Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Fourier hermite)`

.
Showing records 1 – 10 of
10 total matches.

▼ Search Limiters

Indian Institute of Science

1.
Bagchi, Sayan.
Weighted Norm Inequalities for Weyl Multipliers and *Hermite* Pseudo-Multipliers.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/3641

► In this thesis we deal with two problems in harmonic analysis. In the ﬁrst problem we discuss weighted norm inequalities for Weyl multipliers satisfying Mauceri’s…
(more)

Subjects/Keywords: Weyl Multipliers; Hermite Pseudo-multipliers; Fourier Multipliers; Weighted Norm Inequality; Mauceri’s Theorem; Heisenberg Group; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bagchi, S. (2018). Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3641

Chicago Manual of Style (16^{th} Edition):

Bagchi, Sayan. “Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed November 28, 2020. http://etd.iisc.ac.in/handle/2005/3641.

MLA Handbook (7^{th} Edition):

Bagchi, Sayan. “Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers.” 2018. Web. 28 Nov 2020.

Vancouver:

Bagchi S. Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Nov 28]. Available from: http://etd.iisc.ac.in/handle/2005/3641.

Council of Science Editors:

Bagchi S. Weighted Norm Inequalities for Weyl Multipliers and Hermite Pseudo-Multipliers. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3641

2.
Vencels, Juris.
The *Hermite*-*Fourier* spectral method for solving the Vlasov-Maxwell system of equations.

Degree: Space and Plasma Physics, 2016, KTH

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211

► This thesis focuses on the improvement of the *Hermite*-*Fourier* spectral method for solving kinetic plasma problems. In the first part of the thesis a…
(more)

Subjects/Keywords: Plasma Simulations; Spectral Methods; Hermite Fourier

…and spatial space. Spectral methods like *Hermite*-*Fourier* (HF) removes the
problem… …interaction.
1.2
Scope of Thesis
This thesis focuses on the *Hermite*-*Fourier* spectral method which… …discretizes
the velocity space in *Hermite* basis and the spatial space in *Fourier* basis.
The goal of… …section discuses the development of the *Hermite*-*Fourier* (HF) spectral
method from its… …multidimensional case is shown.
2.1
The *Hermite*-*Fourier* Spectral Method
The use of *Hermite* functions…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vencels, J. (2016). The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Vencels, Juris. “The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations.” 2016. Thesis, KTH. Accessed November 28, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Vencels, Juris. “The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations.” 2016. Web. 28 Nov 2020.

Vancouver:

Vencels J. The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations. [Internet] [Thesis]. KTH; 2016. [cited 2020 Nov 28]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vencels J. The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations. [Thesis]. KTH; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182211

Not specified: Masters Thesis or Doctoral Dissertation

3.
OLIVEIRA NETO, José Rodrigues de.
Construção de autovetores de transformadas discretas de *Fourier*: novos métodos e aplicações
.

Degree: 2019, Universidade Federal de Pernambuco

URL: https://repositorio.ufpe.br/handle/123456789/33109

► Neste trabalho, são investigados métodos baseados em fórmulas fechadas para construção de autovetores de transformadas discretas de *Fourier* definidas (i) sobre o corpo dos reais…
(more)

Subjects/Keywords: Engenharia Elétrica; Transformada fracionária de Fourier; Transformada fracionária numérica de Fourier; Autovetores do tipo Hermite-Gaussiano; Representação compacta de sinais; Cifragem de imagens

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

OLIVEIRA NETO, J. R. d. (2019). Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações . (Doctoral Dissertation). Universidade Federal de Pernambuco. Retrieved from https://repositorio.ufpe.br/handle/123456789/33109

Chicago Manual of Style (16^{th} Edition):

OLIVEIRA NETO, José Rodrigues de. “Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações .” 2019. Doctoral Dissertation, Universidade Federal de Pernambuco. Accessed November 28, 2020. https://repositorio.ufpe.br/handle/123456789/33109.

MLA Handbook (7^{th} Edition):

OLIVEIRA NETO, José Rodrigues de. “Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações .” 2019. Web. 28 Nov 2020.

Vancouver:

OLIVEIRA NETO JRd. Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações . [Internet] [Doctoral dissertation]. Universidade Federal de Pernambuco; 2019. [cited 2020 Nov 28]. Available from: https://repositorio.ufpe.br/handle/123456789/33109.

Council of Science Editors:

OLIVEIRA NETO JRd. Construção de autovetores de transformadas discretas de Fourier: novos métodos e aplicações . [Doctoral Dissertation]. Universidade Federal de Pernambuco; 2019. Available from: https://repositorio.ufpe.br/handle/123456789/33109

University of Technology, Sydney

4.
Ziogas, A.
Pricing American options using *Fourier* analysis.

Degree: 2005, University of Technology, Sydney

URL: http://hdl.handle.net/10453/37244

► The analytic expression for an American option price under the Black-Scholes model requires the early exercise boundary as one of its inputs, and this is…
(more)

Subjects/Keywords: Fourier analysis.; American options.; PIDE; Fourier-Hermite series expansion method.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ziogas, A. (2005). Pricing American options using Fourier analysis. (Thesis). University of Technology, Sydney. Retrieved from http://hdl.handle.net/10453/37244

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ziogas, A. “Pricing American options using Fourier analysis.” 2005. Thesis, University of Technology, Sydney. Accessed November 28, 2020. http://hdl.handle.net/10453/37244.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ziogas, A. “Pricing American options using Fourier analysis.” 2005. Web. 28 Nov 2020.

Vancouver:

Ziogas A. Pricing American options using Fourier analysis. [Internet] [Thesis]. University of Technology, Sydney; 2005. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/10453/37244.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ziogas A. Pricing American options using Fourier analysis. [Thesis]. University of Technology, Sydney; 2005. Available from: http://hdl.handle.net/10453/37244

Not specified: Masters Thesis or Doctoral Dissertation

University of Michigan

5.
Schumer, Joseph Wade.
Optimized 1d-1v Vlasov-Poisson simulations using *Fourier*-*Hermite* spectral discretizations.

Degree: PhD, Pure Sciences, 1997, University of Michigan

URL: http://hdl.handle.net/2027.42/130353

► A 1d-1v spatially-periodic, Maxwellian-like, charged particle phase-space distribution f(x, v, t) is represented by one of two different *Fourier*-*Hermite* basis sets (asymmetric or symmetric *Hermite*…
(more)

Subjects/Keywords: 1d; 1v; Discretizations; Fourier; Hermite; Optimized; Poisson; Simulations; Spectral; Using; Vlasov

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Schumer, J. W. (1997). Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/130353

Chicago Manual of Style (16^{th} Edition):

Schumer, Joseph Wade. “Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations.” 1997. Doctoral Dissertation, University of Michigan. Accessed November 28, 2020. http://hdl.handle.net/2027.42/130353.

MLA Handbook (7^{th} Edition):

Schumer, Joseph Wade. “Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations.” 1997. Web. 28 Nov 2020.

Vancouver:

Schumer JW. Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations. [Internet] [Doctoral dissertation]. University of Michigan; 1997. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/2027.42/130353.

Council of Science Editors:

Schumer JW. Optimized 1d-1v Vlasov-Poisson simulations using Fourier-Hermite spectral discretizations. [Doctoral Dissertation]. University of Michigan; 1997. Available from: http://hdl.handle.net/2027.42/130353

6.
Prater, Ashley.
Discrete Sparse *Fourier* *Hermite* Approximations in High Dimensions.

Degree: PhD, Mathematics, 2012, Syracuse University

URL: https://surface.syr.edu/mat_etd/70

► In this dissertation, the discrete sparse *Fourier* *Hermite* approximation of a function in a specified Hilbert space of arbitrary dimension is defined, and theoretical…
(more)

Subjects/Keywords: Fourier Hermite Series; Generalized Fourier Series; Hyperbolic Cross Sparse Index; Multiscale Quadrature; Pseudospectral Approximation; Spectral Approximation; Mathematics

…57
5 Discrete Sparse *Fourier* *Hermite* Approximations
65
6 Implementation
73
7 Numerical… …82
7.1
Plots of *Fourier*-*Hermite* approximations from Example 1 with m = 3, d = 2.
90
7.2… …Cross sections from the *Fourier* *Hermite* Approximation of Example 1 with
d = 3… …7.3
91
Three cross sections of the *Fourier* *Hermite* approximation of the function
from… …function and its *Fourier*-*Hermite* approximation from Example 3.
95
7.5
Plots of the function…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Prater, A. (2012). Discrete Sparse Fourier Hermite Approximations in High Dimensions. (Doctoral Dissertation). Syracuse University. Retrieved from https://surface.syr.edu/mat_etd/70

Chicago Manual of Style (16^{th} Edition):

Prater, Ashley. “Discrete Sparse Fourier Hermite Approximations in High Dimensions.” 2012. Doctoral Dissertation, Syracuse University. Accessed November 28, 2020. https://surface.syr.edu/mat_etd/70.

MLA Handbook (7^{th} Edition):

Prater, Ashley. “Discrete Sparse Fourier Hermite Approximations in High Dimensions.” 2012. Web. 28 Nov 2020.

Vancouver:

Prater A. Discrete Sparse Fourier Hermite Approximations in High Dimensions. [Internet] [Doctoral dissertation]. Syracuse University; 2012. [cited 2020 Nov 28]. Available from: https://surface.syr.edu/mat_etd/70.

Council of Science Editors:

Prater A. Discrete Sparse Fourier Hermite Approximations in High Dimensions. [Doctoral Dissertation]. Syracuse University; 2012. Available from: https://surface.syr.edu/mat_etd/70

Brno University of Technology

7. Kárský, Vilém. Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/39072

► This work is concentrates on finding basic properties of some orthogonal polynomials like a definition, weight function, orthogonality interval, recurrence relations, number of zeros and…
(more)

Subjects/Keywords: Fourierovy řady; Čebyševovy polynomy; Hermitovy polynomy; Laguerrovy polynomy; Legendrovy polynomy; ortogonální polynomy; spektrum funkce; volitelné parametry; chyba aproximace.; Fourier series; Chebyshev polynomials; Hermite polynomials; Laguerre polynomials; Legendre polynomials; orthogonal polynomials; spectrum of function; free parameters; aproximation error.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kárský, V. (2019). Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/39072

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kárský, Vilém. “Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing.” 2019. Thesis, Brno University of Technology. Accessed November 28, 2020. http://hdl.handle.net/11012/39072.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kárský, Vilém. “Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing.” 2019. Web. 28 Nov 2020.

Vancouver:

Kárský V. Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/11012/39072.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kárský V. Ortogonální báze a jejich aplikace ve zpracování signálu: Orthogonal bases and their application in signal processing. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/39072

Not specified: Masters Thesis or Doctoral Dissertation

Brno University of Technology

8.
Mihálik, Ondrej.
Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the *Hermite* basis for spectral analysis.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/67390

► The work is concerned with an application of the *Hermite* functions in signal approximation. The purpose of the work is to show their properties in…
(more)

Subjects/Keywords: Hilbertov priestor; Fourierova transformácia; Gaborova transformácia; Hermiteove polynómy; ortogonalita; optimálne parametre; časová mierka; časový posun; kvadratická chyba; spektrum; Hilbert space; Fourier transform; Gabor transform; Hermite polynomials; orthogonality; optimal parameters; time scale; time shift; squared error; spectrum

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mihálik, O. (2019). Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/67390

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Thesis, Brno University of Technology. Accessed November 28, 2020. http://hdl.handle.net/11012/67390.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Web. 28 Nov 2020.

Vancouver:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/11012/67390.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/67390

Not specified: Masters Thesis or Doctoral Dissertation

9. He, Ying. Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems.

Degree: PhD, Mathematics, 2013, Purdue University

URL: https://docs.lib.purdue.edu/open_access_dissertations/148

► This dissertation focuses on the development of high-order numerical methods for acoustic and electromagnetic scattering problems, and nonlinear fluid-structure interaction problems. For the scattering…
(more)

Subjects/Keywords: applied sciences; fourier-spectral method; hermite-spectral method; acoustic scattering problems; electromagnetic scattering problems; Applied Mathematics

…*Fourier* Transform of Legendre Functions: Spherical Bessel Functions… …successive sequence of the transmission problems with a plane
interface. Then, we use *Fourier*… …Spectral method in the periodic structure problem
and *Hermite*-Spectral method in the unbounded… …problems with a plane interface and piecewise
constant wave numbers. We then use *Hermite*… …continuous *Fourier* transform, to handle the
5
difficulty from the infinite domain in horizontal…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

He, Y. (2013). Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems. (Doctoral Dissertation). Purdue University. Retrieved from https://docs.lib.purdue.edu/open_access_dissertations/148

Chicago Manual of Style (16^{th} Edition):

He, Ying. “Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems.” 2013. Doctoral Dissertation, Purdue University. Accessed November 28, 2020. https://docs.lib.purdue.edu/open_access_dissertations/148.

MLA Handbook (7^{th} Edition):

He, Ying. “Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems.” 2013. Web. 28 Nov 2020.

Vancouver:

He Y. Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems. [Internet] [Doctoral dissertation]. Purdue University; 2013. [cited 2020 Nov 28]. Available from: https://docs.lib.purdue.edu/open_access_dissertations/148.

Council of Science Editors:

He Y. Efficient Spectral-Element Methods For Acoustic Scattering And Related Problems. [Doctoral Dissertation]. Purdue University; 2013. Available from: https://docs.lib.purdue.edu/open_access_dissertations/148

Texas Tech University

10. Mckale, Kaleb D. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.

Degree: Mathematics and Statistics, 2011, Texas Tech University

URL: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

► In this paper, we extend the work of Debusschere et al. (2004) by introducing a new approach to evaluating transcendental functions of generalized polynomial chaos…
(more)

Subjects/Keywords: Arithmetic-geometric mean; Polynomial chaos; Transcendental functions; Borchardt, C.W.; Debusschere, B.J.; Ghanem, R.G.; Uncertainty; Quantification; Brent, R.P; Fast algorithms; Spectral methods; Hypergeometric; Orthogonal polynomials; Carlson, B.C.; Non-intrusive spectral projection (NISP); Arithmetic-geometric mean (AGM); Polynomial chaos expansions (PCEs); Uncertainty quantification (UQ); Gauss; Quadratic convergence; Jacobi polynomials; Wiener, N.; Spanos, P.D.; Xiu, D.; Homogeneous chaos; Cameron, R.H.; Martin, W.T.; Fourier-hermite; Karniadakis, G.E.; Askey, R.; Probability; Distributions; Density function

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mckale, K. D. (2011). Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Thesis, Texas Tech University. Accessed November 28, 2020. http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Web. 28 Nov 2020.

Vancouver:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Internet] [Thesis]. Texas Tech University; 2011. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Thesis]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Not specified: Masters Thesis or Doctoral Dissertation