Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

University: ETH Zürich

You searched for subject:(Galerkin method). Showing records 1 – 21 of 21 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


ETH Zürich

1. Andreev, Roman. Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations.

Degree: 2012, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); STABILITÄT PARTIELLER DIFFERENTIALGLEICHUNGEN (ANALYSIS); EVOLUTIONSGLEICHUNGEN (ANALYSIS); EVOLUTION EQUATIONS (MATHEMATICAL ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); LINEARE OPERATOREN UND OPERATORENGLEICHUNGEN (FUNKTIONALANALYSIS); LINEAR OPERATORS AND OPERATOR EQUATIONS (FUNCTIONAL ANALYSIS); PARABOLISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); PARABOLIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); STABILITY OF PARTIAL DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Andreev, R. (2012). Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/59269

Chicago Manual of Style (16th Edition):

Andreev, Roman. “Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations.” 2012. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/59269.

MLA Handbook (7th Edition):

Andreev, Roman. “Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations.” 2012. Web. 25 Aug 2019.

Vancouver:

Andreev R. Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/59269.

Council of Science Editors:

Andreev R. Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/59269


ETH Zürich

2. Bieri, Marcel. Sparse tensor discretizations of elliptic PDEs with random input data.

Degree: 2009, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); STOCHASTIC DIFFERENTIAL EQUATIONS (PROBABILITY THEORY); STOCHASTIC APPROXIMATION + MONTE CARLO METHODS (STOCHASTICS); STOCHASTISCHE APPROXIMATION + MONTE-CARLO-METHODEN (STOCHASTIK); STOCHASTISCHE DIFFERENTIALGLEICHUNGEN (WAHRSCHEINLICHKEITSRECHNUNG); ELLIPTISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); WAVELETS + WAVELET TRANSFORMATIONS (MATHEMATICAL ANALYSIS); ELLIPTIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); WAVELETS + WAVELET-TRANSFORMATIONEN (ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bieri, M. (2009). Sparse tensor discretizations of elliptic PDEs with random input data. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/20929

Chicago Manual of Style (16th Edition):

Bieri, Marcel. “Sparse tensor discretizations of elliptic PDEs with random input data.” 2009. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/20929.

MLA Handbook (7th Edition):

Bieri, Marcel. “Sparse tensor discretizations of elliptic PDEs with random input data.” 2009. Web. 25 Aug 2019.

Vancouver:

Bieri M. Sparse tensor discretizations of elliptic PDEs with random input data. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/20929.

Council of Science Editors:

Bieri M. Sparse tensor discretizations of elliptic PDEs with random input data. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/20929


ETH Zürich

3. Cortinovis, Davide. Robust multiscale finite volume method based iterative schemes.

Degree: 2016, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); ITERATIVE METHODS (NUMERICAL MATHEMATICS); ITERATIVE VERFAHREN (NUMERISCHE MATHEMATIK); ELLIPTISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); FLUIDBEWEGUNG IN PORÖSEN STOFFEN (HYDRODYNAMIK); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-VOLUMEN-METHODEN (NUMERISCHE MATHEMATIK); FINITE VOLUME METHODS (NUMERICAL MATHEMATICS); ELLIPTIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); FLOW THROUGH POROUS MEDIA (HYDRODYNAMICS); info:eu-repo/classification/ddc/530; info:eu-repo/classification/ddc/510; Physics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cortinovis, D. (2016). Robust multiscale finite volume method based iterative schemes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/126974

Chicago Manual of Style (16th Edition):

Cortinovis, Davide. “Robust multiscale finite volume method based iterative schemes.” 2016. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/126974.

MLA Handbook (7th Edition):

Cortinovis, Davide. “Robust multiscale finite volume method based iterative schemes.” 2016. Web. 25 Aug 2019.

Vancouver:

Cortinovis D. Robust multiscale finite volume method based iterative schemes. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/126974.

Council of Science Editors:

Cortinovis D. Robust multiscale finite volume method based iterative schemes. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/126974


ETH Zürich

4. Corti, Paolo. Stable numerical schemes for magnetic induction equation with Hall effect.

Degree: 2013, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); MAGNETOHYDRODYNAMICS; ELEKTROMAGNETISCHE INDUKTION (ELEKTRODYNAMIK); PARTIAL DIFFERENTIAL EQUATIONS (NUMERICAL MATHEMATICS); HALL EFFECT (MAGNETISM); FINITE-DIFFERENZEN-METHODE (NUMERISCHE MATHEMATIK); MAGNETOHYDRODYNAMIK; HALLEFFEKT (MAGNETISMUS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE DIFFERENCE METHOD (NUMERICAL MATHEMATICS); MAGNETIC INDUCTION (ELECTRODYNAMICS); PARTIELLE DIFFERENTIALGLEICHUNGEN (NUMERISCHE MATHEMATIK); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Corti, P. (2013). Stable numerical schemes for magnetic induction equation with Hall effect. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/65382

Chicago Manual of Style (16th Edition):

Corti, Paolo. “Stable numerical schemes for magnetic induction equation with Hall effect.” 2013. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/65382.

MLA Handbook (7th Edition):

Corti, Paolo. “Stable numerical schemes for magnetic induction equation with Hall effect.” 2013. Web. 25 Aug 2019.

Vancouver:

Corti P. Stable numerical schemes for magnetic induction equation with Hall effect. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/65382.

Council of Science Editors:

Corti P. Stable numerical schemes for magnetic induction equation with Hall effect. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/65382


ETH Zürich

5. Fallahi, Arya. Optimal design of planar metamaterials.

Degree: 2010, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); MICROWAVES, MW, 30 MHZ TO 3 THZ (ELECTRICAL ENGINEERING); MIKROWELLEN, MW, 30 MHZ BIS 3 THZ (ELEKTROTECHNIK); NUMERISCHE SIMULATION UND MATHEMATISCHE MODELLRECHNUNG; NUMERICAL SIMULATION AND MATHEMATICAL MODELING; MOMENT THEORY (MATHEMATICAL ANALYSIS); METAMATERIALS (MATERIALS SCIENCES); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); METAMATERIALIEN (WERKSTOFFE); PLANAR WAVEGUIDES (ELECTRICAL OSCILLATION TECHNOLOGY); MOMENTENTHEORIE (ANALYSIS); PLANARE WELLENLEITER (ELEKTRISCHE SCHWINGUNGSTECHNIK); info:eu-repo/classification/ddc/621.3; info:eu-repo/classification/ddc/510; Electric engineering; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fallahi, A. (2010). Optimal design of planar metamaterials. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/92754

Chicago Manual of Style (16th Edition):

Fallahi, Arya. “Optimal design of planar metamaterials.” 2010. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/92754.

MLA Handbook (7th Edition):

Fallahi, Arya. “Optimal design of planar metamaterials.” 2010. Web. 25 Aug 2019.

Vancouver:

Fallahi A. Optimal design of planar metamaterials. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/92754.

Council of Science Editors:

Fallahi A. Optimal design of planar metamaterials. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/92754


ETH Zürich

6. Gittelson, Claude Jeffrey. Adaptive Galerkin methods for parametric and stochastic operator equations.

Degree: 2011, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); FRAMES (FUNKTIONALANALYSIS); STOCHASTIC DIFFERENTIAL EQUATIONS (PROBABILITY THEORY); STOCHASTISCHE DIFFERENTIALGLEICHUNGEN (WAHRSCHEINLICHKEITSRECHNUNG); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); MEHRGITTERVERFAHREN + GITTERERZEUGUNG (NUMERISCHE MATHEMATIK); LINEARE OPERATOREN UND OPERATORENGLEICHUNGEN (FUNKTIONALANALYSIS); LINEAR OPERATORS AND OPERATOR EQUATIONS (FUNCTIONAL ANALYSIS); MULTIGRID METHODS + GRID GENERATION (NUMERICAL MATHEMATICS); FRAMES (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gittelson, C. J. (2011). Adaptive Galerkin methods for parametric and stochastic operator equations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/40070

Chicago Manual of Style (16th Edition):

Gittelson, Claude Jeffrey. “Adaptive Galerkin methods for parametric and stochastic operator equations.” 2011. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/40070.

MLA Handbook (7th Edition):

Gittelson, Claude Jeffrey. “Adaptive Galerkin methods for parametric and stochastic operator equations.” 2011. Web. 25 Aug 2019.

Vancouver:

Gittelson CJ. Adaptive Galerkin methods for parametric and stochastic operator equations. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/40070.

Council of Science Editors:

Gittelson CJ. Adaptive Galerkin methods for parametric and stochastic operator equations. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/40070


ETH Zürich

7. Grella, Konstantin. Sparse tensor approximation for radiative transport.

Degree: 2013, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); APPROXIMATION UND INTERPOLATION (NUMERISCHE MATHEMATIK); STRAHLUNGSTRANSPORT; TRANSPORT EQUATIONS (MATHEMATICAL ANALYSIS); RADIATION TRANSPORT; SPHÄRISCHE HARMONISCHE FUNKTIONEN (ANALYSIS); APPROXIMATION AND INTERPOLATION (NUMERICAL MATHEMATICS); SPHERICAL HARMONIC FUNCTIONS (MATHEMATICAL ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); TRANSPORTGLEICHUNGEN (ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grella, K. (2013). Sparse tensor approximation for radiative transport. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/79188

Chicago Manual of Style (16th Edition):

Grella, Konstantin. “Sparse tensor approximation for radiative transport.” 2013. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/79188.

MLA Handbook (7th Edition):

Grella, Konstantin. “Sparse tensor approximation for radiative transport.” 2013. Web. 25 Aug 2019.

Vancouver:

Grella K. Sparse tensor approximation for radiative transport. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/79188.

Council of Science Editors:

Grella K. Sparse tensor approximation for radiative transport. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/79188


ETH Zürich

8. Heumann, Holger. Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms.

Degree: 2011, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); DIFFUSION EQUATIONS + HEAT EQUATIONS (MATHEMATICAL ANALYSIS); DIFFUSIONSGLEICHUNGEN + WÄRMELEITUNGSGLEICHUNGEN (ANALYSIS); PARTIAL DIFFERENTIAL EQUATIONS (NUMERICAL MATHEMATICS); ADVECTION EQUATIONS (MATHEMATICAL ANALYSIS); EXTERIOR DIFFERENTIAL FORMS ON MANIFOLDS (DIFFERENTIAL GEOMETRY); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); ADVEKTIONSGLEICHUNGEN (ANALYSIS); PARTIELLE DIFFERENTIALGLEICHUNGEN (NUMERISCHE MATHEMATIK); ÄUSSERE DIFFERENTIALFORMEN AUF MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heumann, H. (2011). Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/43640

Chicago Manual of Style (16th Edition):

Heumann, Holger. “Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms.” 2011. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/43640.

MLA Handbook (7th Edition):

Heumann, Holger. “Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms.” 2011. Web. 25 Aug 2019.

Vancouver:

Heumann H. Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/43640.

Council of Science Editors:

Heumann H. Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/43640


ETH Zürich

9. Hiltebrand, Andreas. Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws.

Degree: 2014, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); CONSERVATION LAWS (THEORETICAL PHYSICS); TOPOLOGISCHE ENTROPIE (ANALYSIS); ERHALTUNGSSÄTZE (THEORETISCHE PHYSIK); TOPOLOGICAL ENTROPY (MATHEMATICAL ANALYSIS); HYPERBOLISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); HYPERBOLIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hiltebrand, A. (2014). Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/96513

Chicago Manual of Style (16th Edition):

Hiltebrand, Andreas. “Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws.” 2014. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/96513.

MLA Handbook (7th Edition):

Hiltebrand, Andreas. “Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws.” 2014. Web. 25 Aug 2019.

Vancouver:

Hiltebrand A. Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/96513.

Council of Science Editors:

Hiltebrand A. Entropy-stable discontinuous Galerkin finite element methods with streamline diffusion and shock-capturing for hyperbolic systems of conservation laws. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/96513


ETH Zürich

10. Kazeev, Vladimir. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions.

Degree: 2015, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); APPROXIMATION VON FUNKTIONEN (NUMERISCHE MATHEMATIK); POLYGONGEOMETRIE; APPROXIMATION OF FUNCTIONS (NUMERICAL MATHEMATICS); GEOMETRY OF POLYGONS; SOBOLEV-RÄUME (FUNKTIONALANALYSIS); ELLIPTISCHE DIFFERENTIALGLEICHUNGEN ZWEITER ORDNUNG (NUMERISCHE MATHEMATIK); SOBOLEV SPACES (FUNCTIONAL ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); ELLIPTIC DIFFERENTIAL EQUATIONS OF SECOND ORDER (NUMERICAL MATHEMATICS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kazeev, V. (2015). Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/107311

Chicago Manual of Style (16th Edition):

Kazeev, Vladimir. “Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions.” 2015. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/107311.

MLA Handbook (7th Edition):

Kazeev, Vladimir. “Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions.” 2015. Web. 25 Aug 2019.

Vancouver:

Kazeev V. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/107311.

Council of Science Editors:

Kazeev V. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/107311


ETH Zürich

11. Kumar, Harish. Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics.

Degree: 2009, ETH Zürich

Subjects/Keywords: LEISTUNGSSCHALTER (ELEKTROTECHNIK); MAGNETOHYDRODYNAMISCHE WELLEN (PLASMAPHYSIK); MODELLRECHNUNG IN DER PHYSIK; NUMERISCHE METHODEN IN DER PHYSIK (NUMERISCHE MATHEMATIK); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); RUNGE-KUTTA-VERFAHREN (NUMERISCHE MATHEMATIK); POWER CIRCUIT BREAKERS (ELECTRICAL ENGINEERING); MAGNETOHYDRODYNAMIC WAVES (PLASMA PHYSICS); MATHEMATICAL MODELING IN PHYSICS; NUMERICAL METHODS IN PHYSICS (NUMERICAL MATHEMATICS); GALERKIN METHOD (NUMERICAL MATHEMATICS); RUNGE-KUTTA METHODS (NUMERICAL MATHEMATICS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kumar, H. (2009). Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151527

Chicago Manual of Style (16th Edition):

Kumar, Harish. “Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics.” 2009. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/151527.

MLA Handbook (7th Edition):

Kumar, Harish. “Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics.” 2009. Web. 25 Aug 2019.

Vancouver:

Kumar H. Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/151527.

Council of Science Editors:

Kumar H. Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151527


ETH Zürich

12. Li, Kuan. Numerical approaches to the geodynamo problem.

Degree: 2012, ETH Zürich

Subjects/Keywords: GEODYNAMO (GEOPHYSIK); MODELLRECHNUNG IN DER GEOPHYSIK; MAGNETOHYDRODYNAMIK; MAGNETISCHE VARIATIONEN/VORÜBERGEHENDE VARIATIONEN (GEOPHYSIK); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); INVERSIONSPROBLEM (GEOPHYSIK); GEODYNAMO (GEOPHYSICS); MATHEMATICAL MODELLING IN GEOPHYSICS; MAGNETOHYDRODYNAMICS; GEOMAGNETIC VARIATIONS/TRANSIENT VARIATIONS (GEOPHYSICS); GALERKIN METHOD (NUMERICAL MATHEMATICS); GEOPHYSICAL INVERSE THEORY (GEOPHYSICS); info:eu-repo/classification/ddc/550; Earth sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, K. (2012). Numerical approaches to the geodynamo problem. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153584

Chicago Manual of Style (16th Edition):

Li, Kuan. “Numerical approaches to the geodynamo problem.” 2012. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/153584.

MLA Handbook (7th Edition):

Li, Kuan. “Numerical approaches to the geodynamo problem.” 2012. Web. 25 Aug 2019.

Vancouver:

Li K. Numerical approaches to the geodynamo problem. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/153584.

Council of Science Editors:

Li K. Numerical approaches to the geodynamo problem. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/153584


ETH Zürich

13. Meury, Patrick E. Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering.

Degree: 2007, ETH Zürich

Subjects/Keywords: HELMHOLTZGLEICHUNG (ANALYSIS); MAXWELLSCHE THEORIE (ELEKTRODYNAMIK); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); RANDELEMENTMETHODE (NUMERISCHE MATHEMATIK); HELMHOLTZ EQUATION (MATHEMATICAL ANALYSIS); MAXWELL'S THEORY (ELECTRODYNAMICS); GALERKIN METHOD (NUMERICAL MATHEMATICS); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); BOUNDARY ELEMENT METHOD (NUMERICAL MATHEMATICS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meury, P. E. (2007). Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/150292

Chicago Manual of Style (16th Edition):

Meury, Patrick E. “Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering.” 2007. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/150292.

MLA Handbook (7th Edition):

Meury, Patrick E. “Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering.” 2007. Web. 25 Aug 2019.

Vancouver:

Meury PE. Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering. [Internet] [Doctoral dissertation]. ETH Zürich; 2007. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/150292.

Council of Science Editors:

Meury PE. Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering. [Doctoral Dissertation]. ETH Zürich; 2007. Available from: http://hdl.handle.net/20.500.11850/150292


ETH Zürich

14. Moiola, Andrea. Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems.

Degree: 2011, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); BOUNDARY VALUE PROBLEMS OF PARTIAL DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); HELMHOLTZ EQUATION (MATHEMATICAL ANALYSIS); MAXWELLSCHE THEORIE (ELEKTRODYNAMIK); WELLENGLEICHUNGEN (ANALYSIS); DOMAIN DECOMPOSITION METHODS (NUMERICAL MATHEMATICS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); WAVE EQUATIONS (MATHEMATICAL ANALYSIS); GEBIETSZERLEGUNGSMETHODEN (NUMERISCHE MATHEMATIK); RANDWERTPROBLEME BEI PARTIELLEN DIFFERENTIALGLEICHUNGEN (ANALYSIS); HELMHOLTZGLEICHUNG (ANALYSIS); MAXWELL'S THEORY (ELECTRODYNAMICS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moiola, A. (2011). Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/40080

Chicago Manual of Style (16th Edition):

Moiola, Andrea. “Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems.” 2011. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/40080.

MLA Handbook (7th Edition):

Moiola, Andrea. “Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems.” 2011. Web. 25 Aug 2019.

Vancouver:

Moiola A. Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/40080.

Council of Science Editors:

Moiola A. Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/40080


ETH Zürich

15. Paganini, Alberto. Numerical Shape Optimization with Finite Elements.

Degree: 2016, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); BOUNDARY VALUE PROBLEMS OF PARTIAL DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); MATLAB (SOFTWARE FÜR NUMERISCHE BERECHNUNG); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); MATLAB (SOFTWARE FOR NUMERICAL COMPUTATION); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); RANDWERTPROBLEME BEI PARTIELLEN DIFFERENTIALGLEICHUNGEN (ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Paganini, A. (2016). Numerical Shape Optimization with Finite Elements. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/110487

Chicago Manual of Style (16th Edition):

Paganini, Alberto. “Numerical Shape Optimization with Finite Elements.” 2016. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/110487.

MLA Handbook (7th Edition):

Paganini, Alberto. “Numerical Shape Optimization with Finite Elements.” 2016. Web. 25 Aug 2019.

Vancouver:

Paganini A. Numerical Shape Optimization with Finite Elements. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/110487.

Council of Science Editors:

Paganini A. Numerical Shape Optimization with Finite Elements. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/110487


ETH Zürich

16. Reichmann, Oleg. Numerical option pricing beyond Lévy.

Degree: 2012, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); INTEGRO-DIFFERENTIAL EQUATIONS (NUMERICAL MATHEMATICS); PSEUDODIFFERENTIAL OPERATORS (TOPOLOGY OF MANIFOLDS); MODELING OF SPECIFIC ASPECTS OF THE ECONOMY (OPERATIONS RESEARCH); MODELLIERUNG SPEZIFISCHER PROBLEME DER WIRTSCHAFT (OPERATIONS RESEARCH); OPTIONS (FINANCE); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); INTEGRO-DIFFERENTIALGLEICHUNGEN (NUMERISCHE MATHEMATIK); PSEUDODIFFERENTIALOPERATOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN); OPTIONEN (FINANZEN); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reichmann, O. (2012). Numerical option pricing beyond Lévy. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/59283

Chicago Manual of Style (16th Edition):

Reichmann, Oleg. “Numerical option pricing beyond Lévy.” 2012. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/59283.

MLA Handbook (7th Edition):

Reichmann, Oleg. “Numerical option pricing beyond Lévy.” 2012. Web. 25 Aug 2019.

Vancouver:

Reichmann O. Numerical option pricing beyond Lévy. [Internet] [Doctoral dissertation]. ETH Zürich; 2012. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/59283.

Council of Science Editors:

Reichmann O. Numerical option pricing beyond Lévy. [Doctoral Dissertation]. ETH Zürich; 2012. Available from: http://hdl.handle.net/20.500.11850/59283


ETH Zürich

17. Schötzau, Dominik. hp-DGFEM for parabolic evolution problems: applications to diffusion and viscous incompressible fluid flow.

Degree: 1999, ETH Zürich

Subjects/Keywords: GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FLUIDDYNAMIK; FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); PARABOLISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); GALERKIN METHOD (NUMERICAL MATHEMATICS); FLUID DYNAMICS; FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); PARABOLIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schötzau, D. (1999). hp-DGFEM for parabolic evolution problems: applications to diffusion and viscous incompressible fluid flow. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/144063

Chicago Manual of Style (16th Edition):

Schötzau, Dominik. “hp-DGFEM for parabolic evolution problems: applications to diffusion and viscous incompressible fluid flow.” 1999. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/144063.

MLA Handbook (7th Edition):

Schötzau, Dominik. “hp-DGFEM for parabolic evolution problems: applications to diffusion and viscous incompressible fluid flow.” 1999. Web. 25 Aug 2019.

Vancouver:

Schötzau D. hp-DGFEM for parabolic evolution problems: applications to diffusion and viscous incompressible fluid flow. [Internet] [Doctoral dissertation]. ETH Zürich; 1999. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/144063.

Council of Science Editors:

Schötzau D. hp-DGFEM for parabolic evolution problems: applications to diffusion and viscous incompressible fluid flow. [Doctoral Dissertation]. ETH Zürich; 1999. Available from: http://hdl.handle.net/20.500.11850/144063


ETH Zürich

18. Spindler, Elke. Second Kind Single-Trace Boundary Integral Formulations for Scattering at Composite Objects.

Degree: 2016, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); SCATTERING OF SOUND WAVES (ACOUSTICS); STREUUNG VON SCHALLWELLEN (AKUSTIK); RANDELEMENTMETHODE (NUMERISCHE MATHEMATIK); BOUNDARY ELEMENT METHOD (NUMERICAL MATHEMATICS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); STREUUNG ELEKTROMAGNETISCHER WELLEN; SCATTERING OF ELECTROMAGNETIC WAVES; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spindler, E. (2016). Second Kind Single-Trace Boundary Integral Formulations for Scattering at Composite Objects. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/120814

Chicago Manual of Style (16th Edition):

Spindler, Elke. “Second Kind Single-Trace Boundary Integral Formulations for Scattering at Composite Objects.” 2016. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/120814.

MLA Handbook (7th Edition):

Spindler, Elke. “Second Kind Single-Trace Boundary Integral Formulations for Scattering at Composite Objects.” 2016. Web. 25 Aug 2019.

Vancouver:

Spindler E. Second Kind Single-Trace Boundary Integral Formulations for Scattering at Composite Objects. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/120814.

Council of Science Editors:

Spindler E. Second Kind Single-Trace Boundary Integral Formulations for Scattering at Composite Objects. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/120814


ETH Zürich

19. Tokareva, Svetlana. Stochastic Finite Volume Methods for computational uncertainty quantification in hyperbolic conservation laws.

Degree: 2013, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); CONSERVATION LAWS (THEORETICAL PHYSICS); ERHALTUNGSSÄTZE (THEORETISCHE PHYSIK); HYPERBOLISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-VOLUMEN-METHODEN (NUMERISCHE MATHEMATIK); FINITE VOLUME METHODS (NUMERICAL MATHEMATICS); HYPERBOLIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tokareva, S. (2013). Stochastic Finite Volume Methods for computational uncertainty quantification in hyperbolic conservation laws. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/72108

Chicago Manual of Style (16th Edition):

Tokareva, Svetlana. “Stochastic Finite Volume Methods for computational uncertainty quantification in hyperbolic conservation laws.” 2013. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/72108.

MLA Handbook (7th Edition):

Tokareva, Svetlana. “Stochastic Finite Volume Methods for computational uncertainty quantification in hyperbolic conservation laws.” 2013. Web. 25 Aug 2019.

Vancouver:

Tokareva S. Stochastic Finite Volume Methods for computational uncertainty quantification in hyperbolic conservation laws. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/72108.

Council of Science Editors:

Tokareva S. Stochastic Finite Volume Methods for computational uncertainty quantification in hyperbolic conservation laws. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/72108


ETH Zürich

20. Wihler, Thomas Pascal. Discontinuous Galerkin FEM for elliptic problems in polygonal domains.

Degree: 2002, ETH Zürich

Subjects/Keywords: GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); FINITE-ELEMENTE-METHODE (NUMERISCHE MATHEMATIK); ELLIPTISCHE DIFFERENTIALGLEICHUNGEN ZWEITER ORDNUNG (NUMERISCHE MATHEMATIK); LINEARE ELLIPTISCHE DIFFERENTIALGLEICHUNGEN (ANALYSIS); DIFFUSIONSGLEICHUNGEN + WÄRMELEITUNGSGLEICHUNGEN (ANALYSIS); GALERKIN METHOD (NUMERICAL MATHEMATICS); FINITE ELEMENT METHOD (NUMERICAL MATHEMATICS); ELLIPTIC DIFFERENTIAL EQUATIONS OF SECOND ORDER (NUMERICAL MATHEMATICS); LINEAR ELLIPTIC DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS); DIFFUSION EQUATIONS + HEAT EQUATIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wihler, T. P. (2002). Discontinuous Galerkin FEM for elliptic problems in polygonal domains. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/147206

Chicago Manual of Style (16th Edition):

Wihler, Thomas Pascal. “Discontinuous Galerkin FEM for elliptic problems in polygonal domains.” 2002. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/147206.

MLA Handbook (7th Edition):

Wihler, Thomas Pascal. “Discontinuous Galerkin FEM for elliptic problems in polygonal domains.” 2002. Web. 25 Aug 2019.

Vancouver:

Wihler TP. Discontinuous Galerkin FEM for elliptic problems in polygonal domains. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/147206.

Council of Science Editors:

Wihler TP. Discontinuous Galerkin FEM for elliptic problems in polygonal domains. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/147206


ETH Zürich

21. Winter, Christoph. Wavelet Galerkin schemes for option pricing in multidimensional Lévy models.

Degree: 2009, ETH Zürich

Subjects/Keywords: GALERKIN METHOD (NUMERICAL MATHEMATICS); LÉVYPROZESSE (STOCHASTISCHE PROZESSE); STOCHASTIC MODELS + STOCHASTIC SIMULATION (PROBABILITY THEORY); LÉVY PROCESSES (STOCHASTIC PROCESSES); STOCHASTISCHE MODELLE + STOCHASTISCHE SIMULATION (WAHRSCHEINLICHKEITSRECHNUNG); OPTIONS (FINANCE); GALERKIN-VERFAHREN (NUMERISCHE MATHEMATIK); WAVELETS + WAVELET TRANSFORMATIONS (MATHEMATICAL ANALYSIS); WAVELETS + WAVELET-TRANSFORMATIONEN (ANALYSIS); OPTIONEN (FINANZEN); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Winter, C. (2009). Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/20928

Chicago Manual of Style (16th Edition):

Winter, Christoph. “Wavelet Galerkin schemes for option pricing in multidimensional Lévy models.” 2009. Doctoral Dissertation, ETH Zürich. Accessed August 25, 2019. http://hdl.handle.net/20.500.11850/20928.

MLA Handbook (7th Edition):

Winter, Christoph. “Wavelet Galerkin schemes for option pricing in multidimensional Lévy models.” 2009. Web. 25 Aug 2019.

Vancouver:

Winter C. Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2019 Aug 25]. Available from: http://hdl.handle.net/20.500.11850/20928.

Council of Science Editors:

Winter C. Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/20928

.