Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Equicontinuity). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Tárrega Ruiz, Luis. Interpolation and equicontinuity sets in topological groups and spaces of continuous functions.

Degree: Programa de Doctorat en Ciències, Departament de Matemàtiques, 2017, Universitat Jaume I

En esta tesis se estudia la relación que hay entre la existencia de ciertos tipos de subconjuntos de funciones valuadas en un espacio métrico y definidas en un espacio topológico X y las propiedades que posee el espacio topológico X en si. La disertación se apoya en cómo la existencia de subconjuntos de funciones continuas que poseen una de estas dos propiedades antagonistas, casi equicontinuidad y ser una B-familia, afecta al espacio topológico. La primera propiedad aparece en el contexto de los sistemas dinámicos, mientras que la segunda propiedad es un concepto más fuerte que la no equicontinuidad y viene motivada por un resultado de Bourgain. A lo largo de la tesis se lidia con el estudio de la existencia y propiedades de los conjuntos de interpolación en diferentes contextos: (i) espacios de funciones continuas, (ii) grupos topológicos y (iii) el dual de un grupo topológico. Advisors/Committee Members: [email protected] (authoremail), false (authoremailshow), Hernández Muñoz, Salvador (director), Ferrer González, María Vicenta (director), true (authorsendemail).

Subjects/Keywords: Interpolation set; Equicontinuity set; Topological Groups; Topology; Harmonic Analysis; Continuous functions; Matemàtiques; 51; 515.1

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tárrega Ruiz, L. (2017). Interpolation and equicontinuity sets in topological groups and spaces of continuous functions. (Doctoral Dissertation). Universitat Jaume I. Retrieved from http://hdl.handle.net/10803/460830

Chicago Manual of Style (16th Edition):

Tárrega Ruiz, Luis. “Interpolation and equicontinuity sets in topological groups and spaces of continuous functions.” 2017. Doctoral Dissertation, Universitat Jaume I. Accessed April 22, 2021. http://hdl.handle.net/10803/460830.

MLA Handbook (7th Edition):

Tárrega Ruiz, Luis. “Interpolation and equicontinuity sets in topological groups and spaces of continuous functions.” 2017. Web. 22 Apr 2021.

Vancouver:

Tárrega Ruiz L. Interpolation and equicontinuity sets in topological groups and spaces of continuous functions. [Internet] [Doctoral dissertation]. Universitat Jaume I; 2017. [cited 2021 Apr 22]. Available from: http://hdl.handle.net/10803/460830.

Council of Science Editors:

Tárrega Ruiz L. Interpolation and equicontinuity sets in topological groups and spaces of continuous functions. [Doctoral Dissertation]. Universitat Jaume I; 2017. Available from: http://hdl.handle.net/10803/460830


Leiden University

2. Ziemlańska, M.A. Approach to Markov operators on spaces of measures by means of equicontinuity.

Degree: 2021, Leiden University

The subject of this thesis, ‘Approach to Markov Operators on Spaces of Measures by Means of Equicontinuity’, combines an analytical and probabilistic approach to Markov operators. We look at Markov operators coming from deterministic dynamical systems and also stochastic processes which come from a probabilistic approach.In the study of Markov operators and Markov semigroups the central problems are to understand the behaviour of the processes and semigroups. Of particular interest is to identify the existence and uniqueness of invariant measures and long term behaviour of the process and dynamical system defined by the associated Markov operator or semigroup. Research on these questions dates back to the works of Andrey Markov, who described a Markov property for chains. A big part of theory for Markov chains can be found in the book by Meyn and Tweedie, who made a big contribution to the theory of Markov chains and gave a noteworthy description of e-chains, which was the motivation to working with equicontinuity properties for many authors. This theory is applicable when the underlying state space is locally compact. If it is not - in the generality of so-called Polish spaces - there is theory under development. Lasota and Szarek, and in recent years Worm generalized theory of Markov operators and families of Markov operators to this setting. In subsequent years, the theory was being developed starting with contractive Markov operators in the works of Lasota, through non-expansive Markov operators in Szarek’s,, and finally equicontinuous families of Markov operators in that of Szarek, Hille and Worm. We extend their results and give a new light to the existing ones by providing less restrictive conditions in cases. Advisors/Committee Members: Doelman, A., Hille, S.C., Eliel, E.R., Hollander, W.T.F. den, Gaans, O.W. van, Neerven, J.M.A.M. van, Horbacz, K., Leiden University.

Subjects/Keywords: Markov operators; Markov semigroups; Spaces of measures; Equicontinuity; Central Limit Theorem; Switching schemes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ziemlańska, M. A. (2021). Approach to Markov operators on spaces of measures by means of equicontinuity. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/3135034

Chicago Manual of Style (16th Edition):

Ziemlańska, M A. “Approach to Markov operators on spaces of measures by means of equicontinuity.” 2021. Doctoral Dissertation, Leiden University. Accessed April 22, 2021. http://hdl.handle.net/1887/3135034.

MLA Handbook (7th Edition):

Ziemlańska, M A. “Approach to Markov operators on spaces of measures by means of equicontinuity.” 2021. Web. 22 Apr 2021.

Vancouver:

Ziemlańska MA. Approach to Markov operators on spaces of measures by means of equicontinuity. [Internet] [Doctoral dissertation]. Leiden University; 2021. [cited 2021 Apr 22]. Available from: http://hdl.handle.net/1887/3135034.

Council of Science Editors:

Ziemlańska MA. Approach to Markov operators on spaces of measures by means of equicontinuity. [Doctoral Dissertation]. Leiden University; 2021. Available from: http://hdl.handle.net/1887/3135034

3. ΚΟΥΦΟΣ, ΘΕΟΔΩΡΟΣ. ΤΟΠΟΛΟΓΙΕΣ ΕΠΑΓΟΜΕΝΕΣ ΑΠΟ ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ ΣΕ ΣΥΝΑΡΤΗΣΙΑΚΟΥΣ ΧΩΡΟΥΣ.

Degree: 1985, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH)

ΑΣ ΘΕΩΡΗΣΟΥΜΕ ΤΟ ΣΥΝΟΛΟ ΟΛΩΝ ΤΩΝ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΑΠΟ ΕΝΑ ΤΟΠΟΛΟΓΙΚΟ ΧΩΡΟ ΥΣ'ΕΝΑ ΤΟΠΟΛΟΓΙΚΟ ΧΩΡΟ Ζ, ΟΠΟΥ ΣΤΟ ΧΩΡΟ Ζ ΘΕΩΡΟΥΜΕ ΜΙΑ ΗΜΙΟΜΟΙΟΜΟΡΦΗ ΔΟΜΗ ΣΥΜΒΙΒΑΣΤΗ ΜΕ ΤΗΝ ΤΟΠΟΛΟΓΙΑ ΤΟΥ. ΟΡΙΖΕΤΑΙ ΤΟΤΕ ΜΙΑ ΗΜΙΟΜΟΙΟΜΟΡΦΗ ΔΟΜΗ ΣΤΟ ΧΩΡΟ ΣΥΝΑΡΤΗΣΕΩΝ, Η ΟΠΟΙΑ ΜΕ ΤΗ ΣΕΙΡΑ ΤΗΣ ΟΡΙΖΕΙ ΜΙΑ ΤΟΠΟΛΟΓΙΑ ΣΤΟ ΧΩΡΟ ΣΥΝΑΡΤΗΣΕΩΝ. ΣΤΗ ΔΙΑΤΡΙΒΗ ΜΕΛΕΤΩΝΤΑΙ ΙΔΙΟΤΗΤΕΣ ΤΕΤΟΙΩΝ ΤΟΠΟΛΟΓΙΩΝ ΜΕ ΒΑΣΙΚΟ ΑΞΟΝΑ ΤΗ ΜΕΛΕΤΗ ΤΗΣ ΤΟΠΟΛΟΓΙΑΣ ΤΗΣ ΗΜΙΟΜΟΙΟΜΟΡΦΗΣ ΣΥΓΚΛΙΣΗΣ ΣΤΑ ΣΥΜΠΑΓΗ ΥΠΟΣΥΝΟΛΑ ΤΟΥ ΤΟΠΟΛΟΓΙΚΟΥ ΧΩΡΟΥ ΟΡΙΣΜΟΥ Υ. ΤΑ ΒΑΣΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΙΝΑΙ: Α) Η ΕΥΡΕΣΗ ΙΚΑΝΗΣ ΣΥΝΘΗΚΗΣ ΩΣΤΕ Η ΤΟΠΟΛΟΓΙΑ ΤΗΣ ΗΜΙΟΜΟΙΟΜΟΡΦΗΣ ΣΥΓΚΛΙΣΗΣ ΣΤΑ ΣΥΜΠΑΓΗ ΥΠΟΣΥΝΟΛΑ ΤΟΥ ΧΩΡΟΥ Υ ΝΑ ΤΑΥΤΙΖΕΤΑΙ ΜΕ ΤΗ ΓΝΩΣΤΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ "ΣΥΜΠΑΓΗ-ΑΝΟΙΚΤΗ" ΤΟΠΟΛΟΓΙΑ. Β) ΠΡΟΤΑΣΕΙΣ ΠΟΥ ΑΦΟΡΟΥΝ ΤΗΝ ΙΣΧΥ 'Η ΟΧΙ ΤΟΥ ΕΚΘΕΤΙΚΟΥ ΝΟΜΟΥ. Γ) ΑΝΤΙΣΤΡΟΦΑ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΥ AREN'S. Δ) ΣΥΝΘΗΚΕΣ ΩΣΤΕ Ο ΣΥΝΑΡΤΗΣΙΑΚΟΣ ΧΩΡΟΣ ΝΑ ΓΙΝΕΤΑΙ ΨΕΥΔΟΗΜΙΜΕΤΡΗΣΙΜΟΣ. Ε) ΙΚΑΝΕΣ ΚΑΙ ΑΝΑΓΚΑΙΕΣ ΣΥΝΘΗΚΕΣ ΩΣΤΕ Ο ΑΝΤΙΣΤΟΙΧΟΣ ΣΥΝΑΡΤΗΣΙΑΚΟΣ ΧΩΡΟΣ ΝΑ ΕΙΝΑΙ ΑΚΟΛΟΥΘΙΑΚΑ ΠΛΗΡΗΣ. ΣΤ) ΘΕΩΡΗΜΑΤΑ ASCOLI, ΔΗΛΑΔΗ ΙΚΑΝΕΣ ΚΑΙ ΑΝΑΓΚΑΙΕΣ ΣΥΝΘΗΚΕΣ ΩΣΤΕ ΕΝΑ ΥΠΟΣΥΝΟΛΟ ΤΟΥ ΣΥΝΑΡΤΗΣΙΑΚΟΥ ΧΩΡΟΥ ΝΑ ΕΙΝΑΙ ΣΥΜΠΑΓΕΣ.

WE REGARD THE SET OF ALL CONTINUOUS FUNCTIONS FROM A TOPOLOGICAL SPACE Y INTO ANOTHER SPACE Z, WHERE THE SPACE Z IS EQUIPPED WITH A COMPATIBLE QUASI-UNIFORMITY. THEN A QUASI-UNIFORMITY ON THE ABOVE FUNCTION SPACE IS DEFINED, WHICH INDUCES A TOPOLOGY IN THIS FUNCTION SPACE. IN MY THESIS 9 STUDY PROPERTIES OF SUCH TOPOLOGIES. ESPECIALLY SO, 9 STUDY PROPERTIES OF THE TOPOLOGY OF QUASI-UNIFORM CONVERGENCE ON THE COMPACT SUBSETS OF THE DOMAIN SPACE Y. THE MOST IMPORTANT RESULTS ARE THE FOLLOWING: A) WE FIND A SUFFICIENT CONDITION SUCH THAT THE TOPOLOGY OF QUASI-UNIFORM CONVERGENCE ON THE COMPACT SUBSETS OF THE SPACE Y, TO COINCIDE WITH THE COMPACT-OPEN TOPOLOGY. B) WE PROVE PROPOSITIONS WHICH CONCERN THE EXPONENTIAL LAW. C) WE PROVE AREN'S TYPE THEOREMS. D) WE FIND SUFFICIENT CONDITIONS SUCH THAT THE CORRESPONDING FUNCTION SPACE TO BE QUASI-PSEUDOMETRIZABLE. E) WE FIND SUFFICIENT AND NECESSARY CONDITIONS SUCH THAT THE FUNCTIONSPACE TO BE SEQUENTIALLY COMPLETE. F) WE PROVE ASCOLI-TYPE THEOREMS.

Subjects/Keywords: AREN'S TYPE THEOREMS; EXPONENTIAL LAW; FUNCTION SPACES; QUASI EQUICONTINUITY AND COMPACTNESS; QUASI-UNIFORM STRUCTURES; SEQUENTIALLY COMPLETE; ΑΚΟΛΟΥΘΙΑΚΗ ΠΛΗΡΟΤΗΤΑ; ΕΚΘΕΤΙΚΟΣΝΟΜΟΣ; ΗΜΙΙΣΟΣΥΝΕΧΕΙΑ ΚΑΙ ΣΥΜΠΑΓΟΤΗΤΑ; ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ; ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΥ AREN'S; Μαθηματική ανάλυση; ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ; Τοπολογία

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

ΚΟΥΦΟΣ, . (1985). ΤΟΠΟΛΟΓΙΕΣ ΕΠΑΓΟΜΕΝΕΣ ΑΠΟ ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ ΣΕ ΣΥΝΑΡΤΗΣΙΑΚΟΥΣ ΧΩΡΟΥΣ. (Thesis). Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH). Retrieved from http://hdl.handle.net/10442/hedi/0310

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

ΚΟΥΦΟΣ, ΘΕΟΔΩΡΟΣ. “ΤΟΠΟΛΟΓΙΕΣ ΕΠΑΓΟΜΕΝΕΣ ΑΠΟ ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ ΣΕ ΣΥΝΑΡΤΗΣΙΑΚΟΥΣ ΧΩΡΟΥΣ.” 1985. Thesis, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH). Accessed April 22, 2021. http://hdl.handle.net/10442/hedi/0310.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

ΚΟΥΦΟΣ, ΘΕΟΔΩΡΟΣ. “ΤΟΠΟΛΟΓΙΕΣ ΕΠΑΓΟΜΕΝΕΣ ΑΠΟ ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ ΣΕ ΣΥΝΑΡΤΗΣΙΑΚΟΥΣ ΧΩΡΟΥΣ.” 1985. Web. 22 Apr 2021.

Vancouver:

ΚΟΥΦΟΣ . ΤΟΠΟΛΟΓΙΕΣ ΕΠΑΓΟΜΕΝΕΣ ΑΠΟ ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ ΣΕ ΣΥΝΑΡΤΗΣΙΑΚΟΥΣ ΧΩΡΟΥΣ. [Internet] [Thesis]. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH); 1985. [cited 2021 Apr 22]. Available from: http://hdl.handle.net/10442/hedi/0310.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

ΚΟΥΦΟΣ . ΤΟΠΟΛΟΓΙΕΣ ΕΠΑΓΟΜΕΝΕΣ ΑΠΟ ΗΜΙΟΜΟΙΟΜΟΡΦΕΣ ΔΟΜΕΣ ΣΕ ΣΥΝΑΡΤΗΣΙΑΚΟΥΣ ΧΩΡΟΥΣ. [Thesis]. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH); 1985. Available from: http://hdl.handle.net/10442/hedi/0310

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.