Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(GMRES). Showing records 1 – 30 of 49 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Levels

▼ Search Limiters


Baylor University

1. [No author]. Krylov methods for solving a sequence of large systems of linear equations.

Degree: 2015, Baylor University

 Consider solving a sequence of linear systems A(i)x(i)=b(i), i=1, 2, ... where A₍ᵢ₎ ϵℂⁿᵡⁿ and b⁽ⁱ⁾ϵℂⁿ using some variations of Krylov subspace methods, like GMRES.… (more)

Subjects/Keywords: GMRES. Krylov subspace. Deflation. GMRES-DR. GMRES-E. Subspace recycling.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2015). Krylov methods for solving a sequence of large systems of linear equations. (Thesis). Baylor University. Retrieved from http://hdl.handle.net/2104/9511

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “Krylov methods for solving a sequence of large systems of linear equations. ” 2015. Thesis, Baylor University. Accessed March 25, 2019. http://hdl.handle.net/2104/9511.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “Krylov methods for solving a sequence of large systems of linear equations. ” 2015. Web. 25 Mar 2019.

Vancouver:

author] [. Krylov methods for solving a sequence of large systems of linear equations. [Internet] [Thesis]. Baylor University; 2015. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/2104/9511.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. Krylov methods for solving a sequence of large systems of linear equations. [Thesis]. Baylor University; 2015. Available from: http://hdl.handle.net/2104/9511

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Temple University

2. Du, Xiuhong. Additive Schwarz Preconditioned GMRES, Inexact Krylov Subspace Methods, and Applications of Inexact CG.

Degree: PhD, 2008, Temple University

Mathematics

The GMRES method is a widely used iterative method for solving the linear systems, of the form Ax = b, especially for the solution… (more)

Subjects/Keywords: Mathematics; Preconditioner; GMRES; CG; Inexact

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Du, X. (2008). Additive Schwarz Preconditioned GMRES, Inexact Krylov Subspace Methods, and Applications of Inexact CG. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,6474

Chicago Manual of Style (16th Edition):

Du, Xiuhong. “Additive Schwarz Preconditioned GMRES, Inexact Krylov Subspace Methods, and Applications of Inexact CG.” 2008. Doctoral Dissertation, Temple University. Accessed March 25, 2019. http://digital.library.temple.edu/u?/p245801coll10,6474.

MLA Handbook (7th Edition):

Du, Xiuhong. “Additive Schwarz Preconditioned GMRES, Inexact Krylov Subspace Methods, and Applications of Inexact CG.” 2008. Web. 25 Mar 2019.

Vancouver:

Du X. Additive Schwarz Preconditioned GMRES, Inexact Krylov Subspace Methods, and Applications of Inexact CG. [Internet] [Doctoral dissertation]. Temple University; 2008. [cited 2019 Mar 25]. Available from: http://digital.library.temple.edu/u?/p245801coll10,6474.

Council of Science Editors:

Du X. Additive Schwarz Preconditioned GMRES, Inexact Krylov Subspace Methods, and Applications of Inexact CG. [Doctoral Dissertation]. Temple University; 2008. Available from: http://digital.library.temple.edu/u?/p245801coll10,6474


Texas A&M University

3. Hansel, Joshua Edmund. Solution Techniques for Single-Phase Subchannel Equations.

Degree: 2013, Texas A&M University

 A steady-state, single phase subchannel solver was created for the purpose of integration into a multi-physics nuclear fuel performance code. Since applications of such a… (more)

Subjects/Keywords: subchannel; preconditioning; AGMG; GMRES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hansel, J. E. (2013). Solution Techniques for Single-Phase Subchannel Equations. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/149451

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hansel, Joshua Edmund. “Solution Techniques for Single-Phase Subchannel Equations.” 2013. Thesis, Texas A&M University. Accessed March 25, 2019. http://hdl.handle.net/1969.1/149451.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hansel, Joshua Edmund. “Solution Techniques for Single-Phase Subchannel Equations.” 2013. Web. 25 Mar 2019.

Vancouver:

Hansel JE. Solution Techniques for Single-Phase Subchannel Equations. [Internet] [Thesis]. Texas A&M University; 2013. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/1969.1/149451.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hansel JE. Solution Techniques for Single-Phase Subchannel Equations. [Thesis]. Texas A&M University; 2013. Available from: http://hdl.handle.net/1969.1/149451

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

4. Renardy, Marissa. Analysis of the BiCG Method.

Degree: MS, Mathematics, 2013, Virginia Tech

 The Biconjugate Gradient (BiCG) method is an iterative Krylov subspace method that utilizes a 3-term recurrence.  BiCG is the basis of several very popular methods,… (more)

Subjects/Keywords: Krylov methods; BiCG; GMRES; FOM

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Renardy, M. (2013). Analysis of the BiCG Method. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/50922

Chicago Manual of Style (16th Edition):

Renardy, Marissa. “Analysis of the BiCG Method.” 2013. Masters Thesis, Virginia Tech. Accessed March 25, 2019. http://hdl.handle.net/10919/50922.

MLA Handbook (7th Edition):

Renardy, Marissa. “Analysis of the BiCG Method.” 2013. Web. 25 Mar 2019.

Vancouver:

Renardy M. Analysis of the BiCG Method. [Internet] [Masters thesis]. Virginia Tech; 2013. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/10919/50922.

Council of Science Editors:

Renardy M. Analysis of the BiCG Method. [Masters Thesis]. Virginia Tech; 2013. Available from: http://hdl.handle.net/10919/50922


Universidade do Rio Grande do Norte

5. Silva, Josimara Tatiane da. Precondicionamento do método GMRES para Z-matrizes .

Degree: 2016, Universidade do Rio Grande do Norte

 This study aims to investigate the convergence behavior of the GMRES (Generalized Minimal Residual) method and its version GMRES(m), without and with preconditioner ILU(0) applied… (more)

Subjects/Keywords: Z-matrizes; Métodos de Krylov; GMRES; GMRES(m); Precondicionador ILU (0)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, J. T. d. (2016). Precondicionamento do método GMRES para Z-matrizes . (Masters Thesis). Universidade do Rio Grande do Norte. Retrieved from http://repositorio.ufrn.br/handle/123456789/22016

Chicago Manual of Style (16th Edition):

Silva, Josimara Tatiane da. “Precondicionamento do método GMRES para Z-matrizes .” 2016. Masters Thesis, Universidade do Rio Grande do Norte. Accessed March 25, 2019. http://repositorio.ufrn.br/handle/123456789/22016.

MLA Handbook (7th Edition):

Silva, Josimara Tatiane da. “Precondicionamento do método GMRES para Z-matrizes .” 2016. Web. 25 Mar 2019.

Vancouver:

Silva JTd. Precondicionamento do método GMRES para Z-matrizes . [Internet] [Masters thesis]. Universidade do Rio Grande do Norte; 2016. [cited 2019 Mar 25]. Available from: http://repositorio.ufrn.br/handle/123456789/22016.

Council of Science Editors:

Silva JTd. Precondicionamento do método GMRES para Z-matrizes . [Masters Thesis]. Universidade do Rio Grande do Norte; 2016. Available from: http://repositorio.ufrn.br/handle/123456789/22016


University of Alabama

6. Winkles, Nathan. Performance evaluation of inexact GMRES.

Degree: 2011, University of Alabama

 Iterative methods are aimed at sparse linear systems that arise in many applications (e.g., PDEs, biology, computer science, technology, engineering, etc). These applications give rise… (more)

Subjects/Keywords: Electronic Thesis or Dissertation;  – thesis; Applied mathematics; Mathematics; GMRES; Inexact Krylov Methods; Preconditioned GMRES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Winkles, N. (2011). Performance evaluation of inexact GMRES. (Thesis). University of Alabama. Retrieved from http://purl.lib.ua.edu/41166

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Winkles, Nathan. “Performance evaluation of inexact GMRES.” 2011. Thesis, University of Alabama. Accessed March 25, 2019. http://purl.lib.ua.edu/41166.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Winkles, Nathan. “Performance evaluation of inexact GMRES.” 2011. Web. 25 Mar 2019.

Vancouver:

Winkles N. Performance evaluation of inexact GMRES. [Internet] [Thesis]. University of Alabama; 2011. [cited 2019 Mar 25]. Available from: http://purl.lib.ua.edu/41166.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Winkles N. Performance evaluation of inexact GMRES. [Thesis]. University of Alabama; 2011. Available from: http://purl.lib.ua.edu/41166

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Waterloo

7. Tajeddin, Sadegh. Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers.

Degree: 2016, University of Waterloo

 Control systems have always been a vital part of the novel technological advancements of human being in any industry, especially transportation. With the introduction of… (more)

Subjects/Keywords: Automatic Code Generation; Nonlinear Model Predictive Control; Adaptive Cruise Control; C/GMRES; Newton/GMRES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tajeddin, S. (2016). Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10740

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tajeddin, Sadegh. “Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers.” 2016. Thesis, University of Waterloo. Accessed March 25, 2019. http://hdl.handle.net/10012/10740.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tajeddin, Sadegh. “Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers.” 2016. Web. 25 Mar 2019.

Vancouver:

Tajeddin S. Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/10012/10740.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tajeddin S. Automatic Code Generation of Real-Time Nonlinear Model Predictive Control for Plug-in Hybrid Electric Vehicle Intelligent Cruise Controllers. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10740

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Trinh, Quoc-Tuan. Modélisation tridimensionnelle en élastostatique des domaines multizones et multifissurés : une approche par la méthode multipôle rapide en éléments de frontière de Galerkin : Three-dimensional modeling in elastostatics of multi-zone and multi-fractured domains : an approach by the fast multipole symmetric Galerkin boundary elements method.

Degree: Docteur es, Génie civil, 2014, Université de Strasbourg

La modélisation numérique de la multi-fissuration et son influence sur les ouvrages du Génie Civil reste un sujet ouvert et nécessite le développement de nouveaux… (more)

Subjects/Keywords: SGBEM; FMM; GMRES; Fissure; Multizone; Propagation de fissures; SGBEM; FMM; GMRES; Cracks; Crack-growth; Multizone; 620.1; 624.1

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Trinh, Q. (2014). Modélisation tridimensionnelle en élastostatique des domaines multizones et multifissurés : une approche par la méthode multipôle rapide en éléments de frontière de Galerkin : Three-dimensional modeling in elastostatics of multi-zone and multi-fractured domains : an approach by the fast multipole symmetric Galerkin boundary elements method. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2014STRAD036

Chicago Manual of Style (16th Edition):

Trinh, Quoc-Tuan. “Modélisation tridimensionnelle en élastostatique des domaines multizones et multifissurés : une approche par la méthode multipôle rapide en éléments de frontière de Galerkin : Three-dimensional modeling in elastostatics of multi-zone and multi-fractured domains : an approach by the fast multipole symmetric Galerkin boundary elements method.” 2014. Doctoral Dissertation, Université de Strasbourg. Accessed March 25, 2019. http://www.theses.fr/2014STRAD036.

MLA Handbook (7th Edition):

Trinh, Quoc-Tuan. “Modélisation tridimensionnelle en élastostatique des domaines multizones et multifissurés : une approche par la méthode multipôle rapide en éléments de frontière de Galerkin : Three-dimensional modeling in elastostatics of multi-zone and multi-fractured domains : an approach by the fast multipole symmetric Galerkin boundary elements method.” 2014. Web. 25 Mar 2019.

Vancouver:

Trinh Q. Modélisation tridimensionnelle en élastostatique des domaines multizones et multifissurés : une approche par la méthode multipôle rapide en éléments de frontière de Galerkin : Three-dimensional modeling in elastostatics of multi-zone and multi-fractured domains : an approach by the fast multipole symmetric Galerkin boundary elements method. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2014. [cited 2019 Mar 25]. Available from: http://www.theses.fr/2014STRAD036.

Council of Science Editors:

Trinh Q. Modélisation tridimensionnelle en élastostatique des domaines multizones et multifissurés : une approche par la méthode multipôle rapide en éléments de frontière de Galerkin : Three-dimensional modeling in elastostatics of multi-zone and multi-fractured domains : an approach by the fast multipole symmetric Galerkin boundary elements method. [Doctoral Dissertation]. Université de Strasbourg; 2014. Available from: http://www.theses.fr/2014STRAD036


University of Kentucky

9. Zhang, Ping. Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices.

Degree: 2009, University of Kentucky

 In this dissertation, we study iterative methods for computing eigenvalues and exponentials of large matrices. These types of computational problems arise in a large number… (more)

Subjects/Keywords: Krylov subspace|GMRES|Arnoldi|Lanczos|Matrix exponential; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, P. (2009). Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices. (Doctoral Dissertation). University of Kentucky. Retrieved from http://uknowledge.uky.edu/gradschool_diss/789

Chicago Manual of Style (16th Edition):

Zhang, Ping. “Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices.” 2009. Doctoral Dissertation, University of Kentucky. Accessed March 25, 2019. http://uknowledge.uky.edu/gradschool_diss/789.

MLA Handbook (7th Edition):

Zhang, Ping. “Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices.” 2009. Web. 25 Mar 2019.

Vancouver:

Zhang P. Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices. [Internet] [Doctoral dissertation]. University of Kentucky; 2009. [cited 2019 Mar 25]. Available from: http://uknowledge.uky.edu/gradschool_diss/789.

Council of Science Editors:

Zhang P. Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices. [Doctoral Dissertation]. University of Kentucky; 2009. Available from: http://uknowledge.uky.edu/gradschool_diss/789


Baylor University

10. Guerrero, Victor Xavier. Electric neutron polarizability and eigenspectrum subtraction techniques for disconnected quark loops.

Degree: Physics., 2011, Baylor University

 I present an analysis for the mass shift of the neutron in order to obtain the neutron electric polarizability. Neutron electric polarizability can be studied… (more)

Subjects/Keywords: Lattice QCD.; Physics.; Quark loops.; Numerical linear solvers.; GMRES.; Eigenspectrum subtraction.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guerrero, V. X. (2011). Electric neutron polarizability and eigenspectrum subtraction techniques for disconnected quark loops. (Thesis). Baylor University. Retrieved from http://hdl.handle.net/2104/8214

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guerrero, Victor Xavier. “Electric neutron polarizability and eigenspectrum subtraction techniques for disconnected quark loops. ” 2011. Thesis, Baylor University. Accessed March 25, 2019. http://hdl.handle.net/2104/8214.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guerrero, Victor Xavier. “Electric neutron polarizability and eigenspectrum subtraction techniques for disconnected quark loops. ” 2011. Web. 25 Mar 2019.

Vancouver:

Guerrero VX. Electric neutron polarizability and eigenspectrum subtraction techniques for disconnected quark loops. [Internet] [Thesis]. Baylor University; 2011. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/2104/8214.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guerrero VX. Electric neutron polarizability and eigenspectrum subtraction techniques for disconnected quark loops. [Thesis]. Baylor University; 2011. Available from: http://hdl.handle.net/2104/8214

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

11. Petite, Pasha. Numerically Efficient Finite Element Method Simulation of Voltage Driven Solid Rotor Synchronous Machines.

Degree: MS, Electrical Engineering, 2008, Penn State University

 This thesis applies a numerically efficient finite element method to the simulation of a two dimensional cross-section of a solid rotor synchronous machine. The finite… (more)

Subjects/Keywords: GMRES; synchronous reluctance machines; finite element method; shooting-Newton

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Petite, P. (2008). Numerically Efficient Finite Element Method Simulation of Voltage Driven Solid Rotor Synchronous Machines. (Masters Thesis). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/8343

Chicago Manual of Style (16th Edition):

Petite, Pasha. “Numerically Efficient Finite Element Method Simulation of Voltage Driven Solid Rotor Synchronous Machines.” 2008. Masters Thesis, Penn State University. Accessed March 25, 2019. https://etda.libraries.psu.edu/catalog/8343.

MLA Handbook (7th Edition):

Petite, Pasha. “Numerically Efficient Finite Element Method Simulation of Voltage Driven Solid Rotor Synchronous Machines.” 2008. Web. 25 Mar 2019.

Vancouver:

Petite P. Numerically Efficient Finite Element Method Simulation of Voltage Driven Solid Rotor Synchronous Machines. [Internet] [Masters thesis]. Penn State University; 2008. [cited 2019 Mar 25]. Available from: https://etda.libraries.psu.edu/catalog/8343.

Council of Science Editors:

Petite P. Numerically Efficient Finite Element Method Simulation of Voltage Driven Solid Rotor Synchronous Machines. [Masters Thesis]. Penn State University; 2008. Available from: https://etda.libraries.psu.edu/catalog/8343


University of Texas – Austin

12. Wang, Xingyao, active 21st century. Krylov methods for solving linear systems.

Degree: Computational Science, Engineering, and Mathematics, 2017, University of Texas – Austin

 Krylov methods are considered as one of the most popular classes of numerical methods to solve large sparse linear systems of equations. One of the… (more)

Subjects/Keywords: Krylov methods; Linear systems; Conjugate gradient algorithm; GMRES algorithm; Preconditions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Xingyao, a. 2. c. (2017). Krylov methods for solving linear systems. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/62387

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Xingyao, active 21st century. “Krylov methods for solving linear systems.” 2017. Thesis, University of Texas – Austin. Accessed March 25, 2019. http://hdl.handle.net/2152/62387.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Xingyao, active 21st century. “Krylov methods for solving linear systems.” 2017. Web. 25 Mar 2019.

Vancouver:

Wang, Xingyao a2c. Krylov methods for solving linear systems. [Internet] [Thesis]. University of Texas – Austin; 2017. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/2152/62387.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang, Xingyao a2c. Krylov methods for solving linear systems. [Thesis]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/62387

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Hached, Mustapha. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations.

Degree: Docteur es, Mathématiques appliquées, 2012, Littoral

Cette thèse porte sur des méthode de résolution d'équations matricielles appliquées à la résolution numérique d'équations aux dérivées partielles ou des problèmes de contrôle linéaire.… (more)

Subjects/Keywords: Approximation; Arnoldi; Burgers; Chaleur; Equations aux dérivées partielles; GMRES; Krylov; Lyapunov; Meshless; Newton; RBF; Riccati; Sylvester; Approximation; Arnoldi; Burgers; Heat; PDE; GMRES; Krylov; Lyapunov; Meshless; Newton; RBF; Riccati; Sylvester

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hached, M. (2012). Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations. (Doctoral Dissertation). Littoral. Retrieved from http://www.theses.fr/2012DUNK0315

Chicago Manual of Style (16th Edition):

Hached, Mustapha. “Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations.” 2012. Doctoral Dissertation, Littoral. Accessed March 25, 2019. http://www.theses.fr/2012DUNK0315.

MLA Handbook (7th Edition):

Hached, Mustapha. “Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations.” 2012. Web. 25 Mar 2019.

Vancouver:

Hached M. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations. [Internet] [Doctoral dissertation]. Littoral; 2012. [cited 2019 Mar 25]. Available from: http://www.theses.fr/2012DUNK0315.

Council of Science Editors:

Hached M. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations. [Doctoral Dissertation]. Littoral; 2012. Available from: http://www.theses.fr/2012DUNK0315


Texas A&M University

14. Leal Chapa, Jesus Jaime. Proper Orthogonal Decomposition for Pressure Preconditioning for the GMRES Algorithm.

Degree: 2016, Texas A&M University

 The linear solver in a typical reservoir simulator consumes around 60 to 70 % of the total simulation time. To speed up the solution of… (more)

Subjects/Keywords: pod; GMRES; preconditioner; model reduction; proper orthogonal decomposition; reservoir simulation; linear solver

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leal Chapa, J. J. (2016). Proper Orthogonal Decomposition for Pressure Preconditioning for the GMRES Algorithm. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/158657

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Leal Chapa, Jesus Jaime. “Proper Orthogonal Decomposition for Pressure Preconditioning for the GMRES Algorithm.” 2016. Thesis, Texas A&M University. Accessed March 25, 2019. http://hdl.handle.net/1969.1/158657.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Leal Chapa, Jesus Jaime. “Proper Orthogonal Decomposition for Pressure Preconditioning for the GMRES Algorithm.” 2016. Web. 25 Mar 2019.

Vancouver:

Leal Chapa JJ. Proper Orthogonal Decomposition for Pressure Preconditioning for the GMRES Algorithm. [Internet] [Thesis]. Texas A&M University; 2016. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/1969.1/158657.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Leal Chapa JJ. Proper Orthogonal Decomposition for Pressure Preconditioning for the GMRES Algorithm. [Thesis]. Texas A&M University; 2016. Available from: http://hdl.handle.net/1969.1/158657

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queensland University of Technology

15. Durick, Andrew Michael. Analysis and improvement of the nonlinear iterative techniques for groundwater flow modelling utilising MODFLOW.

Degree: 2004, Queensland University of Technology

 As groundwater models are being used increasingly in the area of resource allocation, there has been an increase in the level of complexity in an… (more)

Subjects/Keywords: MODFLOW; GMRES; BiCGSTAB; picard; Newton's method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Durick, A. M. (2004). Analysis and improvement of the nonlinear iterative techniques for groundwater flow modelling utilising MODFLOW. (Thesis). Queensland University of Technology. Retrieved from https://eprints.qut.edu.au/15990/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Durick, Andrew Michael. “Analysis and improvement of the nonlinear iterative techniques for groundwater flow modelling utilising MODFLOW.” 2004. Thesis, Queensland University of Technology. Accessed March 25, 2019. https://eprints.qut.edu.au/15990/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Durick, Andrew Michael. “Analysis and improvement of the nonlinear iterative techniques for groundwater flow modelling utilising MODFLOW.” 2004. Web. 25 Mar 2019.

Vancouver:

Durick AM. Analysis and improvement of the nonlinear iterative techniques for groundwater flow modelling utilising MODFLOW. [Internet] [Thesis]. Queensland University of Technology; 2004. [cited 2019 Mar 25]. Available from: https://eprints.qut.edu.au/15990/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Durick AM. Analysis and improvement of the nonlinear iterative techniques for groundwater flow modelling utilising MODFLOW. [Thesis]. Queensland University of Technology; 2004. Available from: https://eprints.qut.edu.au/15990/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Guzainuer, Maimaitiyiming. Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes.

Degree: The Institute of Technology, 2012, Linköping UniversityLinköping University

  This thesis deals with the numerical solution of ordinary differential equations (ODEs) using finite difference (FD) methods. In particular, boundary summation equation (BSE) preconditioning… (more)

Subjects/Keywords: Ordinary differential equations; constant coefficients; finite difference; boundary summation equation; GMRES; convergence rate.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guzainuer, M. (2012). Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes. (Thesis). Linköping UniversityLinköping University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102573

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guzainuer, Maimaitiyiming. “Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes.” 2012. Thesis, Linköping UniversityLinköping University. Accessed March 25, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102573.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guzainuer, Maimaitiyiming. “Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes.” 2012. Web. 25 Mar 2019.

Vancouver:

Guzainuer M. Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes. [Internet] [Thesis]. Linköping UniversityLinköping University; 2012. [cited 2019 Mar 25]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102573.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guzainuer M. Boundary Summation Equation Preconditioning for Ordinary Differential Equations with Constant Coefficients on Locally Refined Meshes. [Thesis]. Linköping UniversityLinköping University; 2012. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102573

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

17. Chen, Guo. Immersed Interface Method for Biharmonic Equations on Irregular Domain and Its Applications.

Degree: PhD, Applied Mathematics, 2004, North Carolina State University

 This thesis presents a fast algorithm for solving two-dimensional biharmonic equations on irregular domains. To avoid mesh generation difficulties associated with unstructured, body fitted grid,… (more)

Subjects/Keywords: immersed interface method; biharmonic equation; GMRES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, G. (2004). Immersed Interface Method for Biharmonic Equations on Irregular Domain and Its Applications. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4199

Chicago Manual of Style (16th Edition):

Chen, Guo. “Immersed Interface Method for Biharmonic Equations on Irregular Domain and Its Applications.” 2004. Doctoral Dissertation, North Carolina State University. Accessed March 25, 2019. http://www.lib.ncsu.edu/resolver/1840.16/4199.

MLA Handbook (7th Edition):

Chen, Guo. “Immersed Interface Method for Biharmonic Equations on Irregular Domain and Its Applications.” 2004. Web. 25 Mar 2019.

Vancouver:

Chen G. Immersed Interface Method for Biharmonic Equations on Irregular Domain and Its Applications. [Internet] [Doctoral dissertation]. North Carolina State University; 2004. [cited 2019 Mar 25]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4199.

Council of Science Editors:

Chen G. Immersed Interface Method for Biharmonic Equations on Irregular Domain and Its Applications. [Doctoral Dissertation]. North Carolina State University; 2004. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4199


Brigham Young University

18. Luo, Sarah McBride. Crouzeix's Conjecture and the GMRES Algorithm.

Degree: MS, 2011, Brigham Young University

  This thesis explores the connection between Crouzeix's conjecture and the convergence of the GMRES algorithm. GMRES is a popular iterative method for solving linear… (more)

Subjects/Keywords: GMRES; Michel Crouzeix; Faber Polynomials; Complex Approximation; Krylov Subspace; Convergence; Iterative Methods; Linear Systems; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luo, S. M. (2011). Crouzeix's Conjecture and the GMRES Algorithm. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3818&context=etd

Chicago Manual of Style (16th Edition):

Luo, Sarah McBride. “Crouzeix's Conjecture and the GMRES Algorithm.” 2011. Masters Thesis, Brigham Young University. Accessed March 25, 2019. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3818&context=etd.

MLA Handbook (7th Edition):

Luo, Sarah McBride. “Crouzeix's Conjecture and the GMRES Algorithm.” 2011. Web. 25 Mar 2019.

Vancouver:

Luo SM. Crouzeix's Conjecture and the GMRES Algorithm. [Internet] [Masters thesis]. Brigham Young University; 2011. [cited 2019 Mar 25]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3818&context=etd.

Council of Science Editors:

Luo SM. Crouzeix's Conjecture and the GMRES Algorithm. [Masters Thesis]. Brigham Young University; 2011. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=3818&context=etd


Virginia Tech

19. Mateescu, Gabriel. Domain Decomposition Preconditioners for Hermite Collocation Problems.

Degree: PhD, Computer Science, 1998, Virginia Tech

  Accelerating the convergence rate of Krylov subspace methods with parallelizable preconditioners is essential for obtaining effective iterative solvers for very large linear systems of… (more)

Subjects/Keywords: Interface Preconditioners; GMRES; Schur Complement; Collocation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mateescu, G. (1998). Domain Decomposition Preconditioners for Hermite Collocation Problems. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26014

Chicago Manual of Style (16th Edition):

Mateescu, Gabriel. “Domain Decomposition Preconditioners for Hermite Collocation Problems.” 1998. Doctoral Dissertation, Virginia Tech. Accessed March 25, 2019. http://hdl.handle.net/10919/26014.

MLA Handbook (7th Edition):

Mateescu, Gabriel. “Domain Decomposition Preconditioners for Hermite Collocation Problems.” 1998. Web. 25 Mar 2019.

Vancouver:

Mateescu G. Domain Decomposition Preconditioners for Hermite Collocation Problems. [Internet] [Doctoral dissertation]. Virginia Tech; 1998. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/10919/26014.

Council of Science Editors:

Mateescu G. Domain Decomposition Preconditioners for Hermite Collocation Problems. [Doctoral Dissertation]. Virginia Tech; 1998. Available from: http://hdl.handle.net/10919/26014


Texas A&M University

20. Bruss, Donald. DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization.

Degree: 2012, Texas A&M University

 Preconditioners based upon sweeps and diffusion-synthetic acceleration (DSA) have been constructed and applied to the zeroth and first spatial moments of the 1-D transport equation… (more)

Subjects/Keywords: Discrete Ordinates; DSA; Diffusion Synthetic Acceleration; Strictly Positive Spatial Discretization; Linear Discontinuous Galerkin; JFNK; Krylov; GMRES; FGMRES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bruss, D. (2012). DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10982

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bruss, Donald. “DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization.” 2012. Thesis, Texas A&M University. Accessed March 25, 2019. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10982.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bruss, Donald. “DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization.” 2012. Web. 25 Mar 2019.

Vancouver:

Bruss D. DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization. [Internet] [Thesis]. Texas A&M University; 2012. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10982.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bruss D. DSA Preconditioning for the S_N Equations with Strictly Positive Spatial Discretization. [Thesis]. Texas A&M University; 2012. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10982

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

21. Balidemaj, E. A Krylov Subspace Approach to Parametric Inversion of Electromagnetic Data Based on Residual Minimization:.

Degree: 2010, Delft University of Technology

 In this thesis we present a Krylov subspace technique and use residual minimization to efficiently solve parametric electromagnetic inversion problems. We exploit the shift-invariance property… (more)

Subjects/Keywords: Krylov; Balidemaj; residual; inverse; scattering; electromagnetic; minimization; Maxwell; Arnoldi; GMRES; Shifted Linear Systems; Effective Inversion; inversion; Krylov Subspaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Balidemaj, E. (2010). A Krylov Subspace Approach to Parametric Inversion of Electromagnetic Data Based on Residual Minimization:. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:61866f68-49dd-4b25-b88c-001559941e94

Chicago Manual of Style (16th Edition):

Balidemaj, E. “A Krylov Subspace Approach to Parametric Inversion of Electromagnetic Data Based on Residual Minimization:.” 2010. Masters Thesis, Delft University of Technology. Accessed March 25, 2019. http://resolver.tudelft.nl/uuid:61866f68-49dd-4b25-b88c-001559941e94.

MLA Handbook (7th Edition):

Balidemaj, E. “A Krylov Subspace Approach to Parametric Inversion of Electromagnetic Data Based on Residual Minimization:.” 2010. Web. 25 Mar 2019.

Vancouver:

Balidemaj E. A Krylov Subspace Approach to Parametric Inversion of Electromagnetic Data Based on Residual Minimization:. [Internet] [Masters thesis]. Delft University of Technology; 2010. [cited 2019 Mar 25]. Available from: http://resolver.tudelft.nl/uuid:61866f68-49dd-4b25-b88c-001559941e94.

Council of Science Editors:

Balidemaj E. A Krylov Subspace Approach to Parametric Inversion of Electromagnetic Data Based on Residual Minimization:. [Masters Thesis]. Delft University of Technology; 2010. Available from: http://resolver.tudelft.nl/uuid:61866f68-49dd-4b25-b88c-001559941e94


University of South Carolina

22. Shi, Jian. Improving Simulation Performance With Gpus.

Degree: PhD, Computer Science and Engineering, 2011, University of South Carolina

  Simulations are indispensable for engineering. They make it possible that one can perform faster and cheaper virtual experiments than physical ones on virtual environments… (more)

Subjects/Keywords: Computer Sciences; Electrical and Computer Engineering; Engineering; Physical Sciences and Mathematics; GMRES; GPU; Linear equation; Simulation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, J. (2011). Improving Simulation Performance With Gpus. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/801

Chicago Manual of Style (16th Edition):

Shi, Jian. “Improving Simulation Performance With Gpus.” 2011. Doctoral Dissertation, University of South Carolina. Accessed March 25, 2019. https://scholarcommons.sc.edu/etd/801.

MLA Handbook (7th Edition):

Shi, Jian. “Improving Simulation Performance With Gpus.” 2011. Web. 25 Mar 2019.

Vancouver:

Shi J. Improving Simulation Performance With Gpus. [Internet] [Doctoral dissertation]. University of South Carolina; 2011. [cited 2019 Mar 25]. Available from: https://scholarcommons.sc.edu/etd/801.

Council of Science Editors:

Shi J. Improving Simulation Performance With Gpus. [Doctoral Dissertation]. University of South Carolina; 2011. Available from: https://scholarcommons.sc.edu/etd/801

23. Jamal, Aygul. A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors : Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles.

Degree: Docteur es, Informatique, 2017, Paris Saclay

Dans cette thèse de doctorat, nous abordons trois défis auxquels sont confrontés les solveurs d'algèbres linéaires dans la perspective des futurs systèmes exascale: accélérer la… (more)

Subjects/Keywords: Calcul haute performance; Solveurs linéaires itératifs parallèles; Algorithmes randomisés; Calculs sur GPU; GMRES flexible; Modèles de fautes logicielles; Solveur pARMS; Preconditionnement; Tolérance aux fautes; High performance computing; Parallel iterative linear solvers; Randomized algorithms; GPU computing; Flexible GMRES; Soft fault models; PARMS solver; Preconditioning; Fault tolerance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jamal, A. (2017). A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors : Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2017SACLS269

Chicago Manual of Style (16th Edition):

Jamal, Aygul. “A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors : Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles.” 2017. Doctoral Dissertation, Paris Saclay. Accessed March 25, 2019. http://www.theses.fr/2017SACLS269.

MLA Handbook (7th Edition):

Jamal, Aygul. “A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors : Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles.” 2017. Web. 25 Mar 2019.

Vancouver:

Jamal A. A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors : Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles. [Internet] [Doctoral dissertation]. Paris Saclay; 2017. [cited 2019 Mar 25]. Available from: http://www.theses.fr/2017SACLS269.

Council of Science Editors:

Jamal A. A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors : Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logicielles. [Doctoral Dissertation]. Paris Saclay; 2017. Available from: http://www.theses.fr/2017SACLS269


Universidade do Rio Grande do Norte

24. Medeiros, Elvis Néris de. NI-GMRES precondicionado .

Degree: 2014, Universidade do Rio Grande do Norte

Subjects/Keywords: Sistemas n~ao-lineares. Sistemas lineares. Subespaços de Krylov. GMRES, Precondicionamento; Nonlinear systems. Linear systems. Krylov Subspaces. GMRES. Preconditioning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medeiros, E. N. d. (2014). NI-GMRES precondicionado . (Masters Thesis). Universidade do Rio Grande do Norte. Retrieved from http://repositorio.ufrn.br/handle/123456789/18653

Chicago Manual of Style (16th Edition):

Medeiros, Elvis Néris de. “NI-GMRES precondicionado .” 2014. Masters Thesis, Universidade do Rio Grande do Norte. Accessed March 25, 2019. http://repositorio.ufrn.br/handle/123456789/18653.

MLA Handbook (7th Edition):

Medeiros, Elvis Néris de. “NI-GMRES precondicionado .” 2014. Web. 25 Mar 2019.

Vancouver:

Medeiros ENd. NI-GMRES precondicionado . [Internet] [Masters thesis]. Universidade do Rio Grande do Norte; 2014. [cited 2019 Mar 25]. Available from: http://repositorio.ufrn.br/handle/123456789/18653.

Council of Science Editors:

Medeiros ENd. NI-GMRES precondicionado . [Masters Thesis]. Universidade do Rio Grande do Norte; 2014. Available from: http://repositorio.ufrn.br/handle/123456789/18653


Universidade do Rio Grande do Norte

25. Medeiros, Elvis Néris de. NI-GMRES precondicionado .

Degree: 2014, Universidade do Rio Grande do Norte

Subjects/Keywords: Sistemas n~ao-lineares. Sistemas lineares. Subespaços de Krylov. GMRES, Precondicionamento; Nonlinear systems. Linear systems. Krylov Subspaces. GMRES. Preconditioning

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medeiros, E. N. d. (2014). NI-GMRES precondicionado . (Thesis). Universidade do Rio Grande do Norte. Retrieved from http://repositorio.ufrn.br/handle/123456789/18653

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Medeiros, Elvis Néris de. “NI-GMRES precondicionado .” 2014. Thesis, Universidade do Rio Grande do Norte. Accessed March 25, 2019. http://repositorio.ufrn.br/handle/123456789/18653.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Medeiros, Elvis Néris de. “NI-GMRES precondicionado .” 2014. Web. 25 Mar 2019.

Vancouver:

Medeiros ENd. NI-GMRES precondicionado . [Internet] [Thesis]. Universidade do Rio Grande do Norte; 2014. [cited 2019 Mar 25]. Available from: http://repositorio.ufrn.br/handle/123456789/18653.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Medeiros ENd. NI-GMRES precondicionado . [Thesis]. Universidade do Rio Grande do Norte; 2014. Available from: http://repositorio.ufrn.br/handle/123456789/18653

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Roland, Nicolas. Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires : Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves.

Degree: Docteur es, Mécanique et énergétique, 2010, Lorraine INP

L'étude théorique de la transition vers la turbulence d'écoulements en tuyau de fluides non newtoniens rhéofluidifiants (fluides de Carreau) est menée, avec l'approche consistant à… (more)

Subjects/Keywords: Transition vers la turbulence; Gmres; Écoulements en tuyau; Ondes non linéaires; Bifurcations; Fluide rhéofluidifiant; Modèle de Carreau; Code pseudo-spectral; Méthode de quasi-Newton; Transition to turbulence; Pipe flows; Traveling waves; Bifurcations; Shear-thinning fluid; Carreau model; Pseudo-spectral code; Quasi-Newton method; Gmres

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roland, N. (2010). Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires : Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves. (Doctoral Dissertation). Lorraine INP. Retrieved from http://www.theses.fr/2010INPL037N

Chicago Manual of Style (16th Edition):

Roland, Nicolas. “Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires : Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves.” 2010. Doctoral Dissertation, Lorraine INP. Accessed March 25, 2019. http://www.theses.fr/2010INPL037N.

MLA Handbook (7th Edition):

Roland, Nicolas. “Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires : Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves.” 2010. Web. 25 Mar 2019.

Vancouver:

Roland N. Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires : Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves. [Internet] [Doctoral dissertation]. Lorraine INP; 2010. [cited 2019 Mar 25]. Available from: http://www.theses.fr/2010INPL037N.

Council of Science Editors:

Roland N. Modélisation de la transition vers la turbulence d'écoulements en tuyau de fluides rhéofluidifiants par calcul numérique d'ondes non linéaires : Modelling the transition to turbulence in pipe flows of shear-thinning fluids by computing nonlinear waves. [Doctoral Dissertation]. Lorraine INP; 2010. Available from: http://www.theses.fr/2010INPL037N

27. Montagnier, Julien. Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes : Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries.

Degree: Docteur es, Mécanique des fluides, 2010, Université Claude Bernard – Lyon I

 La prévention des risques industriels nécessite de simuler la dispersion turbulente de polluants. Cependant, les outils majoritairement utilisés à ce jour ne permettent pas de… (more)

Subjects/Keywords: Volumes finis; Ordre élevé; Incompressible Navier Stokes; Schéma Padé; Schéma d'ordre élevé polynomial; Solveur multigrille algébrique; GMRES; Finite volume; High order; Incompressible Navier Stokes; Padé scheme; High order polynomial; Algebraic multigrid solver; GMRES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Montagnier, J. (2010). Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes : Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2010LYO10118

Chicago Manual of Style (16th Edition):

Montagnier, Julien. “Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes : Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries.” 2010. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed March 25, 2019. http://www.theses.fr/2010LYO10118.

MLA Handbook (7th Edition):

Montagnier, Julien. “Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes : Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries.” 2010. Web. 25 Mar 2019.

Vancouver:

Montagnier J. Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes : Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2010. [cited 2019 Mar 25]. Available from: http://www.theses.fr/2010LYO10118.

Council of Science Editors:

Montagnier J. Etude de schémas numériques d'ordre élevé pour la simulation de dispersion de polluants dans des géométries complexes : Analysis of High-Order Finite Volume schemes for pollutant dispersion simulation in complex geometries. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2010. Available from: http://www.theses.fr/2010LYO10118


University of Kentucky

28. Zhang, Wei. GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM.

Degree: 2007, University of Kentucky

 The Generalized Minimal Residual method (GMRES) is often used to solve a nonsymmetric linear system Ax = b. But its convergence analysis is a rather… (more)

Subjects/Keywords: GMRES; rate of convergence; tridiagonal Toeplitz matrix; linear system; Chebyshev Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, W. (2007). GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM. (Doctoral Dissertation). University of Kentucky. Retrieved from http://uknowledge.uky.edu/gradschool_diss/549

Chicago Manual of Style (16th Edition):

Zhang, Wei. “GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM.” 2007. Doctoral Dissertation, University of Kentucky. Accessed March 25, 2019. http://uknowledge.uky.edu/gradschool_diss/549.

MLA Handbook (7th Edition):

Zhang, Wei. “GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM.” 2007. Web. 25 Mar 2019.

Vancouver:

Zhang W. GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM. [Internet] [Doctoral dissertation]. University of Kentucky; 2007. [cited 2019 Mar 25]. Available from: http://uknowledge.uky.edu/gradschool_diss/549.

Council of Science Editors:

Zhang W. GMRES ON A TRIDIAGONAL TOEPLITZ LINEAR SYSTEM. [Doctoral Dissertation]. University of Kentucky; 2007. Available from: http://uknowledge.uky.edu/gradschool_diss/549


Universidade do Rio Grande do Sul

29. Gonçalez, Tífani Teixeira. Algoritmos adaptativos para o método GMRES(m).

Degree: 2005, Universidade do Rio Grande do Sul

 Nesse trabalho apresentamos algoritmos adaptativos do M´etodo do Res´ıduo M´ınimo Generalizado (GMRES) [Saad e Schultz, 1986], um m´etodo iterativo para resolver sistemas de equa¸c˜oes lineares… (more)

Subjects/Keywords: Análise numérica; Métodos iterativos; Método do Resíduo Mínimo Generalizado (GMRES)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gonçalez, T. T. (2005). Algoritmos adaptativos para o método GMRES(m). (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/4475

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gonçalez, Tífani Teixeira. “Algoritmos adaptativos para o método GMRES(m).” 2005. Thesis, Universidade do Rio Grande do Sul. Accessed March 25, 2019. http://hdl.handle.net/10183/4475.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gonçalez, Tífani Teixeira. “Algoritmos adaptativos para o método GMRES(m).” 2005. Web. 25 Mar 2019.

Vancouver:

Gonçalez TT. Algoritmos adaptativos para o método GMRES(m). [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2005. [cited 2019 Mar 25]. Available from: http://hdl.handle.net/10183/4475.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gonçalez TT. Algoritmos adaptativos para o método GMRES(m). [Thesis]. Universidade do Rio Grande do Sul; 2005. Available from: http://hdl.handle.net/10183/4475

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Manchester

30. Pranjal, Pranjal. Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box stopping tests.

Degree: 2017, University of Manchester

 The central theme of this thesis is the design of optimal balanced black-box stopping criteria in iterative solvers of symmetric positive-definite, symmetric indefinite, and nonsymmetric… (more)

Subjects/Keywords: UQ; (Stochastic) PDEs-diffusion, convection-diffusion, Stokes, Navier-Stokes; Finite Element Method; Preconditioned iterative solvers-MINRES, CG, GMRES, BICGSTAB(L) etc.; In-built optimal stopping tests

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pranjal, P. (2017). Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box stopping tests. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312136

Chicago Manual of Style (16th Edition):

Pranjal, Pranjal. “Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box stopping tests.” 2017. Doctoral Dissertation, University of Manchester. Accessed March 25, 2019. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312136.

MLA Handbook (7th Edition):

Pranjal, Pranjal. “Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box stopping tests.” 2017. Web. 25 Mar 2019.

Vancouver:

Pranjal P. Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box stopping tests. [Internet] [Doctoral dissertation]. University of Manchester; 2017. [cited 2019 Mar 25]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312136.

Council of Science Editors:

Pranjal P. Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box stopping tests. [Doctoral Dissertation]. University of Manchester; 2017. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312136

[1] [2]

.