Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Fourier hermite). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Indian Institute of Science

1. Bagchi, Sayan. Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 In this thesis we deal with two problems in harmonic analysis. In the first problem we discuss weighted norm inequalities for Weyl multipliers satisfying Mauceri’s… (more)

Subjects/Keywords: Weyl Multipliers; Hermite Pseudo-multipliers; Fourier Multipliers; Weighted Norm Inequality; Mauceri’s Theorem; Heisenberg Group; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bagchi, S. (2018). Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3641

Chicago Manual of Style (16th Edition):

Bagchi, Sayan. “Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed November 28, 2020. http://etd.iisc.ac.in/handle/2005/3641.

MLA Handbook (7th Edition):

Bagchi, Sayan. “Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers.” 2018. Web. 28 Nov 2020.

Vancouver:

Bagchi S. Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Nov 28]. Available from: http://etd.iisc.ac.in/handle/2005/3641.

Council of Science Editors:

Bagchi S. Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3641

2. Vencels, Juris. The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations.

Degree: Space and Plasma Physics, 2016, KTH

  This thesis focuses on the improvement of the Hermite-Fourier spectral method for solving kinetic plasma problems. In the first part of the thesis a… (more)

Subjects/Keywords: Plasma Simulations; Spectral Methods; Hermite Fourier

…and spatial space. Spectral methods like Hermite-Fourier (HF) removes the problem… …interaction. 1.2 Scope of Thesis This thesis focuses on the Hermite-Fourier spectral method which… …discretizes the velocity space in Hermite basis and the spatial space in Fourier basis. The goal of… …section discuses the development of the Hermite-Fourier (HF) spectral method from its… …multidimensional case is shown. 2.1 The Hermite-Fourier Spectral Method The use of Hermite functions… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vencels, J. (2016). The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vencels, Juris. “The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations.” 2016. Thesis, KTH. Accessed November 28, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vencels, Juris. “The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations.” 2016. Web. 28 Nov 2020.

Vancouver:

Vencels J. The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations. [Internet] [Thesis]. KTH; 2016. [cited 2020 Nov 28]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vencels J. The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations. [Thesis]. KTH; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. OLIVEIRA NETO, José Rodrigues de. Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações .

Degree: 2019, Universidade Federal de Pernambuco

 Neste trabalho, são investigados métodos baseados em fórmulas fechadas para construção de autovetores de transformadas discretas de Fourier definidas (i) sobre o corpo dos reais… (more)

Subjects/Keywords: Engenharia Elétrica; Transformada fracionária de Fourier; Transformada fracionária numérica de Fourier; Autovetores do tipo Hermite-Gaussiano; Representação compacta de sinais; Cifragem de imagens

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

OLIVEIRA NETO, J. R. d. (2019). Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações . (Doctoral Dissertation). Universidade Federal de Pernambuco. Retrieved from https://repositorio.ufpe.br/handle/123456789/33109

Chicago Manual of Style (16th Edition):

OLIVEIRA NETO, José Rodrigues de. “Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações .” 2019. Doctoral Dissertation, Universidade Federal de Pernambuco. Accessed November 28, 2020. https://repositorio.ufpe.br/handle/123456789/33109.

MLA Handbook (7th Edition):

OLIVEIRA NETO, José Rodrigues de. “Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações .” 2019. Web. 28 Nov 2020.

Vancouver:

OLIVEIRA NETO JRd. Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações . [Internet] [Doctoral dissertation]. Universidade Federal de Pernambuco; 2019. [cited 2020 Nov 28]. Available from: https://repositorio.ufpe.br/handle/123456789/33109.

Council of Science Editors:

OLIVEIRA NETO JRd. Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações . [Doctoral Dissertation]. Universidade Federal de Pernambuco; 2019. Available from: https://repositorio.ufpe.br/handle/123456789/33109


University of Technology, Sydney

4. Ziogas, A. Pricing American options using Fourier analysis.

Degree: 2005, University of Technology, Sydney

 The analytic expression for an American option price under the Black-Scholes model requires the early exercise boundary as one of its inputs, and this is… (more)

Subjects/Keywords: Fourier analysis.; American options.; PIDE; Fourier-Hermite series expansion method.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ziogas, A. (2005). Pricing American options using Fourier analysis. (Thesis). University of Technology, Sydney. Retrieved from http://hdl.handle.net/10453/37244

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ziogas, A. “Pricing American options using Fourier analysis.” 2005. Thesis, University of Technology, Sydney. Accessed November 28, 2020. http://hdl.handle.net/10453/37244.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ziogas, A. “Pricing American options using Fourier analysis.” 2005. Web. 28 Nov 2020.

Vancouver:

Ziogas A. Pricing American options using Fourier analysis. [Internet] [Thesis]. University of Technology, Sydney; 2005. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/10453/37244.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ziogas A. Pricing American options using Fourier analysis. [Thesis]. University of Technology, Sydney; 2005. Available from: http://hdl.handle.net/10453/37244

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

5. Schumer, Joseph Wade. Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations.

Degree: PhD, Pure Sciences, 1997, University of Michigan

 A 1d-1v spatially-periodic, Maxwellian-like, charged particle phase-space distribution f(x, v, t) is represented by one of two different Fourier-Hermite basis sets (asymmetric or symmetric Hermite(more)

Subjects/Keywords: 1d; 1v; Discretizations; Fourier; Hermite; Optimized; Poisson; Simulations; Spectral; Using; Vlasov

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schumer, J. W. (1997). Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/130353

Chicago Manual of Style (16th Edition):

Schumer, Joseph Wade. “Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations.” 1997. Doctoral Dissertation, University of Michigan. Accessed November 28, 2020. http://hdl.handle.net/2027.42/130353.

MLA Handbook (7th Edition):

Schumer, Joseph Wade. “Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations.” 1997. Web. 28 Nov 2020.

Vancouver:

Schumer JW. Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations. [Internet] [Doctoral dissertation]. University of Michigan; 1997. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/2027.42/130353.

Council of Science Editors:

Schumer JW. Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations. [Doctoral Dissertation]. University of Michigan; 1997. Available from: http://hdl.handle.net/2027.42/130353

6. Prater, Ashley. Discrete Sparse Fourier Hermite Approximations in High Dimensions.

Degree: PhD, Mathematics, 2012, Syracuse University

  In this dissertation, the discrete sparse Fourier Hermite approximation of a function in a specified Hilbert space of arbitrary dimension is defined, and theoretical… (more)

Subjects/Keywords: Fourier Hermite Series; Generalized Fourier Series; Hyperbolic Cross Sparse Index; Multiscale Quadrature; Pseudospectral Approximation; Spectral Approximation; Mathematics

…57 5 Discrete Sparse Fourier Hermite Approximations 65 6 Implementation 73 7 Numerical… …82 7.1 Plots of Fourier-Hermite approximations from Example 1 with m = 3, d = 2. 90 7.2… …Cross sections from the Fourier Hermite Approximation of Example 1 with d = 3… …7.3 91 Three cross sections of the Fourier Hermite approximation of the function from… …function and its Fourier-Hermite approximation from Example 3. 95 7.5 Plots of the function… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prater, A. (2012). Discrete Sparse Fourier Hermite Approximations in High Dimensions. (Doctoral Dissertation). Syracuse University. Retrieved from https://surface.syr.edu/mat_etd/70

Chicago Manual of Style (16th Edition):

Prater, Ashley. “Discrete Sparse Fourier Hermite Approximations in High Dimensions.” 2012. Doctoral Dissertation, Syracuse University. Accessed November 28, 2020. https://surface.syr.edu/mat_etd/70.

MLA Handbook (7th Edition):

Prater, Ashley. “Discrete Sparse Fourier Hermite Approximations in High Dimensions.” 2012. Web. 28 Nov 2020.

Vancouver:

Prater A. Discrete Sparse Fourier Hermite Approximations in High Dimensions. [Internet] [Doctoral dissertation]. Syracuse University; 2012. [cited 2020 Nov 28]. Available from: https://surface.syr.edu/mat_etd/70.

Council of Science Editors:

Prater A. Discrete Sparse Fourier Hermite Approximations in High Dimensions. [Doctoral Dissertation]. Syracuse University; 2012. Available from: https://surface.syr.edu/mat_etd/70


Brno University of Technology

7. Kárský, Vilém. Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing.

Degree: 2019, Brno University of Technology

 This work is concentrates on finding basic properties of some orthogonal polynomials like a definition, weight function, orthogonality interval, recurrence relations, number of zeros and… (more)

Subjects/Keywords: Fourierovy řady; Čebyševovy polynomy; Hermitovy polynomy; Laguerrovy polynomy; Legendrovy polynomy; ortogonální polynomy; spektrum funkce; volitelné parametry; chyba aproximace.; Fourier series; Chebyshev polynomials; Hermite polynomials; Laguerre polynomials; Legendre polynomials; orthogonal polynomials; spectrum of function; free parameters; aproximation error.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kárský, V. (2019). Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/39072

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kárský, Vilém. “Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing.” 2019. Thesis, Brno University of Technology. Accessed November 28, 2020. http://hdl.handle.net/11012/39072.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kárský, Vilém. “Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing.” 2019. Web. 28 Nov 2020.

Vancouver:

Kárský V. Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/11012/39072.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kárský V. Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/39072

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

8. Mihálik, Ondrej. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.

Degree: 2019, Brno University of Technology

 The work is concerned with an application of the Hermite functions in signal approximation. The purpose of the work is to show their properties in… (more)

Subjects/Keywords: Hilbertov priestor; Fourierova transformácia; Gaborova transformácia; Hermiteove polynómy; ortogonalita; optimálne parametre; časová mierka; časový posun; kvadratická chyba; spektrum; Hilbert space; Fourier transform; Gabor transform; Hermite polynomials; orthogonality; optimal parameters; time scale; time shift; squared error; spectrum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mihálik, O. (2019). Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/67390

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Thesis, Brno University of Technology. Accessed November 28, 2020. http://hdl.handle.net/11012/67390.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Web. 28 Nov 2020.

Vancouver:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/11012/67390.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/67390

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. He, Ying. Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems.

Degree: PhD, Mathematics, 2013, Purdue University

  This dissertation focuses on the development of high-order numerical methods for acoustic and electromagnetic scattering problems, and nonlinear fluid-structure interaction problems. For the scattering… (more)

Subjects/Keywords: applied sciences; fourier-spectral method; hermite-spectral method; acoustic scattering problems; electromagnetic scattering problems; Applied Mathematics

Fourier Transform of Legendre Functions: Spherical Bessel Functions… …successive sequence of the transmission problems with a plane interface. Then, we use Fourier… …Spectral method in the periodic structure problem and Hermite-Spectral method in the unbounded… …problems with a plane interface and piecewise constant wave numbers. We then use Hermite… …continuous Fourier transform, to handle the 5 difficulty from the infinite domain in horizontal… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, Y. (2013). Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems. (Doctoral Dissertation). Purdue University. Retrieved from https://docs.lib.purdue.edu/open_access_dissertations/148

Chicago Manual of Style (16th Edition):

He, Ying. “Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems.” 2013. Doctoral Dissertation, Purdue University. Accessed November 28, 2020. https://docs.lib.purdue.edu/open_access_dissertations/148.

MLA Handbook (7th Edition):

He, Ying. “Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems.” 2013. Web. 28 Nov 2020.

Vancouver:

He Y. Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems. [Internet] [Doctoral dissertation]. Purdue University; 2013. [cited 2020 Nov 28]. Available from: https://docs.lib.purdue.edu/open_access_dissertations/148.

Council of Science Editors:

He Y. Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems. [Doctoral Dissertation]. Purdue University; 2013. Available from: https://docs.lib.purdue.edu/open_access_dissertations/148


Texas Tech University

10. Mckale, Kaleb D. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.

Degree: Mathematics and Statistics, 2011, Texas Tech University

 In this paper, we extend the work of Debusschere et al. (2004) by introducing a new approach to evaluating transcendental functions of generalized polynomial chaos… (more)

Subjects/Keywords: Arithmetic-geometric mean; Polynomial chaos; Transcendental functions; Borchardt, C.W.; Debusschere, B.J.; Ghanem, R.G.; Uncertainty; Quantification; Brent, R.P; Fast algorithms; Spectral methods; Hypergeometric; Orthogonal polynomials; Carlson, B.C.; Non-intrusive spectral projection (NISP); Arithmetic-geometric mean (AGM); Polynomial chaos expansions (PCEs); Uncertainty quantification (UQ); Gauss; Quadratic convergence; Jacobi polynomials; Wiener, N.; Spanos, P.D.; Xiu, D.; Homogeneous chaos; Cameron, R.H.; Martin, W.T.; Fourier-hermite; Karniadakis, G.E.; Askey, R.; Probability; Distributions; Density function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mckale, K. D. (2011). Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Thesis, Texas Tech University. Accessed November 28, 2020. http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Web. 28 Nov 2020.

Vancouver:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Internet] [Thesis]. Texas Tech University; 2011. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Thesis]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.