Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(FPT Algorithms). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Pham, Hong Phong. Studies on Optimal Colorful Structures in Vertex-Colored Graphs : Études sur les structures colorées optimales dans les graphes sommet-colorés.

Degree: Docteur es, Informatique, 2018, Paris Saclay

 Dans cette thèse, nous étudions des problèmes différents de coloration maximale dans les graphes sommet-colorés. Nous nous concentrons sur la recherche des structures avec le… (more)

Subjects/Keywords: Théorie des graphes; Algorithmes; Approximation; FPT; Combinatoire; Graph theory; Algorithms; Approximation; FPT; Combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pham, H. P. (2018). Studies on Optimal Colorful Structures in Vertex-Colored Graphs : Études sur les structures colorées optimales dans les graphes sommet-colorés. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2018SACLS528

Chicago Manual of Style (16th Edition):

Pham, Hong Phong. “Studies on Optimal Colorful Structures in Vertex-Colored Graphs : Études sur les structures colorées optimales dans les graphes sommet-colorés.” 2018. Doctoral Dissertation, Paris Saclay. Accessed January 24, 2020. http://www.theses.fr/2018SACLS528.

MLA Handbook (7th Edition):

Pham, Hong Phong. “Studies on Optimal Colorful Structures in Vertex-Colored Graphs : Études sur les structures colorées optimales dans les graphes sommet-colorés.” 2018. Web. 24 Jan 2020.

Vancouver:

Pham HP. Studies on Optimal Colorful Structures in Vertex-Colored Graphs : Études sur les structures colorées optimales dans les graphes sommet-colorés. [Internet] [Doctoral dissertation]. Paris Saclay; 2018. [cited 2020 Jan 24]. Available from: http://www.theses.fr/2018SACLS528.

Council of Science Editors:

Pham HP. Studies on Optimal Colorful Structures in Vertex-Colored Graphs : Études sur les structures colorées optimales dans les graphes sommet-colorés. [Doctoral Dissertation]. Paris Saclay; 2018. Available from: http://www.theses.fr/2018SACLS528


Université Montpellier II

2. Daligault, Jean. Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. : Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut.

Degree: Docteur es, Informatique, 2011, Université Montpellier II

Dans cette thèse, nous abordons des problèmes NP-difficiles à l'aide de techniques combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les principaux… (more)

Subjects/Keywords: Complexité Paramétrée; Fpt; Noyaux; Multicoupe; Arbres avec beaucoup de Feuilles; Algorithmes d'Approximation; Parameterized Complexity; Fpt; Kernels; Multicut; Trees with Many Leaves; Approximation Algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daligault, J. (2011). Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. : Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut. (Doctoral Dissertation). Université Montpellier II. Retrieved from http://www.theses.fr/2011MON20034

Chicago Manual of Style (16th Edition):

Daligault, Jean. “Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. : Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut.” 2011. Doctoral Dissertation, Université Montpellier II. Accessed January 24, 2020. http://www.theses.fr/2011MON20034.

MLA Handbook (7th Edition):

Daligault, Jean. “Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. : Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut.” 2011. Web. 24 Jan 2020.

Vancouver:

Daligault J. Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. : Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut. [Internet] [Doctoral dissertation]. Université Montpellier II; 2011. [cited 2020 Jan 24]. Available from: http://www.theses.fr/2011MON20034.

Council of Science Editors:

Daligault J. Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. : Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut. [Doctoral Dissertation]. Université Montpellier II; 2011. Available from: http://www.theses.fr/2011MON20034


Université de Grenoble

3. Weber, Valentin. Caractérisation des instances difficiles de problèmes d'optimisation NP-difficiles : Characterization of difficult instances for NP-hard problems.

Degree: Docteur es, Informatique, 2013, Université de Grenoble

L'étude expérimentale d'algorithmes est un sujet crucial dans la conception de nouveaux algorithmes, puisque le contexte d'évaluation influence inévitablement la mesure de la qualité des… (more)

Subjects/Keywords: Difficulté d'instance; Modification d'instances; Science expérimentale des algorithmes; Fixed-parameter tractability (FPT); Problème du voyageur de commerce; Instance hardness; Instance modification; Empirical science of algorithms; Fixed-parameter tractability (FPT); Traveling salesman problem (TSP); 510; 004

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weber, V. (2013). Caractérisation des instances difficiles de problèmes d'optimisation NP-difficiles : Characterization of difficult instances for NP-hard problems. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2013GRENM014

Chicago Manual of Style (16th Edition):

Weber, Valentin. “Caractérisation des instances difficiles de problèmes d'optimisation NP-difficiles : Characterization of difficult instances for NP-hard problems.” 2013. Doctoral Dissertation, Université de Grenoble. Accessed January 24, 2020. http://www.theses.fr/2013GRENM014.

MLA Handbook (7th Edition):

Weber, Valentin. “Caractérisation des instances difficiles de problèmes d'optimisation NP-difficiles : Characterization of difficult instances for NP-hard problems.” 2013. Web. 24 Jan 2020.

Vancouver:

Weber V. Caractérisation des instances difficiles de problèmes d'optimisation NP-difficiles : Characterization of difficult instances for NP-hard problems. [Internet] [Doctoral dissertation]. Université de Grenoble; 2013. [cited 2020 Jan 24]. Available from: http://www.theses.fr/2013GRENM014.

Council of Science Editors:

Weber V. Caractérisation des instances difficiles de problèmes d'optimisation NP-difficiles : Characterization of difficult instances for NP-hard problems. [Doctoral Dissertation]. Université de Grenoble; 2013. Available from: http://www.theses.fr/2013GRENM014


Indian Institute of Science

4. Goyal, Prachi. Parameterized Complexity of Maximum Edge Coloring in Graphs.

Degree: 2012, Indian Institute of Science

 The classical graph edge coloring problem deals in coloring the edges of a given graph with minimum number of colors such that no two adjacent… (more)

Subjects/Keywords: Graph Theory; Graphs; Graphs - Coloring; Parameterized Complexity; Maximum Edge Coloring (Graphs); Fixed Parameter Tractable Algorithms; Kernelization; Graph Edge Coloring; FPT Algorithm; Polynomial Kernel; C4-free Graphs; Computer Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goyal, P. (2012). Parameterized Complexity of Maximum Edge Coloring in Graphs. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/3255

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Goyal, Prachi. “Parameterized Complexity of Maximum Edge Coloring in Graphs.” 2012. Thesis, Indian Institute of Science. Accessed January 24, 2020. http://hdl.handle.net/2005/3255.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Goyal, Prachi. “Parameterized Complexity of Maximum Edge Coloring in Graphs.” 2012. Web. 24 Jan 2020.

Vancouver:

Goyal P. Parameterized Complexity of Maximum Edge Coloring in Graphs. [Internet] [Thesis]. Indian Institute of Science; 2012. [cited 2020 Jan 24]. Available from: http://hdl.handle.net/2005/3255.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Goyal P. Parameterized Complexity of Maximum Edge Coloring in Graphs. [Thesis]. Indian Institute of Science; 2012. Available from: http://hdl.handle.net/2005/3255

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Gupta, Siddharth. Topological Algorithms for Geographic and Geometric Graphs.

Degree: Computer Science, 2018, University of California – Irvine

 We study some geographic and geometric graphs namely road networks and clustered graphs from topological viewpoint, i.e., we consider them as embedded graphs, graphs in… (more)

Subjects/Keywords: Computer science; Theoretical mathematics; C-Planarity; Cycle Separator; FPT Algorithms; Road Networks

…Subexponential-Time and FPT Algorithms for Embedded Flat Clustered Planarity Giordano Da Lozzo, David… …time and fixed-parameter tractable (FPT) algorithms are known (see e.g. [… …ABSTRACT OF THE DISSERTATION Topological Algorithms for Geographic and Geometric Graphs By… …graph is a graph whose vertices belong to properly nested clusters. We present algorithms and… …Considering them as planar graphs allows us to develop more efficient algorithms due to planar… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gupta, S. (2018). Topological Algorithms for Geographic and Geometric Graphs. (Thesis). University of California – Irvine. Retrieved from http://www.escholarship.org/uc/item/52t311vn

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gupta, Siddharth. “Topological Algorithms for Geographic and Geometric Graphs.” 2018. Thesis, University of California – Irvine. Accessed January 24, 2020. http://www.escholarship.org/uc/item/52t311vn.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gupta, Siddharth. “Topological Algorithms for Geographic and Geometric Graphs.” 2018. Web. 24 Jan 2020.

Vancouver:

Gupta S. Topological Algorithms for Geographic and Geometric Graphs. [Internet] [Thesis]. University of California – Irvine; 2018. [cited 2020 Jan 24]. Available from: http://www.escholarship.org/uc/item/52t311vn.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gupta S. Topological Algorithms for Geographic and Geometric Graphs. [Thesis]. University of California – Irvine; 2018. Available from: http://www.escholarship.org/uc/item/52t311vn

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Eblen, John David. The Maximum Clique Problem: Algorithms, Applications, and Implementations.

Degree: 2010, University of Tennessee – Knoxville

 Computationally hard problems are routinely encountered during the course of solving practical problems. This is commonly dealt with by settling for less than optimal solutions,… (more)

Subjects/Keywords: FPT; paraclique; NP-complete; bioinformatics; correlation; software; Bioinformatics; Computational Biology; Discrete Mathematics and Combinatorics; Software Engineering; Theory and Algorithms

…the problem becomes tractable. For example, vertex cover is FPT because algorithms exist… …small covers, efficient algorithms exist. The field of FPT, though, is about more than just… …For FPT, we consider algorithms that input x and some parameter k. They must still decide if… …though, we often instead convert the vertex cover FPT algorithms to solve clique directly. 3.2… …FPT Overview 7 2.1 Intuition… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eblen, J. D. (2010). The Maximum Clique Problem: Algorithms, Applications, and Implementations. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/793

Chicago Manual of Style (16th Edition):

Eblen, John David. “The Maximum Clique Problem: Algorithms, Applications, and Implementations.” 2010. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed January 24, 2020. https://trace.tennessee.edu/utk_graddiss/793.

MLA Handbook (7th Edition):

Eblen, John David. “The Maximum Clique Problem: Algorithms, Applications, and Implementations.” 2010. Web. 24 Jan 2020.

Vancouver:

Eblen JD. The Maximum Clique Problem: Algorithms, Applications, and Implementations. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2010. [cited 2020 Jan 24]. Available from: https://trace.tennessee.edu/utk_graddiss/793.

Council of Science Editors:

Eblen JD. The Maximum Clique Problem: Algorithms, Applications, and Implementations. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2010. Available from: https://trace.tennessee.edu/utk_graddiss/793

.