Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Espace de Moyal). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Université Paris-Sud – Paris XI

1. Cagnache, Eric. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.

Degree: Docteur es, Physique mathématique, 2012, Université Paris-Sud – Paris XI

La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique des champs et la relativité générale dans un seul cadre. Elle peut être abordée selon différents points de vue et deux d'entre eux sont présentés dans cette thèse. Le premier, le calcul différentiel basé sur les dérivations, nous a permis de construire une action de Yang-Mills-Higgs dans laquelle apparait des champs pouvant être interprétés comme des champs de Higgs. Avec le second, les triplets spectraux, on peut généraliser la notion de distance entre état et calculer des formules de distance. C'est ce que nous avons fait dans le cas de l'espace de Moyal et du tore non commutatif.

Noncommutative geometry offers interesting prospects to gather the quantum field theory and relativity in one general framework because it allows one to generalize geometric objects algebraically. It can be approached from different points of view and two of them are presented in this PhD. The first, calculus based on derivations, allowed us to construct a Yang-Mills-Higgs action which appears in fields that can be interpreted as Higgs fields. With the second, spectral triples, we can generalize the notion of distance between states. We calculated the distance formulas in the case of the Moyal space and the noncommutative torus.

Advisors/Committee Members: Wallet, Jean Christophe (thesis director).

Subjects/Keywords: Géométrie non commutative; Triplets spectraux; Espace de Moyal; Tore non commutatif; Distance; Noncommutative geometry; Spectral triples; Moyal space; Noncommutative torus; Distance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cagnache, E. (2012). Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112115

Chicago Manual of Style (16th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 06, 2021. http://www.theses.fr/2012PA112115.

MLA Handbook (7th Edition):

Cagnache, Eric. “Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics.” 2012. Web. 06 Mar 2021.

Vancouver:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 06]. Available from: http://www.theses.fr/2012PA112115.

Council of Science Editors:

Cagnache E. Aspects différentiels et métriques de la géométrie non commutative : application à la physique : Aspects of the metric and differential noncommutative geometry : application to physics. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112115

.