

23. Allen, Patrick. Modularity of nearly ordinary 2-adic residually dihedral Galois representations.

Degree: Mathematics, 2012, UCLA

 We prove modularity of some two dimensional 2-adic Galois representations over a totally real field that are nearly ordinary at all places above 2 and… (more)

Subjects/Keywords: Mathematics; Automorphic forms; Galois representations; Number theory

…between Galois representations and automorphic forms. Galois representations arise quite… …naturally in algebraic geometry, and often properties of the Galois representations allow one to… …modular forms. A priori, automorphic forms and Galois representations don’t appear to have… …proved this by showing that the Galois representations arising from a large class of elliptic… …main tools for proving that Galois representations are automorphic, i.e. arise from… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allen, P. (2012). Modularity of nearly ordinary 2-adic residually dihedral Galois representations. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/1nk3w1xd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Allen, Patrick. “Modularity of nearly ordinary 2-adic residually dihedral Galois representations.” 2012. Thesis, UCLA. Accessed March 07, 2021. http://www.escholarship.org/uc/item/1nk3w1xd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Allen, Patrick. “Modularity of nearly ordinary 2-adic residually dihedral Galois representations.” 2012. Web. 07 Mar 2021.

Vancouver:

Allen P. Modularity of nearly ordinary 2-adic residually dihedral Galois representations. [Internet] [Thesis]. UCLA; 2012. [cited 2021 Mar 07]. Available from: http://www.escholarship.org/uc/item/1nk3w1xd.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Allen P. Modularity of nearly ordinary 2-adic residually dihedral Galois representations. [Thesis]. UCLA; 2012. Available from: http://www.escholarship.org/uc/item/1nk3w1xd

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brigham Young University

24. de Melo, Heather Aurora Florence. Totally Real Galois Representations in Characteristic 2 and Arithmetic Cohomology.

Degree: MS, 2005, Brigham Young University

 The purpose of this paper is to provide new examples supporting a conjecture of Ash, Doud, and Pollack. This conjecture involves Galois representations taking Gal(Q… (more)

Subjects/Keywords: Serre; conjecture; Galois representations; Ash; Doud; Pollack; computation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

de Melo, H. A. F. (2005). Totally Real Galois Representations in Characteristic 2 and Arithmetic Cohomology. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1676&context=etd

Chicago Manual of Style (16th Edition):

de Melo, Heather Aurora Florence. “Totally Real Galois Representations in Characteristic 2 and Arithmetic Cohomology.” 2005. Masters Thesis, Brigham Young University. Accessed March 07, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1676&context=etd.

MLA Handbook (7th Edition):

de Melo, Heather Aurora Florence. “Totally Real Galois Representations in Characteristic 2 and Arithmetic Cohomology.” 2005. Web. 07 Mar 2021.

Vancouver:

de Melo HAF. Totally Real Galois Representations in Characteristic 2 and Arithmetic Cohomology. [Internet] [Masters thesis]. Brigham Young University; 2005. [cited 2021 Mar 07]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1676&context=etd.

Council of Science Editors:

de Melo HAF. Totally Real Galois Representations in Characteristic 2 and Arithmetic Cohomology. [Masters Thesis]. Brigham Young University; 2005. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1676&context=etd

25. Kalyanswamy, Sudesh. Automorphy Lifting Theorems.

Degree: Mathematics, 2017, UCLA

 This dissertation focus on automorphy lifting theorems and related questions. There are two primary components.The first deals with residually dihedral Galois representations. Namely, fix an… (more)

Subjects/Keywords: Mathematics; Automorphic Forms; Elliptic Curves; Galois Representations

…2.4.3 Galois Representations Attached to Automorphic Representations . . 46 Modularity… …3.5.2 Galois Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.6… …compatible system of Galois representations, in what situations will a specific deformation problem… …thoroughly examined. It will be discussed in Chapter 5. 1 1.2 Galois Representations, Fermat’s… …true if one restricts to Galois representations arising from separate geometric objects… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kalyanswamy, S. (2017). Automorphy Lifting Theorems. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/5br5g0fq

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kalyanswamy, Sudesh. “Automorphy Lifting Theorems.” 2017. Thesis, UCLA. Accessed March 07, 2021. http://www.escholarship.org/uc/item/5br5g0fq.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kalyanswamy, Sudesh. “Automorphy Lifting Theorems.” 2017. Web. 07 Mar 2021.

Vancouver:

Kalyanswamy S. Automorphy Lifting Theorems. [Internet] [Thesis]. UCLA; 2017. [cited 2021 Mar 07]. Available from: http://www.escholarship.org/uc/item/5br5g0fq.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kalyanswamy S. Automorphy Lifting Theorems. [Thesis]. UCLA; 2017. Available from: http://www.escholarship.org/uc/item/5br5g0fq

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Childers, Kevin Ronald. Octahedral Extensions and Proofs of Two Conjectures of Wong.

Degree: MS, 2015, Brigham Young University

 Consider a non-Galois cubic extension K/Q ramified at a single prime p > 3. We show that if K is a subfield of an S_4-extension… (more)

Subjects/Keywords: octahedral; Galois representations; number fields; Mathematics

…the roots of unity in K. 2.2 Galois representations The main theorem of Chapter 3 is a… …result about certain Galois representations. This section develops the basic theory that we… …Galois extension of number fields and p is a prime of F . If P, P0 are both primes of K lying… …is called the class number. The Galois group of this extension can be identified by class… …degree of this extension. The Galois group of this extension is identified by class field… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Childers, K. R. (2015). Octahedral Extensions and Proofs of Two Conjectures of Wong. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6313&context=etd

Chicago Manual of Style (16th Edition):

Childers, Kevin Ronald. “Octahedral Extensions and Proofs of Two Conjectures of Wong.” 2015. Masters Thesis, Brigham Young University. Accessed March 07, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6313&context=etd.

MLA Handbook (7th Edition):

Childers, Kevin Ronald. “Octahedral Extensions and Proofs of Two Conjectures of Wong.” 2015. Web. 07 Mar 2021.

Vancouver:

Childers KR. Octahedral Extensions and Proofs of Two Conjectures of Wong. [Internet] [Masters thesis]. Brigham Young University; 2015. [cited 2021 Mar 07]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6313&context=etd.

Council of Science Editors:

Childers KR. Octahedral Extensions and Proofs of Two Conjectures of Wong. [Masters Thesis]. Brigham Young University; 2015. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=6313&context=etd

27. Adams, Joseph Allen. Connecting Galois Representations with Cohomology.

Degree: MS, 2014, Brigham Young University

  In this paper, we examine the conjecture of Avner Ash, Darrin Doud, David Pollack, and Warren Sinnott relating Galois representations to the mod p… (more)

Subjects/Keywords: Arithmetic Cohomology; Galois Representations; Hecke Operators; Mathematics

Galois representations, rather than predicting a module of the form Symk−2 (Fn p )… …without Galois representations attached), we first find all unique systems of eigenvalues… …tells us the fundamental characters Ψn,d are all Galois conjugates of Ψn,1 over Fp… …level and nebentype for representations in GL2 (Fp ), and we use a similar… …definition for representations into GL3 (Fp ). First we look at the level of ρ. For a… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Adams, J. A. (2014). Connecting Galois Representations with Cohomology. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=5123&context=etd

Chicago Manual of Style (16th Edition):

Adams, Joseph Allen. “Connecting Galois Representations with Cohomology.” 2014. Masters Thesis, Brigham Young University. Accessed March 07, 2021. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=5123&context=etd.

MLA Handbook (7th Edition):

Adams, Joseph Allen. “Connecting Galois Representations with Cohomology.” 2014. Web. 07 Mar 2021.

Vancouver:

Adams JA. Connecting Galois Representations with Cohomology. [Internet] [Masters thesis]. Brigham Young University; 2014. [cited 2021 Mar 07]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=5123&context=etd.

Council of Science Editors:

Adams JA. Connecting Galois Representations with Cohomology. [Masters Thesis]. Brigham Young University; 2014. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=5123&context=etd

28. Jalinière, Pierre. Arithmétrique en différentes caractéristiques : Arithmetic in different characteristics.

Degree: Docteur es, Mathématiques, 2016, Université Pierre et Marie Curie – Paris VI

Cette thèse comporte trois volets indépendants en cryptographie, en théorie de Hodge p-adique et en analyse numérique.La première partie consiste en l'étude d'algorithmes performants de… (more)

Subjects/Keywords: Cryptographie; Logarithme discret; Polynômes; Représentations galoisiennes; Théorie de Hodge p-adique; Schémas numériques; Cryptography; Discrete logarithm; Galois representations; 513.1

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jalinière, P. (2016). Arithmétrique en différentes caractéristiques : Arithmetic in different characteristics. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2016PA066113

Chicago Manual of Style (16th Edition):

Jalinière, Pierre. “Arithmétrique en différentes caractéristiques : Arithmetic in different characteristics.” 2016. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed March 07, 2021. http://www.theses.fr/2016PA066113.

MLA Handbook (7th Edition):

Jalinière, Pierre. “Arithmétrique en différentes caractéristiques : Arithmetic in different characteristics.” 2016. Web. 07 Mar 2021.

Vancouver:

Jalinière P. Arithmétrique en différentes caractéristiques : Arithmetic in different characteristics. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2016. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2016PA066113.

Council of Science Editors:

Jalinière P. Arithmétrique en différentes caractéristiques : Arithmetic in different characteristics. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2016. Available from: http://www.theses.fr/2016PA066113

29. Vienney, Mathieu. Construction de (phi,gamma)-modules en caractéristique p : Construction of (phi,gamma)-modules in characteristic p.

Degree: Docteur es, Mathématiques, 2012, Lyon, École normale supérieure

Cette thèse est constituée de deux parties indépendantes, étudiant deux aspects de la théorie des (φ,Γ)-modules en caractéristique p. La première partie porte sur l'étude… (more)

Subjects/Keywords: (Phi, Gamma) modules; Représentations galoisiennes modulo p; Représentations cristallines; Programme de Langlands modulo p; (Phi, Gamma) modules; Modulo p galois representations; Crystalline representations; Modulo p Langlands program

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vienney, M. (2012). Construction de (phi,gamma)-modules en caractéristique p : Construction of (phi,gamma)-modules in characteristic p. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2012ENSL0759

Chicago Manual of Style (16th Edition):

Vienney, Mathieu. “Construction de (phi,gamma)-modules en caractéristique p : Construction of (phi,gamma)-modules in characteristic p.” 2012. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 07, 2021. http://www.theses.fr/2012ENSL0759.

MLA Handbook (7th Edition):

Vienney, Mathieu. “Construction de (phi,gamma)-modules en caractéristique p : Construction of (phi,gamma)-modules in characteristic p.” 2012. Web. 07 Mar 2021.

Vancouver:

Vienney M. Construction de (phi,gamma)-modules en caractéristique p : Construction of (phi,gamma)-modules in characteristic p. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2012. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2012ENSL0759.

Council of Science Editors:

Vienney M. Construction de (phi,gamma)-modules en caractéristique p : Construction of (phi,gamma)-modules in characteristic p. [Doctoral Dissertation]. Lyon, École normale supérieure; 2012. Available from: http://www.theses.fr/2012ENSL0759

30. Anastassiades, Christos. Level raising for automorphic representations of GL(2n).

Degree: PhD, 2019, University of Cambridge

 To each regular algebraic, conjugate self-dual, cuspidal automorphic representation Π of GL(N) over a CM number field E (or, more generally, to a regular algebraic… (more)

Subjects/Keywords: Number Theory; Automorphic Representations; Galois Representations; Level Raising

…26 Chapter 2. Automorphic representations on definite unitary groups 31 1. Galois… …forms and the automorphy of Galois representations. For example, Ribet’s level raising theorem… …ingredient in the proof of a modularity lifting theorem for 2-dimensional Galois representations… …x29; and the existence of Galois representations attached to automorphic representations of… …Contents Introduction 1 Chapter 1. Endoscopic classification of representations of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anastassiades, C. (2019). Level raising for automorphic representations of GL(2n). (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.39690 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774799

Chicago Manual of Style (16th Edition):

Anastassiades, Christos. “Level raising for automorphic representations of GL(2n).” 2019. Doctoral Dissertation, University of Cambridge. Accessed March 07, 2021. https://doi.org/10.17863/CAM.39690 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774799.

MLA Handbook (7th Edition):

Anastassiades, Christos. “Level raising for automorphic representations of GL(2n).” 2019. Web. 07 Mar 2021.

Vancouver:

Anastassiades C. Level raising for automorphic representations of GL(2n). [Internet] [Doctoral dissertation]. University of Cambridge; 2019. [cited 2021 Mar 07]. Available from: https://doi.org/10.17863/CAM.39690 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774799.

Council of Science Editors:

Anastassiades C. Level raising for automorphic representations of GL(2n). [Doctoral Dissertation]. University of Cambridge; 2019. Available from: https://doi.org/10.17863/CAM.39690 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.774799

[1] [2]

.