Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Fixed point problems)`

.
Showing records 1 – 23 of
23 total matches.

▼ Search Limiters

1.
Rawat, Pratima.
Some *problems* on *fixed* *point* theorems; -.

Degree: Mathematics, 1990, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35809

Subjects/Keywords: fixed point; problems; theorems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rawat, P. (1990). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35809

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rawat, Pratima. “Some problems on fixed point theorems; -.” 1990. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35809.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rawat, Pratima. “Some problems on fixed point theorems; -.” 1990. Web. 17 Apr 2021.

Vancouver:

Rawat P. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1990. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35809.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rawat P. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1990. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35809

Not specified: Masters Thesis or Doctoral Dissertation

2.
Pande, R K.
Some *problems* on *fixed* *point* theorems; -.

Degree: Mathematics, 1990, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35812

Subjects/Keywords: fixed point; problems; theorems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pande, R. K. (1990). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35812

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pande, R K. “Some problems on fixed point theorems; -.” 1990. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35812.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pande, R K. “Some problems on fixed point theorems; -.” 1990. Web. 17 Apr 2021.

Vancouver:

Pande RK. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1990. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35812.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pande RK. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1990. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35812

Not specified: Masters Thesis or Doctoral Dissertation

3.
Rawat, Pratima.
Some *problems* in *fixed* *point* theorems; -.

Degree: Mathematics, 1990, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35822

Subjects/Keywords: fixed point; problems; theorems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rawat, P. (1990). Some problems in fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35822

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rawat, Pratima. “Some problems in fixed point theorems; -.” 1990. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35822.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rawat, Pratima. “Some problems in fixed point theorems; -.” 1990. Web. 17 Apr 2021.

Vancouver:

Rawat P. Some problems in fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1990. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35822.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rawat P. Some problems in fixed point theorems; -. [Thesis]. INFLIBNET; 1990. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35822

Not specified: Masters Thesis or Doctoral Dissertation

4.
Dubey, Praveen Kumar.
Some *problems* on *fixed* *point* theorems; -.

Degree: Mathematics, 1992, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35823

None

Bibliography p.170 - 201 and Appendix p.203 - 222

Subjects/Keywords: fixed point; problems; theorems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dubey, P. K. (1992). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35823

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dubey, Praveen Kumar. “Some problems on fixed point theorems; -.” 1992. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35823.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dubey, Praveen Kumar. “Some problems on fixed point theorems; -.” 1992. Web. 17 Apr 2021.

Vancouver:

Dubey PK. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1992. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35823.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dubey PK. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1992. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35823

Not specified: Masters Thesis or Doctoral Dissertation

5.
Jain, Rakesh Kumar.
Some *problems* related to *fixed* *point* theory; -.

Degree: Mathematics, 1992, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35858

Subjects/Keywords: fixed point; problems related; theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jain, R. K. (1992). Some problems related to fixed point theory; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35858

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jain, Rakesh Kumar. “Some problems related to fixed point theory; -.” 1992. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35858.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jain, Rakesh Kumar. “Some problems related to fixed point theory; -.” 1992. Web. 17 Apr 2021.

Vancouver:

Jain RK. Some problems related to fixed point theory; -. [Internet] [Thesis]. INFLIBNET; 1992. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35858.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jain RK. Some problems related to fixed point theory; -. [Thesis]. INFLIBNET; 1992. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35858

Not specified: Masters Thesis or Doctoral Dissertation

6.
Daheriya, Ramadhar.
Some *problems* on *fixed* *point* theorm; -.

Degree: Mathematics, 1995, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35861

Subjects/Keywords: fixed; point theorm; problems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Daheriya, R. (1995). Some problems on fixed point theorm; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35861

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Daheriya, Ramadhar. “Some problems on fixed point theorm; -.” 1995. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35861.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Daheriya, Ramadhar. “Some problems on fixed point theorm; -.” 1995. Web. 17 Apr 2021.

Vancouver:

Daheriya R. Some problems on fixed point theorm; -. [Internet] [Thesis]. INFLIBNET; 1995. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35861.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Daheriya R. Some problems on fixed point theorm; -. [Thesis]. INFLIBNET; 1995. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35861

Not specified: Masters Thesis or Doctoral Dissertation

7.
Bhore, S K.
Some *problems* on *fixed* *point* theory; -.

Degree: Mathematics, 1985, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35867

Subjects/Keywords: fixed point; problems; theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bhore, S. K. (1985). Some problems on fixed point theory; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35867

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bhore, S K. “Some problems on fixed point theory; -.” 1985. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35867.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bhore, S K. “Some problems on fixed point theory; -.” 1985. Web. 17 Apr 2021.

Vancouver:

Bhore SK. Some problems on fixed point theory; -. [Internet] [Thesis]. INFLIBNET; 1985. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35867.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bhore SK. Some problems on fixed point theory; -. [Thesis]. INFLIBNET; 1985. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35867

Not specified: Masters Thesis or Doctoral Dissertation

8.
Dixit, S P.
Some *problems* on *fixed* *point* theorems; -.

Degree: Mathematics, 1985, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/35870

Subjects/Keywords: fixed point; problems; theorems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dixit, S. P. (1985). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/35870

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dixit, S P. “Some problems on fixed point theorems; -.” 1985. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/35870.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dixit, S P. “Some problems on fixed point theorems; -.” 1985. Web. 17 Apr 2021.

Vancouver:

Dixit SP. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1985. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35870.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dixit SP. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1985. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/35870

Not specified: Masters Thesis or Doctoral Dissertation

9.
Khan, Subhan.
Some *problems* on *fixed* *point* theorems; -.

Degree: Mathematics, 1992, INFLIBNET

URL: http://shodhganga.inflibnet.ac.in/handle/10603/36128

Subjects/Keywords: fixed point; problems; theorems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khan, S. (1992). Some problems on fixed point theorems; -. (Thesis). INFLIBNET. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/36128

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khan, Subhan. “Some problems on fixed point theorems; -.” 1992. Thesis, INFLIBNET. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/36128.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khan, Subhan. “Some problems on fixed point theorems; -.” 1992. Web. 17 Apr 2021.

Vancouver:

Khan S. Some problems on fixed point theorems; -. [Internet] [Thesis]. INFLIBNET; 1992. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/36128.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan S. Some problems on fixed point theorems; -. [Thesis]. INFLIBNET; 1992. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/36128

Not specified: Masters Thesis or Doctoral Dissertation

University of KwaZulu-Natal

10.
Owolabi, Abd-semii Oluwatosin-Enitan.
Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and *fixed* *point* *problems*.

Degree: 2020, University of KwaZulu-Natal

URL: https://researchspace.ukzn.ac.za/handle/10413/18529

► In this dissertation, we introduce a self-adaptive hybrid inertial algorithm for approximating a solution of split feasibility problem which also solves a monotone inclusion problem…
(more)

Subjects/Keywords: Banach spaces.; Hilbert spaces.; Optimization problems.; Iterative algorithms.; Fixed point problems.; Algorithms.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Owolabi, A. O. (2020). Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems. (Thesis). University of KwaZulu-Natal. Retrieved from https://researchspace.ukzn.ac.za/handle/10413/18529

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Owolabi, Abd-semii Oluwatosin-Enitan. “Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems.” 2020. Thesis, University of KwaZulu-Natal. Accessed April 17, 2021. https://researchspace.ukzn.ac.za/handle/10413/18529.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Owolabi, Abd-semii Oluwatosin-Enitan. “Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems.” 2020. Web. 17 Apr 2021.

Vancouver:

Owolabi AO. Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems. [Internet] [Thesis]. University of KwaZulu-Natal; 2020. [cited 2021 Apr 17]. Available from: https://researchspace.ukzn.ac.za/handle/10413/18529.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Owolabi AO. Self-adaptive inertial algorithms for approximating solutions of split feasilbility, monotone inclusion, variational inequality and fixed point problems. [Thesis]. University of KwaZulu-Natal; 2020. Available from: https://researchspace.ukzn.ac.za/handle/10413/18529

Not specified: Masters Thesis or Doctoral Dissertation

11.
Khan, Abdur Rauf.
Some *problems* in metrical *fixed* *point* theory; -.

Degree: Applied Mathematics, 1993, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/53755

Abstract not available newline newline

Bibliography p. 102-111, Appendix given

Subjects/Keywords: Problems; Metrical Fixed Point Theory; Banach Spaces; Mappings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khan, A. R. (1993). Some problems in metrical fixed point theory; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/53755

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khan, Abdur Rauf. “Some problems in metrical fixed point theory; -.” 1993. Thesis, Aligarh Muslim University. Accessed April 17, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/53755.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khan, Abdur Rauf. “Some problems in metrical fixed point theory; -.” 1993. Web. 17 Apr 2021.

Vancouver:

Khan AR. Some problems in metrical fixed point theory; -. [Internet] [Thesis]. Aligarh Muslim University; 1993. [cited 2021 Apr 17]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53755.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan AR. Some problems in metrical fixed point theory; -. [Thesis]. Aligarh Muslim University; 1993. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53755

Not specified: Masters Thesis or Doctoral Dissertation

University of Delaware

12. Tang, Jiahua. Determining the twist of an optical fiber.

Degree: PhD, University of Delaware, Department of Mathematical Sciences, 2014, University of Delaware

URL: http://udspace.udel.edu/handle/19716/16833

► This research focuses on recovering the coefficient of a two speed hyperbolic system of partial differential equations from the reflection boundary data, where the source…
(more)

Subjects/Keywords: Optical fibers.; Differential equations, Hyperbolic.; Differential equations, Partial.; Fixed point theory.; Inverse problems (Differential equations); Spherical harmonics.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tang, J. (2014). Determining the twist of an optical fiber. (Doctoral Dissertation). University of Delaware. Retrieved from http://udspace.udel.edu/handle/19716/16833

Chicago Manual of Style (16^{th} Edition):

Tang, Jiahua. “Determining the twist of an optical fiber.” 2014. Doctoral Dissertation, University of Delaware. Accessed April 17, 2021. http://udspace.udel.edu/handle/19716/16833.

MLA Handbook (7^{th} Edition):

Tang, Jiahua. “Determining the twist of an optical fiber.” 2014. Web. 17 Apr 2021.

Vancouver:

Tang J. Determining the twist of an optical fiber. [Internet] [Doctoral dissertation]. University of Delaware; 2014. [cited 2021 Apr 17]. Available from: http://udspace.udel.edu/handle/19716/16833.

Council of Science Editors:

Tang J. Determining the twist of an optical fiber. [Doctoral Dissertation]. University of Delaware; 2014. Available from: http://udspace.udel.edu/handle/19716/16833

Baylor University

13.
Ehrke, John E.
A functional approach to positive solutions of boundary value *problems*.

Degree: PhD, Mathematics., 2007, Baylor University

URL: http://hdl.handle.net/2104/5026

► We apply a well-known *fixed* *point* theorem to guarantee the existence of a positive solution and bounds for solutions for second, third, fourth, and nth…
(more)

Subjects/Keywords: Boundary value problems.; Fixed point theory.; Functionals.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ehrke, J. E. (2007). A functional approach to positive solutions of boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5026

Chicago Manual of Style (16^{th} Edition):

Ehrke, John E. “A functional approach to positive solutions of boundary value problems.” 2007. Doctoral Dissertation, Baylor University. Accessed April 17, 2021. http://hdl.handle.net/2104/5026.

MLA Handbook (7^{th} Edition):

Ehrke, John E. “A functional approach to positive solutions of boundary value problems.” 2007. Web. 17 Apr 2021.

Vancouver:

Ehrke JE. A functional approach to positive solutions of boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2007. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/2104/5026.

Council of Science Editors:

Ehrke JE. A functional approach to positive solutions of boundary value problems. [Doctoral Dissertation]. Baylor University; 2007. Available from: http://hdl.handle.net/2104/5026

Baylor University

14.
Kunkel, Curtis J.
Positive solutions of singular boundary value *problems*.

Degree: PhD, Mathematics., 2007, Baylor University

URL: http://hdl.handle.net/2104/5022

► In this dissertation, we focus on singular boundary value *problems* with mixed boundary conditions. We study a variety of types, to all of which we…
(more)

Subjects/Keywords: Boundary value problems.; Fixed point theory.; Singularities (Mathematics).

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kunkel, C. J. (2007). Positive solutions of singular boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5022

Chicago Manual of Style (16^{th} Edition):

Kunkel, Curtis J. “Positive solutions of singular boundary value problems.” 2007. Doctoral Dissertation, Baylor University. Accessed April 17, 2021. http://hdl.handle.net/2104/5022.

MLA Handbook (7^{th} Edition):

Kunkel, Curtis J. “Positive solutions of singular boundary value problems.” 2007. Web. 17 Apr 2021.

Vancouver:

Kunkel CJ. Positive solutions of singular boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2007. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/2104/5022.

Council of Science Editors:

Kunkel CJ. Positive solutions of singular boundary value problems. [Doctoral Dissertation]. Baylor University; 2007. Available from: http://hdl.handle.net/2104/5022

University of KwaZulu-Natal

15.
Anuoluwapo, Abass Hammed.
On common *fixed* points approximation of countable families of certain multi-valued maps in hilbert spaces.

Degree: 2017, University of KwaZulu-Natal

URL: http://hdl.handle.net/10413/15524

► *Fixed* *point* theory and its applications have been widely studied by many researchers. Di erent iterative algorithms have been used extensively to approximate solutions of…
(more)

Subjects/Keywords: Theses - Computer Science.; Fixed point theory.; Hilbert spaces.; Multi-valued Mappings.; Iterative algorithms.; Split equilibrium problems.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Anuoluwapo, A. H. (2017). On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces. (Thesis). University of KwaZulu-Natal. Retrieved from http://hdl.handle.net/10413/15524

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Anuoluwapo, Abass Hammed. “On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces.” 2017. Thesis, University of KwaZulu-Natal. Accessed April 17, 2021. http://hdl.handle.net/10413/15524.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Anuoluwapo, Abass Hammed. “On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces.” 2017. Web. 17 Apr 2021.

Vancouver:

Anuoluwapo AH. On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces. [Internet] [Thesis]. University of KwaZulu-Natal; 2017. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/10413/15524.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Anuoluwapo AH. On common fixed points approximation of countable families of certain multi-valued maps in hilbert spaces. [Thesis]. University of KwaZulu-Natal; 2017. Available from: http://hdl.handle.net/10413/15524

Not specified: Masters Thesis or Doctoral Dissertation

16.
Zuo, Lihua.
Inverse *Problems* for Fractional Diffusion Equations.

Degree: PhD, Mathematics, 2013, Texas A&M University

URL: http://hdl.handle.net/1969.1/151079

► In recent decades, significant interest, based on physics and engineering applications, has developed on so-called anomalous diffusion processes that possess different spread functions with classical…
(more)

Subjects/Keywords: inverse problems; fractional diffusion equations; existence and uniqueness; fixed point theory

…simplify the notation to H k (Ω) and H0k (Ω) respectively.
1.2 *Fixed* *point*… …i.e., Ty = y.
To prove uniqueness, suppose y¯ is another *fixed* *point*. Then
||¯
y − y|| = ||T… …*fixed* *point* theory. See [31].
1.4 Classical diffusion equations
The classical heat… …theoretical result that will be used for our inverse *problems*.
Definition 1.2.1 ( [3]… …exists a unique *point* y ∈ S such that Ty = y.
Proof Take any x0 ∈ S and define successively xn…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zuo, L. (2013). Inverse Problems for Fractional Diffusion Equations. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/151079

Chicago Manual of Style (16^{th} Edition):

Zuo, Lihua. “Inverse Problems for Fractional Diffusion Equations.” 2013. Doctoral Dissertation, Texas A&M University. Accessed April 17, 2021. http://hdl.handle.net/1969.1/151079.

MLA Handbook (7^{th} Edition):

Zuo, Lihua. “Inverse Problems for Fractional Diffusion Equations.” 2013. Web. 17 Apr 2021.

Vancouver:

Zuo L. Inverse Problems for Fractional Diffusion Equations. [Internet] [Doctoral dissertation]. Texas A&M University; 2013. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/1969.1/151079.

Council of Science Editors:

Zuo L. Inverse Problems for Fractional Diffusion Equations. [Doctoral Dissertation]. Texas A&M University; 2013. Available from: http://hdl.handle.net/1969.1/151079

North Carolina State University

17.
Taylor, Padraic Whittingham.
On the Solvability of Nonlinear Discrete Multipoint Boundary Value * Problems*.

Degree: PhD, Mathematics, 2007, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/5605

► In this manuscript we study nonlinear, discrete, multipoint boundary value *problems*. We investigate two types of *problems*. We first consider scalar, nonlinear, multipoint boundary value…
(more)

Subjects/Keywords: Brouwer Fixed Point Theorem; boundary value problems; projection; Implicit Function Theorem; Lyapunov-Schmidt Procedure

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Taylor, P. W. (2007). On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5605

Chicago Manual of Style (16^{th} Edition):

Taylor, Padraic Whittingham. “On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems.” 2007. Doctoral Dissertation, North Carolina State University. Accessed April 17, 2021. http://www.lib.ncsu.edu/resolver/1840.16/5605.

MLA Handbook (7^{th} Edition):

Taylor, Padraic Whittingham. “On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems.” 2007. Web. 17 Apr 2021.

Vancouver:

Taylor PW. On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems. [Internet] [Doctoral dissertation]. North Carolina State University; 2007. [cited 2021 Apr 17]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5605.

Council of Science Editors:

Taylor PW. On the Solvability of Nonlinear Discrete Multipoint Boundary Value Problems. [Doctoral Dissertation]. North Carolina State University; 2007. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5605

Baylor University

18.
Hopkins, Britney.
Multiplicity of positive solutions of even-order nonhomogeneous boundary value *problems*.

Degree: PhD, Mathematics., 2009, Baylor University

URL: http://hdl.handle.net/2104/5323

► In this work, we discuss multiplicity results for nonhomogeneous even-order boundary value *problems* on both discrete and continuous domains. We develop a method for establishing…
(more)

Subjects/Keywords: Multiplicity (Mathematics); Positive systems.; Boundary value problems.; Fixed point theory.; Conjugate direction methods.; Difference equations – Numerical solutions.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hopkins, B. (2009). Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5323

Chicago Manual of Style (16^{th} Edition):

Hopkins, Britney. “Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems.” 2009. Doctoral Dissertation, Baylor University. Accessed April 17, 2021. http://hdl.handle.net/2104/5323.

MLA Handbook (7^{th} Edition):

Hopkins, Britney. “Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems.” 2009. Web. 17 Apr 2021.

Vancouver:

Hopkins B. Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2009. [cited 2021 Apr 17]. Available from: http://hdl.handle.net/2104/5323.

Council of Science Editors:

Hopkins B. Multiplicity of positive solutions of even-order nonhomogeneous boundary value problems. [Doctoral Dissertation]. Baylor University; 2009. Available from: http://hdl.handle.net/2104/5323

19. Dionicio Pastor Dallos Santos. Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais.

Degree: 2017, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/

►

O principal objetivo deste trabalho é estudar a existência de soluções para alguns problemas de valores de contorno de equações diferenciais ordinárias não lineares em… (more)

Subjects/Keywords: Grau de Leray-Schauder; Medida de Kuratowski de não compacidade; Operadores compactos; Problemas de ponto fixo; Problemas de valor na fronteira; Boundary value problem; Compact operators; Fixed point problems; Kuratowskis measure of non-compactness; Leray-Schauder degree

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Santos, D. P. D. (2017). Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/

Chicago Manual of Style (16^{th} Edition):

Santos, Dionicio Pastor Dallos. “Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais.” 2017. Doctoral Dissertation, University of São Paulo. Accessed April 17, 2021. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/.

MLA Handbook (7^{th} Edition):

Santos, Dionicio Pastor Dallos. “Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais.” 2017. Web. 17 Apr 2021.

Vancouver:

Santos DPD. Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais. [Internet] [Doctoral dissertation]. University of São Paulo; 2017. [cited 2021 Apr 17]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/.

Council of Science Editors:

Santos DPD. Resultados de existência para alguns problemas não lineares com valores na fronteira de equações diferenciais. [Doctoral Dissertation]. University of São Paulo; 2017. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05122017-131906/

20. Moreira, Ceilí Marcolino. O método de sub e supersoluções para soluções fracas.

URL: https://repositorio.ufjf.br/jspui/handle/ufjf/4702

►

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Neste trabalho, apresentamos métodos envolvendo sub e supersolução para estudar a existência de solução, no… (more)

Subjects/Keywords: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA; Método de sub e supersolução; Soluções fracas; Teorema do ponto fixo de Schauder; Problema elíptico semilinear; Method of sub and supersolution; Weak solutions; Schauder's fixed point theorem; Semilinear elliptic problems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moreira, C. M. (2014). O método de sub e supersoluções para soluções fracas. (Masters Thesis). Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas. Retrieved from https://repositorio.ufjf.br/jspui/handle/ufjf/4702

Chicago Manual of Style (16^{th} Edition):

Moreira, Ceilí Marcolino. “O método de sub e supersoluções para soluções fracas.” 2014. Masters Thesis, Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas. Accessed April 17, 2021. https://repositorio.ufjf.br/jspui/handle/ufjf/4702.

MLA Handbook (7^{th} Edition):

Moreira, Ceilí Marcolino. “O método de sub e supersoluções para soluções fracas.” 2014. Web. 17 Apr 2021.

Vancouver:

Moreira CM. O método de sub e supersoluções para soluções fracas. [Internet] [Masters thesis]. Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas; 2014. [cited 2021 Apr 17]. Available from: https://repositorio.ufjf.br/jspui/handle/ufjf/4702.

Council of Science Editors:

Moreira CM. O método de sub e supersoluções para soluções fracas. [Masters Thesis]. Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas; 2014. Available from: https://repositorio.ufjf.br/jspui/handle/ufjf/4702

Marshall University

21.
Sun, Xun.
Twin Solutions of Even Order Boundary Value *Problems* for Ordinary Differential Equations and Finite Difference Equations.

Degree: 2009, Marshall University

URL: https://mds.marshall.edu/etd/1274

► The Avery-Henderson *fixed*-*point* theorem is first applied to obtain the existence of at least two positive solutions for the boundary value problem (-1)ny(2n) = f(y);…
(more)

Subjects/Keywords: Twin positive solutions; boundary value problems; fixed point theorem; Green's function; <; p>; Fixed point theory.<; /p>; <; p>; Boundary value problems.<; /p>; <; p>; Green's function.<; /p>;

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sun, X. (2009). Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. (Thesis). Marshall University. Retrieved from https://mds.marshall.edu/etd/1274

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sun, Xun. “Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations.” 2009. Thesis, Marshall University. Accessed April 17, 2021. https://mds.marshall.edu/etd/1274.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sun, Xun. “Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations.” 2009. Web. 17 Apr 2021.

Vancouver:

Sun X. Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. [Internet] [Thesis]. Marshall University; 2009. [cited 2021 Apr 17]. Available from: https://mds.marshall.edu/etd/1274.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sun X. Twin Solutions of Even Order Boundary Value Problems for Ordinary Differential Equations and Finite Difference Equations. [Thesis]. Marshall University; 2009. Available from: https://mds.marshall.edu/etd/1274

Not specified: Masters Thesis or Doctoral Dissertation

22. Laurent-Brouty, Nicolas. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.

Degree: Docteur es, Mathématiques, 2019, Université Côte d'Azur (ComUE)

URL: http://www.theses.fr/2019AZUR4056

► Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application…
(more)

Subjects/Keywords: Lois de conservation hyperboliques; Systèmes de conservation hyperboliques avec relaxation; Modèles macroscopiques de trafic routier; Suivi de fronts d'onde; Systèmes de Temple; Couplage EDP-EDO; Contraintes de flux; Trafic routier sur les réseaux; Équations d'Hamilton-Jacobi; Méthodes de point fixe; Hyperbolic conservation laws; Hyperbolic systems of conservation laws with relaxation; Macroscopic traffic flow models; Wave-front tracking; Temple class systems; PDE-ODE coupling; Flux constraints; Traffic flow on networks; Hamilton-Jacobi equations; Fixed-point problems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Laurent-Brouty, N. (2019). Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2019AZUR4056

Chicago Manual of Style (16^{th} Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed April 17, 2021. http://www.theses.fr/2019AZUR4056.

MLA Handbook (7^{th} Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Web. 17 Apr 2021.

Vancouver:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2019. [cited 2021 Apr 17]. Available from: http://www.theses.fr/2019AZUR4056.

Council of Science Editors:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2019. Available from: http://www.theses.fr/2019AZUR4056

Marshall University

23. Otunuga, Olusegun Michael. Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale.

Degree: 2009, Marshall University

URL: https://mds.marshall.edu/etd/734

► This thesis is on the study of dynamic equations on time scale. Most often, the derivatives and anti-derivatives of functions are taken on the domain…
(more)

Subjects/Keywords: Positive solutions; boundary value problems; eigenvalues; fixed point theorem; Green's function; <; p>; Differential equations.<; /p>; <; p>; Difference equations.<; /p>; <; p>; Differentiable dynamical systems.<; /p>;

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Otunuga, O. M. (2009). Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale. (Thesis). Marshall University. Retrieved from https://mds.marshall.edu/etd/734

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Otunuga, Olusegun Michael. “Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale.” 2009. Thesis, Marshall University. Accessed April 17, 2021. https://mds.marshall.edu/etd/734.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Otunuga, Olusegun Michael. “Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale.” 2009. Web. 17 Apr 2021.

Vancouver:

Otunuga OM. Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale. [Internet] [Thesis]. Marshall University; 2009. [cited 2021 Apr 17]. Available from: https://mds.marshall.edu/etd/734.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Otunuga OM. Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale. [Thesis]. Marshall University; 2009. Available from: https://mds.marshall.edu/etd/734

Not specified: Masters Thesis or Doctoral Dissertation