Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Fractional Laplacian). Showing records 1 – 30 of 32 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


University of Victoria

1. Bowles, Malcolm. Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow.

Degree: Department of Mathematics and Statistics, 2014, University of Victoria

 In this thesis, we study a linear fractional Fokker-Planck equation that models non-local (`fractional') diffusion in the presence of a potential field. The non-locality is… (more)

Subjects/Keywords: splitting; Fractional Laplacian; Wasserstein Gradient Flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bowles, M. (2014). Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow. (Masters Thesis). University of Victoria. Retrieved from http://hdl.handle.net/1828/5591

Chicago Manual of Style (16th Edition):

Bowles, Malcolm. “Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow.” 2014. Masters Thesis, University of Victoria. Accessed March 04, 2021. http://hdl.handle.net/1828/5591.

MLA Handbook (7th Edition):

Bowles, Malcolm. “Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow.” 2014. Web. 04 Mar 2021.

Vancouver:

Bowles M. Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow. [Internet] [Masters thesis]. University of Victoria; 2014. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1828/5591.

Council of Science Editors:

Bowles M. Weak Solutions to a Fractional Fokker-Planck Equation via Splitting and Wasserstein Gradient Flow. [Masters Thesis]. University of Victoria; 2014. Available from: http://hdl.handle.net/1828/5591


Rice University

2. Jiao, Yiyu. Numerical Treatment of Stochastic Dynamic Systems with Fractional Laplacian Terms.

Degree: PhD, Engineering, 2018, Rice University

 The fractional Laplacian is an integro-differential operator that is currently widely used in nonlocal models, such as the anomalous diffusion, which arises when a particle… (more)

Subjects/Keywords: Fractional Laplacian; Boundary element method; Statistical linearization; Fractional diffusion equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jiao, Y. (2018). Numerical Treatment of Stochastic Dynamic Systems with Fractional Laplacian Terms. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105863

Chicago Manual of Style (16th Edition):

Jiao, Yiyu. “Numerical Treatment of Stochastic Dynamic Systems with Fractional Laplacian Terms.” 2018. Doctoral Dissertation, Rice University. Accessed March 04, 2021. http://hdl.handle.net/1911/105863.

MLA Handbook (7th Edition):

Jiao, Yiyu. “Numerical Treatment of Stochastic Dynamic Systems with Fractional Laplacian Terms.” 2018. Web. 04 Mar 2021.

Vancouver:

Jiao Y. Numerical Treatment of Stochastic Dynamic Systems with Fractional Laplacian Terms. [Internet] [Doctoral dissertation]. Rice University; 2018. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1911/105863.

Council of Science Editors:

Jiao Y. Numerical Treatment of Stochastic Dynamic Systems with Fractional Laplacian Terms. [Doctoral Dissertation]. Rice University; 2018. Available from: http://hdl.handle.net/1911/105863


University of Texas – Austin

3. -6438-8580. Regularity of fractional analogue of k-Hessian operators and a non-local one-phase free boundary problem.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 We study the regularity theory of fractional analogue of k-Hessian operators. We define the fractional k-Hessian operators as concave envelopes of linear fractional order operators.… (more)

Subjects/Keywords: K-Hessian; Non-local operators; Fractional Laplacian; Free boundary problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6438-8580. (2019). Regularity of fractional analogue of k-Hessian operators and a non-local one-phase free boundary problem. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5790

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6438-8580. “Regularity of fractional analogue of k-Hessian operators and a non-local one-phase free boundary problem.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://dx.doi.org/10.26153/tsw/5790.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6438-8580. “Regularity of fractional analogue of k-Hessian operators and a non-local one-phase free boundary problem.” 2019. Web. 04 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6438-8580. Regularity of fractional analogue of k-Hessian operators and a non-local one-phase free boundary problem. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Mar 04]. Available from: http://dx.doi.org/10.26153/tsw/5790.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6438-8580. Regularity of fractional analogue of k-Hessian operators and a non-local one-phase free boundary problem. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5790

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Kent State University

4. Alghamdi, Ohud. Removable Singularities for Holder Continuous Solutions of the Fractional Laplacian.

Degree: MS, College of Arts and Sciences / Department of Mathematical Science, 2016, Kent State University

 In 1958, L. Carleson showed that a set E is removable for Holder continuous solutions of the Laplacian operator if and only if its (n-2+α)-dimensional… (more)

Subjects/Keywords: Mathematics; Fractional Laplacian; Fourier transform; partition of unity; distribution theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alghamdi, O. (2016). Removable Singularities for Holder Continuous Solutions of the Fractional Laplacian. (Masters Thesis). Kent State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=kent1459422077

Chicago Manual of Style (16th Edition):

Alghamdi, Ohud. “Removable Singularities for Holder Continuous Solutions of the Fractional Laplacian.” 2016. Masters Thesis, Kent State University. Accessed March 04, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1459422077.

MLA Handbook (7th Edition):

Alghamdi, Ohud. “Removable Singularities for Holder Continuous Solutions of the Fractional Laplacian.” 2016. Web. 04 Mar 2021.

Vancouver:

Alghamdi O. Removable Singularities for Holder Continuous Solutions of the Fractional Laplacian. [Internet] [Masters thesis]. Kent State University; 2016. [cited 2021 Mar 04]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1459422077.

Council of Science Editors:

Alghamdi O. Removable Singularities for Holder Continuous Solutions of the Fractional Laplacian. [Masters Thesis]. Kent State University; 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1459422077

5. Hollifield, Elliott Z. Nonnegative solutions of nonlinear fractional Laplacian equations.

Degree: 2020, NC Docks

 The study of reaction-diffusion equations involving nonlocal diffusion operators has recently flourished. The fractional Laplacian is an example of a nonlocal diffusion operator which allows… (more)

Subjects/Keywords: Laplacian operator; Fractional differential equations; Differential equations, Nonlinear; Reaction-diffusion equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hollifield, E. Z. (2020). Nonnegative solutions of nonlinear fractional Laplacian equations. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/Hollifield_uncg_0154D_13115.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hollifield, Elliott Z. “Nonnegative solutions of nonlinear fractional Laplacian equations.” 2020. Thesis, NC Docks. Accessed March 04, 2021. http://libres.uncg.edu/ir/uncg/f/Hollifield_uncg_0154D_13115.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hollifield, Elliott Z. “Nonnegative solutions of nonlinear fractional Laplacian equations.” 2020. Web. 04 Mar 2021.

Vancouver:

Hollifield EZ. Nonnegative solutions of nonlinear fractional Laplacian equations. [Internet] [Thesis]. NC Docks; 2020. [cited 2021 Mar 04]. Available from: http://libres.uncg.edu/ir/uncg/f/Hollifield_uncg_0154D_13115.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hollifield EZ. Nonnegative solutions of nonlinear fractional Laplacian equations. [Thesis]. NC Docks; 2020. Available from: http://libres.uncg.edu/ir/uncg/f/Hollifield_uncg_0154D_13115.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of South Carolina

6. Peng, Xing. Fractional Chromatic Numbers and Spectra of Graphs.

Degree: PhD, Mathematics, 2012, University of South Carolina

  This dissertation mainly comes from my recent study of fractional chromatic numbers of graphs, spectra of edge-independent random graphs, Laplacian spectra of hypergraphs, and… (more)

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; chromatic number; edge-independent random graph; fractional chromatic number; Generalized Laplacian matrix; Laplacian matrix

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peng, X. (2012). Fractional Chromatic Numbers and Spectra of Graphs. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/1610

Chicago Manual of Style (16th Edition):

Peng, Xing. “Fractional Chromatic Numbers and Spectra of Graphs.” 2012. Doctoral Dissertation, University of South Carolina. Accessed March 04, 2021. https://scholarcommons.sc.edu/etd/1610.

MLA Handbook (7th Edition):

Peng, Xing. “Fractional Chromatic Numbers and Spectra of Graphs.” 2012. Web. 04 Mar 2021.

Vancouver:

Peng X. Fractional Chromatic Numbers and Spectra of Graphs. [Internet] [Doctoral dissertation]. University of South Carolina; 2012. [cited 2021 Mar 04]. Available from: https://scholarcommons.sc.edu/etd/1610.

Council of Science Editors:

Peng X. Fractional Chromatic Numbers and Spectra of Graphs. [Doctoral Dissertation]. University of South Carolina; 2012. Available from: https://scholarcommons.sc.edu/etd/1610

7. C.D. Bucur. SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY.

Degree: 2017, Università degli Studi di Milano

 In this thesis, we deal with problems related to nonlocal operators, in particular to the fractional Laplacian and some other types of fractional derivatives. We… (more)

Subjects/Keywords: Fractional Laplacian; nonlocal operators; nonlocal minimal surfaces; fractional derivative; Caputo; Marchaud; Schauder estimates; Settore MAT/05 - Analisi Matematica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bucur, C. (2017). SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/488032

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bucur, C.D.. “SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY.” 2017. Thesis, Università degli Studi di Milano. Accessed March 04, 2021. http://hdl.handle.net/2434/488032.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bucur, C.D.. “SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY.” 2017. Web. 04 Mar 2021.

Vancouver:

Bucur C. SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY. [Internet] [Thesis]. Università degli Studi di Milano; 2017. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2434/488032.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bucur C. SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY. [Thesis]. Università degli Studi di Milano; 2017. Available from: http://hdl.handle.net/2434/488032

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Princeton University

8. Chen, Eric Christopher. Some regularity properties for two equations arising from flows .

Degree: PhD, 2019, Princeton University

 In this thesis, which consists of two parts, we study properties of certain solutions to equations arising from two different flow equations. In the first… (more)

Subjects/Keywords: asymptotically flat; fractional Laplacian; Navier – Stokes; partial regularity; Ricci flow; Sobolev inequality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, E. C. (2019). Some regularity properties for two equations arising from flows . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01bz60d014s

Chicago Manual of Style (16th Edition):

Chen, Eric Christopher. “Some regularity properties for two equations arising from flows .” 2019. Doctoral Dissertation, Princeton University. Accessed March 04, 2021. http://arks.princeton.edu/ark:/88435/dsp01bz60d014s.

MLA Handbook (7th Edition):

Chen, Eric Christopher. “Some regularity properties for two equations arising from flows .” 2019. Web. 04 Mar 2021.

Vancouver:

Chen EC. Some regularity properties for two equations arising from flows . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2021 Mar 04]. Available from: http://arks.princeton.edu/ark:/88435/dsp01bz60d014s.

Council of Science Editors:

Chen EC. Some regularity properties for two equations arising from flows . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp01bz60d014s


Princeton University

9. Chen, Eric Christopher. Some regularity properties for two equations arising from flows .

Degree: PhD, 2019, Princeton University

 In this thesis, which consists of two parts, we study properties of certain solutions to equations arising from two different flow equations. In the first… (more)

Subjects/Keywords: asymptotically flat; fractional Laplacian; Navier – Stokes; partial regularity; Ricci flow; Sobolev inequality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, E. C. (2019). Some regularity properties for two equations arising from flows . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01x920g0746

Chicago Manual of Style (16th Edition):

Chen, Eric Christopher. “Some regularity properties for two equations arising from flows .” 2019. Doctoral Dissertation, Princeton University. Accessed March 04, 2021. http://arks.princeton.edu/ark:/88435/dsp01x920g0746.

MLA Handbook (7th Edition):

Chen, Eric Christopher. “Some regularity properties for two equations arising from flows .” 2019. Web. 04 Mar 2021.

Vancouver:

Chen EC. Some regularity properties for two equations arising from flows . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2021 Mar 04]. Available from: http://arks.princeton.edu/ark:/88435/dsp01x920g0746.

Council of Science Editors:

Chen EC. Some regularity properties for two equations arising from flows . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp01x920g0746

10. Bertsias, Panagiotis. Novel CMOS analog integrated circuits for implementing approximants of the fractional-order laplacian operator.

Degree: 2020, University of Patras; Πανεπιστήμιο Πατρών

This Ph.D. Thesis deals with the design of novel CMOS analog integrated circuits, which have been derived through approximation methods of the fractional-order Laplacian operator's… (more)

Subjects/Keywords: Κλασματικός λογισμός; Λαπλασιανός τελεστής κλασματικής τάξης; Κυκλώματα κλασματικής τάξης; Τοιχεία κλασματικής τάξης; Φίλτρα κλασματικής τάξης; CMOS ολοκληρωμένα κυκλώματα; Fractional calculus; Fractional-order Laplacian operator; Fractional-order circuits; Fractional-order elements; Fractional-order filters; CMOS integrated circuits

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bertsias, P. (2020). Novel CMOS analog integrated circuits for implementing approximants of the fractional-order laplacian operator. (Thesis). University of Patras; Πανεπιστήμιο Πατρών. Retrieved from http://hdl.handle.net/10442/hedi/47805

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bertsias, Panagiotis. “Novel CMOS analog integrated circuits for implementing approximants of the fractional-order laplacian operator.” 2020. Thesis, University of Patras; Πανεπιστήμιο Πατρών. Accessed March 04, 2021. http://hdl.handle.net/10442/hedi/47805.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bertsias, Panagiotis. “Novel CMOS analog integrated circuits for implementing approximants of the fractional-order laplacian operator.” 2020. Web. 04 Mar 2021.

Vancouver:

Bertsias P. Novel CMOS analog integrated circuits for implementing approximants of the fractional-order laplacian operator. [Internet] [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2020. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/10442/hedi/47805.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bertsias P. Novel CMOS analog integrated circuits for implementing approximants of the fractional-order laplacian operator. [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2020. Available from: http://hdl.handle.net/10442/hedi/47805

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. M. Cozzi. QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS.

Degree: 2016, Università degli Studi di Milano

La tesi è dedicata allo studio di varie proprietà qualitative possedute dalle soluzioni di equazioni ellittiche poste nello spazio euclideo. L'attenzione principale del lavoro è… (more)

Subjects/Keywords: anisotropic PDEs; Finsler Laplacian; one-dimensional symmetry; rigidity results; Wulff shape; non-local operators; integro-differential equations; fractional Laplacian; regularity results; Settore MAT/05 - Analisi Matematica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cozzi, M. (2016). QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/345873

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cozzi, M.. “QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS.” 2016. Thesis, Università degli Studi di Milano. Accessed March 04, 2021. http://hdl.handle.net/2434/345873.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cozzi, M.. “QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS.” 2016. Web. 04 Mar 2021.

Vancouver:

Cozzi M. QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS. [Internet] [Thesis]. Università degli Studi di Milano; 2016. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2434/345873.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cozzi M. QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS. [Thesis]. Università degli Studi di Milano; 2016. Available from: http://hdl.handle.net/2434/345873

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queensland University of Technology

12. Yang, Qianqian. Novel analytical and numerical methods for solving fractional dynamical systems.

Degree: 2010, Queensland University of Technology

 During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and… (more)

Subjects/Keywords: Riemann-Liouville fractional derivative, Grunwald-Letnikov fractional derivative, Caputo fractional derivative, Riesz fractional derivative, fractional Laplacian, anomalous diffusion, fractional diffusion equation, fractional advection-dispersion equation; fractional Fokker-Planck equation, fractional cable equation, numerical method, stability and convergence, L1/L2-approximation, standard/shifted Grunwald method, matrix transform method, fractional method of lines, Lanczos approximation; M-Lanczos approximation, matrix functions, Mittag-Leffler function, Laplace transform of fractional derivative; ODTA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, Q. (2010). Novel analytical and numerical methods for solving fractional dynamical systems. (Thesis). Queensland University of Technology. Retrieved from https://eprints.qut.edu.au/35750/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yang, Qianqian. “Novel analytical and numerical methods for solving fractional dynamical systems.” 2010. Thesis, Queensland University of Technology. Accessed March 04, 2021. https://eprints.qut.edu.au/35750/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yang, Qianqian. “Novel analytical and numerical methods for solving fractional dynamical systems.” 2010. Web. 04 Mar 2021.

Vancouver:

Yang Q. Novel analytical and numerical methods for solving fractional dynamical systems. [Internet] [Thesis]. Queensland University of Technology; 2010. [cited 2021 Mar 04]. Available from: https://eprints.qut.edu.au/35750/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang Q. Novel analytical and numerical methods for solving fractional dynamical systems. [Thesis]. Queensland University of Technology; 2010. Available from: https://eprints.qut.edu.au/35750/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queensland University of Technology

13. Cusimano, Nicole. Fractional models in space for diffusive processes in heterogeneous media with applications in cell motility and electrical signal propagation.

Degree: 2015, Queensland University of Technology

 This work addresses fundamental issues in the mathematical modelling of the diffusive motion of particles in biological and physiological settings. New mathematical results are proved… (more)

Subjects/Keywords: non-local operators in space; fractional Laplacian; reflecting boundary conditions; heterogeneous media; computational biology; computational electrophysiology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cusimano, N. (2015). Fractional models in space for diffusive processes in heterogeneous media with applications in cell motility and electrical signal propagation. (Thesis). Queensland University of Technology. Retrieved from https://eprints.qut.edu.au/84092/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cusimano, Nicole. “Fractional models in space for diffusive processes in heterogeneous media with applications in cell motility and electrical signal propagation.” 2015. Thesis, Queensland University of Technology. Accessed March 04, 2021. https://eprints.qut.edu.au/84092/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cusimano, Nicole. “Fractional models in space for diffusive processes in heterogeneous media with applications in cell motility and electrical signal propagation.” 2015. Web. 04 Mar 2021.

Vancouver:

Cusimano N. Fractional models in space for diffusive processes in heterogeneous media with applications in cell motility and electrical signal propagation. [Internet] [Thesis]. Queensland University of Technology; 2015. [cited 2021 Mar 04]. Available from: https://eprints.qut.edu.au/84092/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cusimano N. Fractional models in space for diffusive processes in heterogeneous media with applications in cell motility and electrical signal propagation. [Thesis]. Queensland University of Technology; 2015. Available from: https://eprints.qut.edu.au/84092/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Cesbron, Ludovic. On the derivation of non-local diffusion equations in confined spaces.

Degree: PhD, 2017, University of Cambridge

The subject of the thesis is the derivation of non-local diffusion equations from kinetic models with heavy-tailed equilibrium in velocity. We are particularly interested in confining the kinetic equations and developing methods that allow us, from the confined kinetic models, to derive confined versions of non-local diffusion equations.

Subjects/Keywords: Kinetic theory of gases; Diffusion processes; Diffusion limits; Analysis of PDEs; Vlasov-Fokker-Planck equations; Fractional Laplacian; Vlasov equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cesbron, L. (2017). On the derivation of non-local diffusion equations in confined spaces. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/270355

Chicago Manual of Style (16th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 04, 2021. https://www.repository.cam.ac.uk/handle/1810/270355.

MLA Handbook (7th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Web. 04 Mar 2021.

Vancouver:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 04]. Available from: https://www.repository.cam.ac.uk/handle/1810/270355.

Council of Science Editors:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/270355

15. Tarhini, Rana. Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures.

Degree: Docteur es, Mathématiques, 2018, Université Paris-Est

Ces travaux concernent deux équations paraboliques, dégénérées et non-locales. La première équation est une équation de films minces fractionnaire et la deuxième est une équation… (more)

Subjects/Keywords: Equation parabolique dégénérée; Laplacien fractionnaire; Equation non locale; Degenereted parabolic equation; Fractional Laplacian; Non local equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tarhini, R. (2018). Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2018PESC1061

Chicago Manual of Style (16th Edition):

Tarhini, Rana. “Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures.” 2018. Doctoral Dissertation, Université Paris-Est. Accessed March 04, 2021. http://www.theses.fr/2018PESC1061.

MLA Handbook (7th Edition):

Tarhini, Rana. “Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures.” 2018. Web. 04 Mar 2021.

Vancouver:

Tarhini R. Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures. [Internet] [Doctoral dissertation]. Université Paris-Est; 2018. [cited 2021 Mar 04]. Available from: http://www.theses.fr/2018PESC1061.

Council of Science Editors:

Tarhini R. Équation de films minces fractionnaire pour les fractures hydrauliques : Fractional equation of thin films for hydraulic fractures. [Doctoral Dissertation]. Université Paris-Est; 2018. Available from: http://www.theses.fr/2018PESC1061


University of Cambridge

16. Cesbron, Ludovic. On the derivation of non-local diffusion equations in confined spaces.

Degree: PhD, 2017, University of Cambridge

The subject of the thesis is the derivation of non-local diffusion equations from kinetic models with heavy-tailed equilibrium in velocity. We are particularly interested in confining the kinetic equations and developing methods that allow us, from the confined kinetic models, to derive confined versions of non-local diffusion equations.

Subjects/Keywords: 515; Kinetic theory of gases; Diffusion processes; Diffusion limits; Analysis of PDEs; Vlasov-Fokker-Planck equations; Fractional Laplacian; Vlasov equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cesbron, L. (2017). On the derivation of non-local diffusion equations in confined spaces. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418

Chicago Manual of Style (16th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Doctoral Dissertation, University of Cambridge. Accessed March 04, 2021. https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418.

MLA Handbook (7th Edition):

Cesbron, Ludovic. “On the derivation of non-local diffusion equations in confined spaces.” 2017. Web. 04 Mar 2021.

Vancouver:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2021 Mar 04]. Available from: https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418.

Council of Science Editors:

Cesbron L. On the derivation of non-local diffusion equations in confined spaces. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.17221 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744418

17. Yang, Ray. Optimal regularity and nondegeneracy for minimizers of an energy related to the fractional Laplacian.

Degree: PhD, Mathematics, 2011, University of Texas – Austin

 We study the optimal regularity and nondegeneracy of a free boundary problem related to the fractional Laplacian through the extension technique of Caffarelli and Silvestre.… (more)

Subjects/Keywords: Free boundary; Optimal regularity; Fractional Laplacian

…dimension and examining a particular PDE on the upper half-space, with the fractional Laplacian… …of its minimizers. The extension characterization of the fractional Laplacian has been used… …operator is equivalent to the fractional Laplacian of order σ. lim ya ∂y u = −C(−∆)σ u… …fractional Laplacian is also an integrodifferential operator, with Fourier symbol |ξ|2σ . There is… …directly examining the fractional Laplacian: Proposition 3.4.6. Let w = (−∆)σ u. Assume… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, R. (2011). Optimal regularity and nondegeneracy for minimizers of an energy related to the fractional Laplacian. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-08-3926

Chicago Manual of Style (16th Edition):

Yang, Ray. “Optimal regularity and nondegeneracy for minimizers of an energy related to the fractional Laplacian.” 2011. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://hdl.handle.net/2152/ETD-UT-2011-08-3926.

MLA Handbook (7th Edition):

Yang, Ray. “Optimal regularity and nondegeneracy for minimizers of an energy related to the fractional Laplacian.” 2011. Web. 04 Mar 2021.

Vancouver:

Yang R. Optimal regularity and nondegeneracy for minimizers of an energy related to the fractional Laplacian. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2011. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-3926.

Council of Science Editors:

Yang R. Optimal regularity and nondegeneracy for minimizers of an energy related to the fractional Laplacian. [Doctoral Dissertation]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-08-3926


Queensland University of Technology

18. Simpson, Daniel Peter. Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion.

Degree: 2008, Queensland University of Technology

 Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this… (more)

Subjects/Keywords: Fractional Laplacian, Fractional Poisson equation, Generalised Matern random field, Gaussian Markov random field, Krylov subspace, Lanczos approximation, M-Lanczos approximation, Matrix Functions, Matrix transfer technique, Restarted Lanczos approximation; Stieltjes transform

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simpson, D. P. (2008). Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion. (Thesis). Queensland University of Technology. Retrieved from https://eprints.qut.edu.au/29751/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Simpson, Daniel Peter. “Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion.” 2008. Thesis, Queensland University of Technology. Accessed March 04, 2021. https://eprints.qut.edu.au/29751/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Simpson, Daniel Peter. “Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion.” 2008. Web. 04 Mar 2021.

Vancouver:

Simpson DP. Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion. [Internet] [Thesis]. Queensland University of Technology; 2008. [cited 2021 Mar 04]. Available from: https://eprints.qut.edu.au/29751/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Simpson DP. Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion. [Thesis]. Queensland University of Technology; 2008. Available from: https://eprints.qut.edu.au/29751/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Lassoued, Rafika. Contributions aux équations d'évolution frac-différentielles : Contributions to frac-differential evolution equations.

Degree: Docteur es, Mathématiques, 2016, La Rochelle; Université de Monastir (Tunisie)

Dans cette thèse, nous nous sommes intéressés aux équations différentielles fractionnaires. Nous avons commencé par l'étude d'une équation différentielle fractionnaire en temps. Ensuite, nous avons… (more)

Subjects/Keywords: Calcul fractionnaire; Dérivée fractionnaire; Laplacien fractionnaire; Système de réaction-diffusion; Équation différentielle fractionnaire; Solution explosive; Temps d'explosion; Existence globale; Comportement asymptotique; Fractional calculus; Fractional derivative; Fractional Laplacian; Reaction-diffusion system; Fractional differential equation; Blowing-up solution; Blow-up time; Global existence; Asymptotic behavior

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lassoued, R. (2016). Contributions aux équations d'évolution frac-différentielles : Contributions to frac-differential evolution equations. (Doctoral Dissertation). La Rochelle; Université de Monastir (Tunisie). Retrieved from http://www.theses.fr/2016LAROS001

Chicago Manual of Style (16th Edition):

Lassoued, Rafika. “Contributions aux équations d'évolution frac-différentielles : Contributions to frac-differential evolution equations.” 2016. Doctoral Dissertation, La Rochelle; Université de Monastir (Tunisie). Accessed March 04, 2021. http://www.theses.fr/2016LAROS001.

MLA Handbook (7th Edition):

Lassoued, Rafika. “Contributions aux équations d'évolution frac-différentielles : Contributions to frac-differential evolution equations.” 2016. Web. 04 Mar 2021.

Vancouver:

Lassoued R. Contributions aux équations d'évolution frac-différentielles : Contributions to frac-differential evolution equations. [Internet] [Doctoral dissertation]. La Rochelle; Université de Monastir (Tunisie); 2016. [cited 2021 Mar 04]. Available from: http://www.theses.fr/2016LAROS001.

Council of Science Editors:

Lassoued R. Contributions aux équations d'évolution frac-différentielles : Contributions to frac-differential evolution equations. [Doctoral Dissertation]. La Rochelle; Université de Monastir (Tunisie); 2016. Available from: http://www.theses.fr/2016LAROS001

20. Hnaien, Dorsaf. Equations aux dérivées fractionnaires : propriétés et applications : Fractional differential equations : properties and applications.

Degree: Docteur es, Mathématiques, 2015, La Rochelle; Université de Monastir (Tunisie)

Notre objectif dans cette thèse est l'étude des équations différentielles non linéaires comportant des dérivées fractionnaires en temps et/ou en espace. Nous nous sommes intéressés… (more)

Subjects/Keywords: Calcul fractionnaire; Dérivée fractionnaire au sens de Caputo; Laplacien fractionnaire; Existence locale et globale; Comportement asymptotique; Fonctions de Mittag-Leffler; Solutions explosives; Temps d'explosion; Fractional calculus; Caputo's fractional derivative; Fractional Laplacian; Local and global existence; Asymptotic behavior; Mittag-Leffler’s functions; Blowing-up solutions; Blow-up time

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hnaien, D. (2015). Equations aux dérivées fractionnaires : propriétés et applications : Fractional differential equations : properties and applications. (Doctoral Dissertation). La Rochelle; Université de Monastir (Tunisie). Retrieved from http://www.theses.fr/2015LAROS038

Chicago Manual of Style (16th Edition):

Hnaien, Dorsaf. “Equations aux dérivées fractionnaires : propriétés et applications : Fractional differential equations : properties and applications.” 2015. Doctoral Dissertation, La Rochelle; Université de Monastir (Tunisie). Accessed March 04, 2021. http://www.theses.fr/2015LAROS038.

MLA Handbook (7th Edition):

Hnaien, Dorsaf. “Equations aux dérivées fractionnaires : propriétés et applications : Fractional differential equations : properties and applications.” 2015. Web. 04 Mar 2021.

Vancouver:

Hnaien D. Equations aux dérivées fractionnaires : propriétés et applications : Fractional differential equations : properties and applications. [Internet] [Doctoral dissertation]. La Rochelle; Université de Monastir (Tunisie); 2015. [cited 2021 Mar 04]. Available from: http://www.theses.fr/2015LAROS038.

Council of Science Editors:

Hnaien D. Equations aux dérivées fractionnaires : propriétés et applications : Fractional differential equations : properties and applications. [Doctoral Dissertation]. La Rochelle; Université de Monastir (Tunisie); 2015. Available from: http://www.theses.fr/2015LAROS038

21. N. Abatangelo. Large Solutions for Fractional Laplacian Operators.

Degree: 2015, Università degli Studi di Milano

 The thesis studies linear and semilinear Dirichlet problems driven by different fractional Laplacians. The boundary data can be smooth functions or also Radon measures. The… (more)

Subjects/Keywords: fractional Laplacian; nonlocal operators; large solutions; L1 weak solutions; nonlinear elliptic equations; Dirichlet problem; boundary singularity; nonlocal curvatures; Settore MAT/05 - Analisi Matematica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abatangelo, N. (2015). Large Solutions for Fractional Laplacian Operators. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/320258

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Abatangelo, N.. “Large Solutions for Fractional Laplacian Operators.” 2015. Thesis, Università degli Studi di Milano. Accessed March 04, 2021. http://hdl.handle.net/2434/320258.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Abatangelo, N.. “Large Solutions for Fractional Laplacian Operators.” 2015. Web. 04 Mar 2021.

Vancouver:

Abatangelo N. Large Solutions for Fractional Laplacian Operators. [Internet] [Thesis]. Università degli Studi di Milano; 2015. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2434/320258.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Abatangelo N. Large Solutions for Fractional Laplacian Operators. [Thesis]. Università degli Studi di Milano; 2015. Available from: http://hdl.handle.net/2434/320258

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. A. Fiscella. VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS.

Degree: 2014, Università degli Studi di Milano

 My thesis deals with nonlinear elliptic problems involving a non-local integrodifferential operator of fractional type. Our main results concern the existence of weak solutions for… (more)

Subjects/Keywords: integrodifferential operators; fractional Laplacian; Saddle Point Theorem; Palais-Smale condition; Stationary Kirchhoff problems; critical nonlinearities; variational methods; Settore MAT/05 - Analisi Matematica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fiscella, A. (2014). VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/245334

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fiscella, A.. “VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS.” 2014. Thesis, Università degli Studi di Milano. Accessed March 04, 2021. http://hdl.handle.net/2434/245334.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fiscella, A.. “VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS.” 2014. Web. 04 Mar 2021.

Vancouver:

Fiscella A. VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS. [Internet] [Thesis]. Università degli Studi di Milano; 2014. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2434/245334.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fiscella A. VARIATIONAL PROBLEMS INVOLVING NON-LOCAL ELLIPTIC OPERATORS. [Thesis]. Università degli Studi di Milano; 2014. Available from: http://hdl.handle.net/2434/245334

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

23. Lafleche, Laurent. Dynamique de systèmes à grand nombre de particules et systèmes dynamiques : Dynamics of systems with large number of particles and dynamical systems.

Degree: Docteur es, Mathématiques, 2019, Paris Sciences et Lettres (ComUE)

On étudie dans cette thèse le comportement en temps long de solutions d’équations aux dérivées partielles. Celles-ci modélisent des systèmes à grand nombre de particules… (more)

Subjects/Keywords: Systèmes dynamiques; Particules en interaction; Modèles cinétiques; Mécanique quantique; Laplacien fractionnaire; Dynamical systems; Interacting particles; Kinetic models; Quantum mechanics; Fractional Laplacian; 515.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lafleche, L. (2019). Dynamique de systèmes à grand nombre de particules et systèmes dynamiques : Dynamics of systems with large number of particles and dynamical systems. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2019PSLED010

Chicago Manual of Style (16th Edition):

Lafleche, Laurent. “Dynamique de systèmes à grand nombre de particules et systèmes dynamiques : Dynamics of systems with large number of particles and dynamical systems.” 2019. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed March 04, 2021. http://www.theses.fr/2019PSLED010.

MLA Handbook (7th Edition):

Lafleche, Laurent. “Dynamique de systèmes à grand nombre de particules et systèmes dynamiques : Dynamics of systems with large number of particles and dynamical systems.” 2019. Web. 04 Mar 2021.

Vancouver:

Lafleche L. Dynamique de systèmes à grand nombre de particules et systèmes dynamiques : Dynamics of systems with large number of particles and dynamical systems. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2019. [cited 2021 Mar 04]. Available from: http://www.theses.fr/2019PSLED010.

Council of Science Editors:

Lafleche L. Dynamique de systèmes à grand nombre de particules et systèmes dynamiques : Dynamics of systems with large number of particles and dynamical systems. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2019. Available from: http://www.theses.fr/2019PSLED010


Georgia Tech

24. Einav, Amit. Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian.

Degree: PhD, Mathematics, 2011, Georgia Tech

 The presented work deals with two distinct problems in the field of Mathematical Physics. The first part is dedicated to an 'almost' solution of Villani's… (more)

Subjects/Keywords: Fractional laplacian; Villani's conjecture; Entropy production; Kac's model; Trace inequality; Mathematical physics; Statistical mechanics; Transport theory; Particle methods (Numerical analysis); Inequalities (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Einav, A. (2011). Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/42788

Chicago Manual of Style (16th Edition):

Einav, Amit. “Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian.” 2011. Doctoral Dissertation, Georgia Tech. Accessed March 04, 2021. http://hdl.handle.net/1853/42788.

MLA Handbook (7th Edition):

Einav, Amit. “Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian.” 2011. Web. 04 Mar 2021.

Vancouver:

Einav A. Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian. [Internet] [Doctoral dissertation]. Georgia Tech; 2011. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1853/42788.

Council of Science Editors:

Einav A. Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian. [Doctoral Dissertation]. Georgia Tech; 2011. Available from: http://hdl.handle.net/1853/42788

25. Wei, Peng. Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection.

Degree: PhD, Mathematics, 2019, Texas A&M University

 In this work, we approximate a time-dependent problem with drift involving fractional powers of elliptic operators. The numerical scheme is based on an integral representation… (more)

Subjects/Keywords: Fractional Laplacian; Finite Element; Surface quasi-geostrophic; Electroconvection

…x29; mapping will introduce fractional Laplacian with power 1/2. Consequetly, the numerical… …considered: the spectral fractional elliptic operator and the integral fractional Laplacian. The… …L = −∆, Ls is referred to as the spectral fractional Laplacian. In addition, when Ω is… …fractional operator, the integral fractional Laplacian, is defined through the Fourier transform on… …the whole space Rd . For v in the Schwartz space, the integral fractional Laplacian is a… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wei, P. (2019). Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/186199

Chicago Manual of Style (16th Edition):

Wei, Peng. “Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection.” 2019. Doctoral Dissertation, Texas A&M University. Accessed March 04, 2021. http://hdl.handle.net/1969.1/186199.

MLA Handbook (7th Edition):

Wei, Peng. “Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection.” 2019. Web. 04 Mar 2021.

Vancouver:

Wei P. Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. [Internet] [Doctoral dissertation]. Texas A&M University; 2019. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1969.1/186199.

Council of Science Editors:

Wei P. Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. [Doctoral Dissertation]. Texas A&M University; 2019. Available from: http://hdl.handle.net/1969.1/186199

26. Wei, Peng. Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection.

Degree: PhD, Mathematics, 2019, Texas A&M University

 In this work, we approximate a time-dependent problem with drift involving fractional powers of elliptic operators. The numerical scheme is based on an integral representation… (more)

Subjects/Keywords: Fractional Laplacian; Finite Element; Surface quasi-geostrophic; Electroconvection

…x29; mapping will introduce fractional Laplacian with power 1/2. Consequetly, the numerical… …considered: the spectral fractional elliptic operator and the integral fractional Laplacian. The… …L = −∆, Ls is referred to as the spectral fractional Laplacian. In addition, when Ω is… …fractional operator, the integral fractional Laplacian, is defined through the Fourier transform on… …the whole space Rd . For v in the Schwartz space, the integral fractional Laplacian is a… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wei, P. (2019). Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/186239

Chicago Manual of Style (16th Edition):

Wei, Peng. “Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection.” 2019. Doctoral Dissertation, Texas A&M University. Accessed March 04, 2021. http://hdl.handle.net/1969.1/186239.

MLA Handbook (7th Edition):

Wei, Peng. “Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection.” 2019. Web. 04 Mar 2021.

Vancouver:

Wei P. Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. [Internet] [Doctoral dissertation]. Texas A&M University; 2019. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1969.1/186239.

Council of Science Editors:

Wei P. Numerical Approximation of Time Dependent Fractional Diffusion With Drift: Numerical Analysis and Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. [Doctoral Dissertation]. Texas A&M University; 2019. Available from: http://hdl.handle.net/1969.1/186239


University of Texas – Austin

27. Tang, Lan, 1980-. Random homogenization of p-Laplacian with obstacles on perforated domain and related topics.

Degree: PhD, Mathematics, 2011, University of Texas – Austin

Abstract not available. Advisors/Committee Members: Caffarelli, Luis A. (advisor).

Subjects/Keywords: p-capacity; Stationary ergodic; Correctors; Obstacle problem; Fractional p-Laplacian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tang, Lan, 1. (2011). Random homogenization of p-Laplacian with obstacles on perforated domain and related topics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-05-3455

Chicago Manual of Style (16th Edition):

Tang, Lan, 1980-. “Random homogenization of p-Laplacian with obstacles on perforated domain and related topics.” 2011. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://hdl.handle.net/2152/ETD-UT-2011-05-3455.

MLA Handbook (7th Edition):

Tang, Lan, 1980-. “Random homogenization of p-Laplacian with obstacles on perforated domain and related topics.” 2011. Web. 04 Mar 2021.

Vancouver:

Tang, Lan 1. Random homogenization of p-Laplacian with obstacles on perforated domain and related topics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2011. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-05-3455.

Council of Science Editors:

Tang, Lan 1. Random homogenization of p-Laplacian with obstacles on perforated domain and related topics. [Doctoral Dissertation]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-05-3455


Georgia Tech

28. Yildirim Yolcu, Selma. Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian.

Degree: PhD, Mathematics, 2009, Georgia Tech

 Some eigenvalue inequalities for Klein-Gordon operators and fractional Laplacians restricted to a bounded domain are proved. Such operators became very popular recently as they arise… (more)

Subjects/Keywords: Fractional Laplacian; Klein-Gordon operator; Eigenvalue; Laplacian operator; Eigenvalues; Klein-Gordon equation; Spectral theory (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yildirim Yolcu, S. (2009). Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/31649

Chicago Manual of Style (16th Edition):

Yildirim Yolcu, Selma. “Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian.” 2009. Doctoral Dissertation, Georgia Tech. Accessed March 04, 2021. http://hdl.handle.net/1853/31649.

MLA Handbook (7th Edition):

Yildirim Yolcu, Selma. “Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian.” 2009. Web. 04 Mar 2021.

Vancouver:

Yildirim Yolcu S. Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian. [Internet] [Doctoral dissertation]. Georgia Tech; 2009. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1853/31649.

Council of Science Editors:

Yildirim Yolcu S. Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian. [Doctoral Dissertation]. Georgia Tech; 2009. Available from: http://hdl.handle.net/1853/31649


Missouri University of Science and Technology

29. Duo, Siwei. Numerical investigation on nonlocal problems with the fractional Laplacian.

Degree: PhD, Mathematics, Missouri University of Science and Technology

  "Nonlocal models have recently become a powerful tool for studying complex systems with long-range interactions or memory effects, which cannot be described properly by… (more)

Subjects/Keywords: Fractional Laplacian; Fractional Schrodinger equation; Montgomery's identity; Plane wave dynamics; Weighted interpolation; Weighted trapezoidal; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duo, S. (n.d.). Numerical investigation on nonlocal problems with the fractional Laplacian. (Doctoral Dissertation). Missouri University of Science and Technology. Retrieved from https://scholarsmine.mst.edu/doctoral_dissertations/2742

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Chicago Manual of Style (16th Edition):

Duo, Siwei. “Numerical investigation on nonlocal problems with the fractional Laplacian.” Doctoral Dissertation, Missouri University of Science and Technology. Accessed March 04, 2021. https://scholarsmine.mst.edu/doctoral_dissertations/2742.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

MLA Handbook (7th Edition):

Duo, Siwei. “Numerical investigation on nonlocal problems with the fractional Laplacian.” Web. 04 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Duo S. Numerical investigation on nonlocal problems with the fractional Laplacian. [Internet] [Doctoral dissertation]. Missouri University of Science and Technology; [cited 2021 Mar 04]. Available from: https://scholarsmine.mst.edu/doctoral_dissertations/2742.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Council of Science Editors:

Duo S. Numerical investigation on nonlocal problems with the fractional Laplacian. [Doctoral Dissertation]. Missouri University of Science and Technology; Available from: https://scholarsmine.mst.edu/doctoral_dissertations/2742

Note: this citation may be lacking information needed for this citation format:
No year of publication.

30. Dannawi, Ihab. Contributions aux équations d'évolutions non locales en espace-temps : Contributions to non local evolution equations in space-time.

Degree: Docteur es, Mathématiques, 2015, La Rochelle

Dans cette thèse, nous nous intéressons à l'étude de quatre équations d'évolution non-locales. Les solutions de ces quatre équations peuvent exploser en temps fini. Dans… (more)

Subjects/Keywords: Equations de Schrödinger; Explosion en temps fini; Laplacien Fractionnaire; Equation d'onde amortie non linéaire; Exposant sous critique; Problème de Cauchy; Equation de p-Laplacien; Existence locale; Non existence globale; Equation hyperpolique; Solutions douces et faibles; Estimation de Strichartz; Les dérivées et les intégrales fractionnaires de Riemann-Liouville; Schrödinger equations; Blow-up; Fractional Laplacian; Nonlinear damped wave equation; Subcritical potential; Cauchy problem; P-Laplacian equation; Local existence; Global nonexistence; Hyperbolic equation; Mild and weak solutions; Strichartz estimate; Riemann- Liouville fractional integrals and derivatives

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dannawi, I. (2015). Contributions aux équations d'évolutions non locales en espace-temps : Contributions to non local evolution equations in space-time. (Doctoral Dissertation). La Rochelle. Retrieved from http://www.theses.fr/2015LAROS007

Chicago Manual of Style (16th Edition):

Dannawi, Ihab. “Contributions aux équations d'évolutions non locales en espace-temps : Contributions to non local evolution equations in space-time.” 2015. Doctoral Dissertation, La Rochelle. Accessed March 04, 2021. http://www.theses.fr/2015LAROS007.

MLA Handbook (7th Edition):

Dannawi, Ihab. “Contributions aux équations d'évolutions non locales en espace-temps : Contributions to non local evolution equations in space-time.” 2015. Web. 04 Mar 2021.

Vancouver:

Dannawi I. Contributions aux équations d'évolutions non locales en espace-temps : Contributions to non local evolution equations in space-time. [Internet] [Doctoral dissertation]. La Rochelle; 2015. [cited 2021 Mar 04]. Available from: http://www.theses.fr/2015LAROS007.

Council of Science Editors:

Dannawi I. Contributions aux équations d'évolutions non locales en espace-temps : Contributions to non local evolution equations in space-time. [Doctoral Dissertation]. La Rochelle; 2015. Available from: http://www.theses.fr/2015LAROS007

[1] [2]

.