Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Fixed point problems). Showing records 1 – 23 of 23 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Rawat, Pratima. Some problems on fixed point theorems; -.

Degree: Mathematics, 1990, INFLIBNET

None

Bibliograpgy p.189 - 204

Advisors/Committee Members: Sharma, P L.

Subjects/Keywords: fixed point; problems; theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rawat, P. (1990). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rawat, Pratima. “Some problems on fixed point theorems; -.” 1990. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rawat, Pratima. “Some problems on fixed point theorems; -.” 1990. Web. 17 Apr 2021.

Vancouver:

Rawat P. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1990. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rawat P. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1990. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Pande, R K. Some problems on fixed point theorems; -.

Degree: Mathematics, 1990, INFLIBNET

None

Bibliography p.152 - 173 and Appendix given

Advisors/Committee Members: Qureshi, K.

Subjects/Keywords: fixed point; problems; theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pande, R. K. (1990). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pande, R K. “Some problems on fixed point theorems; -.” 1990. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pande, R K. “Some problems on fixed point theorems; -.” 1990. Web. 17 Apr 2021.

Vancouver:

Pande RK. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1990. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pande RK. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1990. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Rawat, Pratima. Some problems in fixed point theorems; -.

Degree: Mathematics, 1990, INFLIBNET

None

Bibliography p.98 - 116 and Appendix given

Advisors/Committee Members: Sharma, P L.

Subjects/Keywords: fixed point; problems; theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rawat, P. (1990). Some problems in fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35822

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rawat, Pratima. “Some problems in fixed point theorems; -.” 1990. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35822.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rawat, Pratima. “Some problems in fixed point theorems; -.” 1990. Web. 17 Apr 2021.

Vancouver:

Rawat P. Some problems in fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1990. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35822.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rawat P. Some problems in fixed point theorems; -. [Thesis]. INFLIBNET; 1990. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35822

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Dubey, Praveen Kumar. Some problems on fixed point theorems; -.

Degree: Mathematics, 1992, INFLIBNET

None

Bibliography p.170 - 201 and Appendix p.203 - 222

Advisors/Committee Members: Shrivasastava, K C.

Subjects/Keywords: fixed point; problems; theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dubey, P. K. (1992). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35823

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dubey, Praveen Kumar. “Some problems on fixed point theorems; -.” 1992. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35823.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dubey, Praveen Kumar. “Some problems on fixed point theorems; -.” 1992. Web. 17 Apr 2021.

Vancouver:

Dubey PK. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1992. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35823.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dubey PK. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1992. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35823

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Jain, Rakesh Kumar. Some problems related to fixed point theory; -.

Degree: Mathematics, 1992, INFLIBNET

None

Bibliography p.130 - 147 and Appendix given

Advisors/Committee Members: Jain, R K.

Subjects/Keywords: fixed point; problems related; theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jain, R. K. (1992). Some problems related to fixed point theory; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35858

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jain, Rakesh Kumar. “Some problems related to fixed point theory; -.” 1992. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35858.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jain, Rakesh Kumar. “Some problems related to fixed point theory; -.” 1992. Web. 17 Apr 2021.

Vancouver:

Jain RK. Some problems related to fixed point theory; -. [Internet] [Thesis]. INFLIBNET; 1992. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35858.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jain RK. Some problems related to fixed point theory; -. [Thesis]. INFLIBNET; 1992. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35858

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Daheriya, Ramadhar. Some problems on fixed point theorm; -.

Degree: Mathematics, 1995, INFLIBNET

None

Bibliography p.189 - 210 and Appendix given

Advisors/Committee Members: Namdev, R K.

Subjects/Keywords: fixed; point theorm; problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daheriya, R. (1995). Some problems on fixed point theorm; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35861

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Daheriya, Ramadhar. “Some problems on fixed point theorm; -.” 1995. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35861.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Daheriya, Ramadhar. “Some problems on fixed point theorm; -.” 1995. Web. 17 Apr 2021.

Vancouver:

Daheriya R. Some problems on fixed point theorm; -. [Internet] [Thesis]. INFLIBNET; 1995. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35861.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Daheriya R. Some problems on fixed point theorm; -. [Thesis]. INFLIBNET; 1995. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35861

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Bhore, S K. Some problems on fixed point theory; -.

Degree: Mathematics, 1985, INFLIBNET

None

Bibliography p.121 - 136 and Appendix given

Advisors/Committee Members: Jain, R K.

Subjects/Keywords: fixed point; problems; theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bhore, S. K. (1985). Some problems on fixed point theory; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35867

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bhore, S K. “Some problems on fixed point theory; -.” 1985. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35867.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bhore, S K. “Some problems on fixed point theory; -.” 1985. Web. 17 Apr 2021.

Vancouver:

Bhore SK. Some problems on fixed point theory; -. [Internet] [Thesis]. INFLIBNET; 1985. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35867.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bhore SK. Some problems on fixed point theory; -. [Thesis]. INFLIBNET; 1985. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35867

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Dixit, S P. Some problems on fixed point theorems; -.

Degree: Mathematics, 1985, INFLIBNET

None

Bibliography p.159 - 178 and Appendix given

Advisors/Committee Members: Jain, R K.

Subjects/Keywords: fixed point; problems; theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dixit, S. P. (1985). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35870

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dixit, S P. “Some problems on fixed point theorems; -.” 1985. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35870.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dixit, S P. “Some problems on fixed point theorems; -.” 1985. Web. 17 Apr 2021.

Vancouver:

Dixit SP. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1985. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35870.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dixit SP. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1985. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35870

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Khan, Subhan. Some problems on fixed point theorems; -.

Degree: Mathematics, 1992, INFLIBNET

None

Bibliography p.102 124

Advisors/Committee Members: Sharma, p L.

Subjects/Keywords: fixed point; problems; theorems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khan, S. (1992). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/36128

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Khan, Subhan. “Some problems on fixed point theorems; -.” 1992. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/36128.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Khan, Subhan. “Some problems on fixed point theorems; -.” 1992. Web. 17 Apr 2021.

Vancouver:

Khan S. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1992. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/36128.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan S. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1992. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/36128

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of KwaZulu-Natal

10. Owolabi, Abd-semii Oluwatosin-Enitan. Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems.

Degree: 2020, University of KwaZulu-Natal

 In this dissertation, we introduce a self-adaptive hybrid inertial algorithm for approximating a solution of split feasibility problem which also solves a monotone inclusion problem… (more)

Subjects/Keywords: Banach spaces.; Hilbert spaces.; Optimization problems.; Iterative algorithms.; Fixed point problems.; Algorithms.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Owolabi, A. O. (2020). Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems. (Thesis). University of KwaZulu-Natal. Retrieved from https://researchspace.ukzn.ac.za/handle/10413/18529

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Owolabi, Abd-semii Oluwatosin-Enitan. “Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems.” 2020. Thesis, University of KwaZulu-Natal. Accessed April 17, 2021. https://researchspace.ukzn.ac.za/handle/10413/18529.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Owolabi, Abd-semii Oluwatosin-Enitan. “Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems.” 2020. Web. 17 Apr 2021.

Vancouver:

Owolabi AO. Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems. [Internet] [Thesis]. University of KwaZulu-Natal; 2020. [cited 2021 Apr 17]. Available from: https://researchspace.ukzn.ac.za/handle/10413/18529.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Owolabi AO. Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems. [Thesis]. University of KwaZulu-Natal; 2020. Available from: https://researchspace.ukzn.ac.za/handle/10413/18529

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Khan, Abdur Rauf. Some problems in metrical fixed point theory; -.

Degree: Applied Mathematics, 1993, Aligarh Muslim University

Abstract not available newline newline

Bibliography p. 102-111, Appendix given

Advisors/Committee Members: Ahmed, Aqeel.

Subjects/Keywords: Problems; Metrical Fixed Point Theory; Banach Spaces; Mappings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khan, A. R. (1993). Some problems in metrical fixed point theory; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/53755

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Khan, Abdur Rauf. “Some problems in metrical fixed point theory; -.” 1993. Thesis, Aligarh Muslim University. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/53755.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Khan, Abdur Rauf. “Some problems in metrical fixed point theory; -.” 1993. Web. 17 Apr 2021.

Vancouver:

Khan AR. Some problems in metrical fixed point theory; -. [Internet] [Thesis]. Aligarh Muslim University; 1993. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53755.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan AR. Some problems in metrical fixed point theory; -. [Thesis]. Aligarh Muslim University; 1993. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53755

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Delaware

12. Tang, Jiahua. Determining the twist of an optical fiber.

Degree: PhD, University of Delaware, Department of Mathematical Sciences, 2014, University of Delaware

 This research focuses on recovering the coefficient of a two speed hyperbolic system of partial differential equations from the reflection boundary data, where the source… (more)

Subjects/Keywords: Optical fibers.; Differential equations, Hyperbolic.; Differential equations, Partial.; Fixed point theory.; Inverse problems (Differential equations); Spherical harmonics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tang, J. (2014). Determining the twist of an optical fiber. (Doctoral Dissertation). University of Delaware. Retrieved from http://udspace.udel.edu/handle/19716/16833

Chicago Manual of Style (16th Edition):

Tang, Jiahua. “Determining the twist of an optical fiber.” 2014. Doctoral Dissertation, University of Delaware. Accessed April 17, 2021. http://udspace.udel.edu/handle/19716/16833.

MLA Handbook (7th Edition):

Tang, Jiahua. “Determining the twist of an optical fiber.” 2014. Web. 17 Apr 2021.

Vancouver:

Tang J. Determining the twist of an optical fiber. [Internet] [Doctoral dissertation]. University of Delaware; 2014. [cited 2021 Apr 17]. Available from: http://udspace.udel.edu/handle/19716/16833.

Council of Science Editors:

Tang J. Determining the twist of an optical fiber. [Doctoral Dissertation]. University of Delaware; 2014. Available from: http://udspace.udel.edu/handle/19716/16833


Baylor University

13. Ehrke, John E. A functional approach to positive solutions of boundary value problems.

Degree: PhD, Mathematics., 2007, Baylor University

 We apply a well-known fixed point theorem to guarantee the existence of a positive solution and bounds for solutions for second, third, fourth, and nth… (more)

Subjects/Keywords: Boundary value problems.; Fixed point theory.; Functionals.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ehrke, J. E. (2007). A functional approach to positive solutions of boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5026

Chicago Manual of Style (16th Edition):

Ehrke, John E. “A functional approach to positive solutions of boundary value problems.” 2007. Doctoral Dissertation, Baylor University. Accessed April 17, 2021. http://hdl.handle.net/2104/5026.

MLA Handbook (7th Edition):

Ehrke, John E. “A functional approach to positive solutions of boundary value problems.” 2007. Web. 17 Apr 2021.

Vancouver:

Ehrke JE. A functional approach to positive solutions of boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2007. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/2104/5026.

Council of Science Editors:

Ehrke JE. A functional approach to positive solutions of boundary value problems. [Doctoral Dissertation]. Baylor University; 2007. Available from: http://hdl.handle.net/2104/5026


Baylor University

14. Kunkel, Curtis J. Positive solutions of singular boundary value problems.

Degree: PhD, Mathematics., 2007, Baylor University

 In this dissertation, we focus on singular boundary value problems with mixed boundary conditions. We study a variety of types, to all of which we… (more)

Subjects/Keywords: Boundary value problems.; Fixed point theory.; Singularities (Mathematics).

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kunkel, C. J. (2007). Positive solutions of singular boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5022

Chicago Manual of Style (16th Edition):

Kunkel, Curtis J. “Positive solutions of singular boundary value problems.” 2007. Doctoral Dissertation, Baylor University. Accessed April 17, 2021. http://hdl.handle.net/2104/5022.

MLA Handbook (7th Edition):

Kunkel, Curtis J. “Positive solutions of singular boundary value problems.” 2007. Web. 17 Apr 2021.

Vancouver:

Kunkel CJ. Positive solutions of singular boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2007. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/2104/5022.

Council of Science Editors:

Kunkel CJ. Positive solutions of singular boundary value problems. [Doctoral Dissertation]. Baylor University; 2007. Available from: http://hdl.handle.net/2104/5022


University of KwaZulu-Natal

15. Anuoluwapo, Abass Hammed. On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces.

Degree: 2017, University of KwaZulu-Natal

Fixed point theory and its applications have been widely studied by many researchers. Di erent iterative algorithms have been used extensively to approximate solutions of… (more)

Subjects/Keywords: Theses - Computer Science.; Fixed point theory.; Hilbert spaces.; Multi-valued Mappings.; Iterative algorithms.; Split equilibrium problems.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anuoluwapo, A. H. (2017). On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces. (Thesis). University of KwaZulu-Natal. Retrieved from http://hdl.handle.net/10413/15524

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Anuoluwapo, Abass Hammed. “On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces.” 2017. Thesis, University of KwaZulu-Natal. Accessed April 17, 2021. http://hdl.handle.net/10413/15524.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Anuoluwapo, Abass Hammed. “On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces.” 2017. Web. 17 Apr 2021.

Vancouver:

Anuoluwapo AH. On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces. [Internet] [Thesis]. University of KwaZulu-Natal; 2017. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/10413/15524.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Anuoluwapo AH. On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces. [Thesis]. University of KwaZulu-Natal; 2017. Available from: http://hdl.handle.net/10413/15524

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Zuo, Lihua. Inverse Problems for Fractional Diffusion Equations.

Degree: PhD, Mathematics, 2013, Texas A&M University

 In recent decades, significant interest, based on physics and engineering applications, has developed on so-called anomalous diffusion processes that possess different spread functions with classical… (more)

Subjects/Keywords: inverse problems; fractional diffusion equations; existence and uniqueness; fixed point theory

…simplify the notation to H k (Ω) and H0k (Ω) respectively. 1.2 Fixed point… …i.e., Ty = y. To prove uniqueness, suppose y¯ is another fixed point. Then ||¯ y − y|| = ||T… …fixed point theory. See [31]. 1.4 Classical diffusion equations The classical heat… …theoretical result that will be used for our inverse problems. Definition 1.2.1 ( [3]… …exists a unique point y ∈ S such that Ty = y. Proof Take any x0 ∈ S and define successively xn… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zuo, L. (2013). Inverse Problems for Fractional Diffusion Equations. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/151079

Chicago Manual of Style (16th Edition):

Zuo, Lihua. “Inverse Problems for Fractional Diffusion Equations.” 2013. Doctoral Dissertation, Texas A&M University. Accessed April 17, 2021. http://hdl.handle.net/1969.1/151079.

MLA Handbook (7th Edition):

Zuo, Lihua. “Inverse Problems for Fractional Diffusion Equations.” 2013. Web. 17 Apr 2021.

Vancouver:

Zuo L. Inverse Problems for Fractional Diffusion Equations. [Internet] [Doctoral dissertation]. Texas A&M University; 2013. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/1969.1/151079.

Council of Science Editors:

Zuo L. Inverse Problems for Fractional Diffusion Equations. [Doctoral Dissertation]. Texas A&M University; 2013. Available from: http://hdl.handle.net/1969.1/151079


North Carolina State University

17. Taylor, Padraic Whittingham. On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems.

Degree: PhD, Mathematics, 2007, North Carolina State University

 In this manuscript we study nonlinear, discrete, multipoint boundary value problems. We investigate two types of problems. We first consider scalar, nonlinear, multipoint boundary value… (more)

Subjects/Keywords: Brouwer Fixed Point Theorem; boundary value problems; projection; Implicit Function Theorem; Lyapunov-Schmidt Procedure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, P. W. (2007). On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5605

Chicago Manual of Style (16th Edition):

Taylor, Padraic Whittingham. “On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems.” 2007. Doctoral Dissertation, North Carolina State University. Accessed April 17, 2021. http://www.lib.ncsu.edu/resolver/1840.16/5605.

MLA Handbook (7th Edition):

Taylor, Padraic Whittingham. “On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems.” 2007. Web. 17 Apr 2021.

Vancouver:

Taylor PW. On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems. [Internet] [Doctoral dissertation]. North Carolina State University; 2007. [cited 2021 Apr 17]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5605.

Council of Science Editors:

Taylor PW. On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems. [Doctoral Dissertation]. North Carolina State University; 2007. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5605


Baylor University

18. Hopkins, Britney. Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems.

Degree: PhD, Mathematics., 2009, Baylor University

 In this work, we discuss multiplicity results for nonhomogeneous even-order boundary value problems on both discrete and continuous domains. We develop a method for establishing… (more)

Subjects/Keywords: Multiplicity (Mathematics); Positive systems.; Boundary value problems.; Fixed point theory.; Conjugate direction methods.; Difference equations  – Numerical solutions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hopkins, B. (2009). Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5323

Chicago Manual of Style (16th Edition):

Hopkins, Britney. “Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems.” 2009. Doctoral Dissertation, Baylor University. Accessed April 17, 2021. http://hdl.handle.net/2104/5323.

MLA Handbook (7th Edition):

Hopkins, Britney. “Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems.” 2009. Web. 17 Apr 2021.

Vancouver:

Hopkins B. Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2009. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/2104/5323.

Council of Science Editors:

Hopkins B. Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems. [Doctoral Dissertation]. Baylor University; 2009. Available from: http://hdl.handle.net/2104/5323

19. Dionicio Pastor Dallos Santos. Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais.

Degree: 2017, University of São Paulo

O principal objetivo deste trabalho é estudar a existência de soluções para alguns problemas de valores de contorno de equações diferenciais ordinárias não lineares em… (more)

Subjects/Keywords: Grau de Leray-Schauder; Medida de Kuratowski de não compacidade; Operadores compactos; Problemas de ponto fixo; Problemas de valor na fronteira; Boundary value problem; Compact operators; Fixed point problems; Kuratowskis measure of non-compactness; Leray-Schauder degree

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Santos, D. P. D. (2017). Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/

Chicago Manual of Style (16th Edition):

Santos, Dionicio Pastor Dallos. “Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais.” 2017. Doctoral Dissertation, University of São Paulo. Accessed April 17, 2021. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/.

MLA Handbook (7th Edition):

Santos, Dionicio Pastor Dallos. “Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais.” 2017. Web. 17 Apr 2021.

Vancouver:

Santos DPD. Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais. [Internet] [Doctoral dissertation]. University of São Paulo; 2017. [cited 2021 Apr 17]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/.

Council of Science Editors:

Santos DPD. Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais. [Doctoral Dissertation]. University of São Paulo; 2017. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/

20. Moreira, Ceilí Marcolino. O método de sub e supersoluções para soluções fracas.

Degree: 2014, Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Neste trabalho, apresentamos métodos envolvendo sub e supersolução para estudar a existência de solução, no… (more)

Subjects/Keywords: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA; Método de sub e supersolução; Soluções fracas; Teorema do ponto fixo de Schauder; Problema elíptico semilinear; Method of sub and supersolution; Weak solutions; Schauder's fixed point theorem; Semilinear elliptic problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moreira, C. M. (2014). O método de sub e supersoluções para soluções fracas. (Masters Thesis). Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas. Retrieved from https://repositorio.ufjf.br/jspui/handle/ufjf/4702

Chicago Manual of Style (16th Edition):

Moreira, Ceilí Marcolino. “O método de sub e supersoluções para soluções fracas.” 2014. Masters Thesis, Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas. Accessed April 17, 2021. https://repositorio.ufjf.br/jspui/handle/ufjf/4702.

MLA Handbook (7th Edition):

Moreira, Ceilí Marcolino. “O método de sub e supersoluções para soluções fracas.” 2014. Web. 17 Apr 2021.

Vancouver:

Moreira CM. O método de sub e supersoluções para soluções fracas. [Internet] [Masters thesis]. Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas; 2014. [cited 2021 Apr 17]. Available from: https://repositorio.ufjf.br/jspui/handle/ufjf/4702.

Council of Science Editors:

Moreira CM. O método de sub e supersoluções para soluções fracas. [Masters Thesis]. Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas; 2014. Available from: https://repositorio.ufjf.br/jspui/handle/ufjf/4702


Marshall University

21. Sun, Xun. Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations.

Degree: 2009, Marshall University

 The Avery-Henderson fixed-point theorem is first applied to obtain the existence of at least two positive solutions for the boundary value problem (-1)ny(2n) = f(y);… (more)

Subjects/Keywords: Twin positive solutions; boundary value problems; fixed point theorem; Green's function; <; p>; Fixed point theory.<; /p>; <; p>; Boundary value problems.<; /p>; <; p>; Green's function.<; /p>;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sun, X. (2009). Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. (Thesis). Marshall University. Retrieved from https://mds.marshall.edu/etd/1274

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sun, Xun. “Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations.” 2009. Thesis, Marshall University. Accessed April 17, 2021. https://mds.marshall.edu/etd/1274.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sun, Xun. “Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations.” 2009. Web. 17 Apr 2021.

Vancouver:

Sun X. Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. [Internet] [Thesis]. Marshall University; 2009. [cited 2021 Apr 17]. Available from: https://mds.marshall.edu/etd/1274.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sun X. Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. [Thesis]. Marshall University; 2009. Available from: https://mds.marshall.edu/etd/1274

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Laurent-Brouty, Nicolas. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.

Degree: Docteur es, Mathématiques, 2019, Université Côte d'Azur (ComUE)

 Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application… (more)

Subjects/Keywords: Lois de conservation hyperboliques; Systèmes de conservation hyperboliques avec relaxation; Modèles macroscopiques de trafic routier; Suivi de fronts d'onde; Systèmes de Temple; Couplage EDP-EDO; Contraintes de flux; Trafic routier sur les réseaux; Équations d'Hamilton-Jacobi; Méthodes de point fixe; Hyperbolic conservation laws; Hyperbolic systems of conservation laws with relaxation; Macroscopic traffic flow models; Wave-front tracking; Temple class systems; PDE-ODE coupling; Flux constraints; Traffic flow on networks; Hamilton-Jacobi equations; Fixed-point problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laurent-Brouty, N. (2019). Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2019AZUR4056

Chicago Manual of Style (16th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed April 17, 2021. http://www.theses.fr/2019AZUR4056.

MLA Handbook (7th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Web. 17 Apr 2021.

Vancouver:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2019. [cited 2021 Apr 17]. Available from: http://www.theses.fr/2019AZUR4056.

Council of Science Editors:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2019. Available from: http://www.theses.fr/2019AZUR4056


Marshall University

23. Otunuga, Olusegun Michael. Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale.

Degree: 2009, Marshall University

 This thesis is on the study of dynamic equations on time scale. Most often, the derivatives and anti-derivatives of functions are taken on the domain… (more)

Subjects/Keywords: Positive solutions; boundary value problems; eigenvalues; fixed point theorem; Green's function; <; p>; Differential equations.<; /p>; <; p>; Difference equations.<; /p>; <; p>; Differentiable dynamical systems.<; /p>;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Otunuga, O. M. (2009). Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale. (Thesis). Marshall University. Retrieved from https://mds.marshall.edu/etd/734

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Otunuga, Olusegun Michael. “Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale.” 2009. Thesis, Marshall University. Accessed April 17, 2021. https://mds.marshall.edu/etd/734.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Otunuga, Olusegun Michael. “Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale.” 2009. Web. 17 Apr 2021.

Vancouver:

Otunuga OM. Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale. [Internet] [Thesis]. Marshall University; 2009. [cited 2021 Apr 17]. Available from: https://mds.marshall.edu/etd/734.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Otunuga OM. Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale. [Thesis]. Marshall University; 2009. Available from: https://mds.marshall.edu/etd/734

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.