Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Equations de Hamilton Jacobi). Showing records 1 – 30 of 356937 total matches.

[1] [2] [3] [4] [5] … [11898]

Search Limiters

Last 2 Years | English Only

Levels

Languages

Country

▼ Search Limiters

1. Attouchi, Amal. Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion.

Degree: Docteur es, Mathématiques, 2014, Paris 13

Cette thèse est consacrée à l’étude des propriétés qualitatives de solutions d’une équation d’évolution de type Hamilton-Jacobi avec une diffusion donnée par l’opérateur p-Laplacien. On… (more)

Subjects/Keywords: Hamilton-Jacobi, équation de; Hamilton-Jacobi equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Attouchi, A. (2014). Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion. (Doctoral Dissertation). Paris 13. Retrieved from http://www.theses.fr/2014PA132022

Chicago Manual of Style (16th Edition):

Attouchi, Amal. “Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion.” 2014. Doctoral Dissertation, Paris 13. Accessed October 29, 2020. http://www.theses.fr/2014PA132022.

MLA Handbook (7th Edition):

Attouchi, Amal. “Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion.” 2014. Web. 29 Oct 2020.

Vancouver:

Attouchi A. Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion. [Internet] [Doctoral dissertation]. Paris 13; 2014. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2014PA132022.

Council of Science Editors:

Attouchi A. Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion. [Doctoral Dissertation]. Paris 13; 2014. Available from: http://www.theses.fr/2014PA132022


Universidade Estadual de Campinas

2. Rosa, Ester Cristina Fontes de Aquino, 1979-. A função hipergeométrica e o pêndulo simples: The hypergeometric function and the simple pendulum.

Degree: 2011, Universidade Estadual de Campinas

 Abstract: This work aims to present and solve, mathematically, the physics problem that is called simple pendulum. We reasoned, as an specific case, the so… (more)

Subjects/Keywords: Pêndulo; Frobenius, Teorema de; Funções hipergeométricas; Hamilton-Jacobi, Equações; Equações diferenciais; Pendulum; Frobenius's theorem; Functions, hypergeometric; Hamilton-Jacobi, Equations; Differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosa, Ester Cristina Fontes de Aquino, 1. (2011). A função hipergeométrica e o pêndulo simples: The hypergeometric function and the simple pendulum. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306997

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rosa, Ester Cristina Fontes de Aquino, 1979-. “A função hipergeométrica e o pêndulo simples: The hypergeometric function and the simple pendulum.” 2011. Thesis, Universidade Estadual de Campinas. Accessed October 29, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306997.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rosa, Ester Cristina Fontes de Aquino, 1979-. “A função hipergeométrica e o pêndulo simples: The hypergeometric function and the simple pendulum.” 2011. Web. 29 Oct 2020.

Vancouver:

Rosa, Ester Cristina Fontes de Aquino 1. A função hipergeométrica e o pêndulo simples: The hypergeometric function and the simple pendulum. [Internet] [Thesis]. Universidade Estadual de Campinas; 2011. [cited 2020 Oct 29]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306997.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rosa, Ester Cristina Fontes de Aquino 1. A função hipergeométrica e o pêndulo simples: The hypergeometric function and the simple pendulum. [Thesis]. Universidade Estadual de Campinas; 2011. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306997

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Patout, Florian. Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations : Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models.

Degree: Docteur es, Mathématiques, 2019, Lyon

Cette thèse est consacrée à l’étude de phénomènes de propagation et de concentration dans des modèles d’équations intégro-différentielles venant de la écologie. On étudie certaines… (more)

Subjects/Keywords: Equations de réactions-diffusion; Equations de Hamilton Jacobi; Evolution; Analyse fonctionnelle; Equations aux dérivées partielles; Reaction diffusion equation; Hamilton Jacobi equations; Evolution; Functional Analysis; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Patout, F. (2019). Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations : Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2019LYSEN044

Chicago Manual of Style (16th Edition):

Patout, Florian. “Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations : Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models.” 2019. Doctoral Dissertation, Lyon. Accessed October 29, 2020. http://www.theses.fr/2019LYSEN044.

MLA Handbook (7th Edition):

Patout, Florian. “Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations : Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models.” 2019. Web. 29 Oct 2020.

Vancouver:

Patout F. Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations : Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models. [Internet] [Doctoral dissertation]. Lyon; 2019. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2019LYSEN044.

Council of Science Editors:

Patout F. Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations : Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models. [Doctoral Dissertation]. Lyon; 2019. Available from: http://www.theses.fr/2019LYSEN044


University of Texas – Austin

4. Martin, Lindsay Joan. Methods for solving Hamilton-Jacobi-Bellman equations.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 The goal of this thesis is to present two frameworks for the computation of the solutions of Hamilton-Jacobi-Bellman (HJB) equations. In Chapter 2, we present… (more)

Subjects/Keywords: Hamilton-Jacobi-Bellman equations; Eikonal equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, L. J. (2019). Methods for solving Hamilton-Jacobi-Bellman equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/3012

Chicago Manual of Style (16th Edition):

Martin, Lindsay Joan. “Methods for solving Hamilton-Jacobi-Bellman equations.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed October 29, 2020. http://dx.doi.org/10.26153/tsw/3012.

MLA Handbook (7th Edition):

Martin, Lindsay Joan. “Methods for solving Hamilton-Jacobi-Bellman equations.” 2019. Web. 29 Oct 2020.

Vancouver:

Martin LJ. Methods for solving Hamilton-Jacobi-Bellman equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Oct 29]. Available from: http://dx.doi.org/10.26153/tsw/3012.

Council of Science Editors:

Martin LJ. Methods for solving Hamilton-Jacobi-Bellman equations. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/3012

5. Bouin, Emeric. Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis.

Degree: Docteur es, Mathématiques, 2014, Lyon, École normale supérieure

Cette thèse est consacrée à l'étude de phénomènes de propagation dans des modèles d’EDP venant de la biologie. On étudie des équations cinétiques inspirées par… (more)

Subjects/Keywords: Equations cinétiques; Équations de réaction-diffusion; Équations de Hamilton-Jacobi; Phénomènes de propagation; Propagation accélérée; Modélisation; Kinetic equations; Reaction-diffusion equations; Hamilton-Jacobi equations; Front propagation; Acceleration; Modelling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bouin, E. (2014). Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2014ENSL0960

Chicago Manual of Style (16th Edition):

Bouin, Emeric. “Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis.” 2014. Doctoral Dissertation, Lyon, École normale supérieure. Accessed October 29, 2020. http://www.theses.fr/2014ENSL0960.

MLA Handbook (7th Edition):

Bouin, Emeric. “Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis.” 2014. Web. 29 Oct 2020.

Vancouver:

Bouin E. Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2014. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2014ENSL0960.

Council of Science Editors:

Bouin E. Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis. [Doctoral Dissertation]. Lyon, École normale supérieure; 2014. Available from: http://www.theses.fr/2014ENSL0960


Universidade do Rio Grande do Sul

6. Almeida, Tadeu Zavistanovicz de. Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi.

Degree: 2010, Universidade do Rio Grande do Sul

Neste trabalho estudamos soluções de viscosidade estacionárias da Equação de Hamilton-Jacobi, suas propriedades, e indicamos sua conexão com o problema de Mather estacionário. Para tal,… (more)

Subjects/Keywords: Equação de Hamilton-Jacobi

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Almeida, T. Z. d. (2010). Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi. (Thesis). Universidade do Rio Grande do Sul. Retrieved from http://hdl.handle.net/10183/25199

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Almeida, Tadeu Zavistanovicz de. “Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi.” 2010. Thesis, Universidade do Rio Grande do Sul. Accessed October 29, 2020. http://hdl.handle.net/10183/25199.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Almeida, Tadeu Zavistanovicz de. “Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi.” 2010. Web. 29 Oct 2020.

Vancouver:

Almeida TZd. Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi. [Internet] [Thesis]. Universidade do Rio Grande do Sul; 2010. [cited 2020 Oct 29]. Available from: http://hdl.handle.net/10183/25199.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Almeida TZd. Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi. [Thesis]. Universidade do Rio Grande do Sul; 2010. Available from: http://hdl.handle.net/10183/25199

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Dao Nguyen, Anh. Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms.

Degree: Docteur es, Mathématiques, 2013, Université François-Rabelais de Tours

Cette thèse est consacrée à l’étude d’équation aux dérivée partielles dy type Hamilton- Jacobi ∂tu - Δu + |∇u|q = 0, in Ω × (0,T),… (more)

Subjects/Keywords: Solutions d'équations; Equations Hamilton-Jacobi; Termes d'absorption

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dao Nguyen, A. (2013). Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms. (Doctoral Dissertation). Université François-Rabelais de Tours. Retrieved from http://www.theses.fr/2013TOUR4045

Chicago Manual of Style (16th Edition):

Dao Nguyen, Anh. “Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms.” 2013. Doctoral Dissertation, Université François-Rabelais de Tours. Accessed October 29, 2020. http://www.theses.fr/2013TOUR4045.

MLA Handbook (7th Edition):

Dao Nguyen, Anh. “Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms.” 2013. Web. 29 Oct 2020.

Vancouver:

Dao Nguyen A. Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms. [Internet] [Doctoral dissertation]. Université François-Rabelais de Tours; 2013. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2013TOUR4045.

Council of Science Editors:

Dao Nguyen A. Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms. [Doctoral Dissertation]. Université François-Rabelais de Tours; 2013. Available from: http://www.theses.fr/2013TOUR4045


University of Arizona

8. Baumeister, Richard, 1951-. APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS .

Degree: 1977, University of Arizona

Subjects/Keywords: Hamilton-Jacobi equations.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baumeister, Richard, 1. (1977). APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/298471

Chicago Manual of Style (16th Edition):

Baumeister, Richard, 1951-. “APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS .” 1977. Doctoral Dissertation, University of Arizona. Accessed October 29, 2020. http://hdl.handle.net/10150/298471.

MLA Handbook (7th Edition):

Baumeister, Richard, 1951-. “APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS .” 1977. Web. 29 Oct 2020.

Vancouver:

Baumeister, Richard 1. APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS . [Internet] [Doctoral dissertation]. University of Arizona; 1977. [cited 2020 Oct 29]. Available from: http://hdl.handle.net/10150/298471.

Council of Science Editors:

Baumeister, Richard 1. APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS . [Doctoral Dissertation]. University of Arizona; 1977. Available from: http://hdl.handle.net/10150/298471


Technical University of Lisbon

9. Pólvora, Pedro Ribeiro Coelho Fouto. Optimal value of a firm investing in exogeneous technology.

Degree: 2012, Technical University of Lisbon

Mestrado em Matemática Financeira

Neste trabalho estudamos o valor ótimo para uma Firma cujo valor função depende de um nível de tecnologia exógeno. Em qualquer… (more)

Subjects/Keywords: Opções reais de investimento; processos de salto de Poisson; Equações Hamilton-Jacobi-Bellman; Tempos de paragem; Real investment options; Poisson jump processes; Hamilton-Jacobi-Bellman equations; Stopping times

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pólvora, P. R. C. F. (2012). Optimal value of a firm investing in exogeneous technology. (Thesis). Technical University of Lisbon. Retrieved from http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pólvora, Pedro Ribeiro Coelho Fouto. “Optimal value of a firm investing in exogeneous technology.” 2012. Thesis, Technical University of Lisbon. Accessed October 29, 2020. http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pólvora, Pedro Ribeiro Coelho Fouto. “Optimal value of a firm investing in exogeneous technology.” 2012. Web. 29 Oct 2020.

Vancouver:

Pólvora PRCF. Optimal value of a firm investing in exogeneous technology. [Internet] [Thesis]. Technical University of Lisbon; 2012. [cited 2020 Oct 29]. Available from: http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pólvora PRCF. Optimal value of a firm investing in exogeneous technology. [Thesis]. Technical University of Lisbon; 2012. Available from: http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Scarinci, Teresa. Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal.

Degree: Docteur es, Mathématiques, 2015, Université Pierre et Marie Curie – Paris VI

Dans cette thèse nous étudions une classe d’équations de Hamilton-Jacobi-Bellman provenant de la théorie du contrôle optimal des équations différentielles ordinaires. Nous nous intéressons principalement… (more)

Subjects/Keywords: Equations d'Hamilton-Jacobi-Bellman; Relation de sensibilité; Contrôle optimal; Inclusion différentielles; Solutions de viscosité; Problème de mayer; Hamilton-Jacobi-Bellman equations; Optimal control; Sensitivity relations; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scarinci, T. (2015). Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2015PA066573

Chicago Manual of Style (16th Edition):

Scarinci, Teresa. “Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal.” 2015. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 29, 2020. http://www.theses.fr/2015PA066573.

MLA Handbook (7th Edition):

Scarinci, Teresa. “Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal.” 2015. Web. 29 Oct 2020.

Vancouver:

Scarinci T. Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2015PA066573.

Council of Science Editors:

Scarinci T. Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. Available from: http://www.theses.fr/2015PA066573

11. Sedrakyan, Hayk. Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control.

Degree: Docteur es, Mathématiques Appliquées, 2014, Université Pierre et Marie Curie – Paris VI

Cette thèse se compose de deux parties principales. Dans la première partie, le Chapitre 3 est consacré à l'étude du comportement limite d'un système contrôlé… (more)

Subjects/Keywords: Perturbations singulières; Problème de Bolza; Condition de nonexpansivité; Solution de viscosité; Equations d'Hamilton-Jacobi; Contraintes d'état; Bolza problem; Hamilton-Jacobi equations; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sedrakyan, H. (2014). Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2014PA066681

Chicago Manual of Style (16th Edition):

Sedrakyan, Hayk. “Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control.” 2014. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 29, 2020. http://www.theses.fr/2014PA066681.

MLA Handbook (7th Edition):

Sedrakyan, Hayk. “Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control.” 2014. Web. 29 Oct 2020.

Vancouver:

Sedrakyan H. Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2014. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2014PA066681.

Council of Science Editors:

Sedrakyan H. Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2014. Available from: http://www.theses.fr/2014PA066681

12. Figueroa Iglesias, Susely. Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments : Modèles intégro-différentiels pour la dynamique évolutive de populations dans des environnements hétérogènes en temps.

Degree: Docteur es, Mathématiques appliquées, 2019, Université Toulouse III – Paul Sabatier

Cette thèse porte sur l'étude qualitative de plusieurs équations paraboliques de type Lotka-Volterra issues de la biologie évolutive et de l'écologie, équations qui prennent en… (more)

Subjects/Keywords: Equations de réaction-diffusion non locales; Modèles de sélection-mutation; Etude asymptotique et comportement à long terme; Equations de Hamilton; Jacobi; Concentrations de Dirac; Nonlocal reaction-diffusion equations; Mutation-selection models; Asymptomatic study and long time behavior; Hamilton-Jacobi equations; Dirac concentrations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Figueroa Iglesias, S. (2019). Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments : Modèles intégro-différentiels pour la dynamique évolutive de populations dans des environnements hétérogènes en temps. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2019TOU30098

Chicago Manual of Style (16th Edition):

Figueroa Iglesias, Susely. “Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments : Modèles intégro-différentiels pour la dynamique évolutive de populations dans des environnements hétérogènes en temps.” 2019. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed October 29, 2020. http://www.theses.fr/2019TOU30098.

MLA Handbook (7th Edition):

Figueroa Iglesias, Susely. “Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments : Modèles intégro-différentiels pour la dynamique évolutive de populations dans des environnements hétérogènes en temps.” 2019. Web. 29 Oct 2020.

Vancouver:

Figueroa Iglesias S. Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments : Modèles intégro-différentiels pour la dynamique évolutive de populations dans des environnements hétérogènes en temps. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2019. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2019TOU30098.

Council of Science Editors:

Figueroa Iglesias S. Integro-differential models for evolutionary dynamics of populations in time-heterogeneous environments : Modèles intégro-différentiels pour la dynamique évolutive de populations dans des environnements hétérogènes en temps. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2019. Available from: http://www.theses.fr/2019TOU30098

13. Mateos González, Álvaro. Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale.

Degree: Docteur es, Mathématiques, 2017, Lyon

Cette thèse est consacrée à l'analyse asymptotique d'équations aux dérivées partielles issues de modèles de déplacement sous-diffusif en biologie cellulaire. Notre motivation biologique est fondée… (more)

Subjects/Keywords: Analyse asymptotique; Equations aux dérivées partielles; Diffusion anormale; Équations structurées; Entropie relative; Equations de Hamilton-Jacobi; Sous diffusion en biologie cellulaire; Asomptic analysis; Partial differential equations; Anomalous diffusion; Structured equations; Relative entropy; Hamilton-Jacobi equations; Subdiffusion in cell biology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mateos González, A. (2017). Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2017LYSEN069

Chicago Manual of Style (16th Edition):

Mateos González, Álvaro. “Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale.” 2017. Doctoral Dissertation, Lyon. Accessed October 29, 2020. http://www.theses.fr/2017LYSEN069.

MLA Handbook (7th Edition):

Mateos González, Álvaro. “Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale.” 2017. Web. 29 Oct 2020.

Vancouver:

Mateos González A. Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale. [Internet] [Doctoral dissertation]. Lyon; 2017. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2017LYSEN069.

Council of Science Editors:

Mateos González A. Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale. [Doctoral Dissertation]. Lyon; 2017. Available from: http://www.theses.fr/2017LYSEN069


University of Waterloo

14. Han, Dong. Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations.

Degree: 2011, University of Waterloo

 We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation… (more)

Subjects/Keywords: multigrid methods; full approximation scheme; relaxation scheme; policy iteration; Hamilton-Jacobi-Bellman Equations; Hamilton-Jacobi-Bellman-Isaacs Equations; jump in control

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, D. (2011). Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/6021

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Han, Dong. “Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations.” 2011. Thesis, University of Waterloo. Accessed October 29, 2020. http://hdl.handle.net/10012/6021.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Han, Dong. “Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations.” 2011. Web. 29 Oct 2020.

Vancouver:

Han D. Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Oct 29]. Available from: http://hdl.handle.net/10012/6021.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Han D. Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/6021

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Caillerie, Nils. Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie : Stochastic and deterministic kinetic equations in the context of mathematics applied to biology.

Degree: Docteur es, Mathématiques, 2017, Lyon

Cette thèse étudie des modèles mathématiques inspirés par la biologie. Plus précisément, nous nous concentrons sur des équations aux dérivées partielles cinétiques. Les champs d'application… (more)

Subjects/Keywords: Équations cinétiques; Équations de Hamilton-Jacobi; Propagation de fronts; Modélisation; Équations aux dérivées partielles stochastiques; Méthode de la fonction test perturbée; Kinetic equations; Hamilton-Jacobi equation; Front propagation; Modelling; Stochastic partial differential equations; Perturbed test function method; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Caillerie, N. (2017). Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie : Stochastic and deterministic kinetic equations in the context of mathematics applied to biology. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2017LYSE1117

Chicago Manual of Style (16th Edition):

Caillerie, Nils. “Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie : Stochastic and deterministic kinetic equations in the context of mathematics applied to biology.” 2017. Doctoral Dissertation, Lyon. Accessed October 29, 2020. http://www.theses.fr/2017LYSE1117.

MLA Handbook (7th Edition):

Caillerie, Nils. “Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie : Stochastic and deterministic kinetic equations in the context of mathematics applied to biology.” 2017. Web. 29 Oct 2020.

Vancouver:

Caillerie N. Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie : Stochastic and deterministic kinetic equations in the context of mathematics applied to biology. [Internet] [Doctoral dissertation]. Lyon; 2017. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2017LYSE1117.

Council of Science Editors:

Caillerie N. Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie : Stochastic and deterministic kinetic equations in the context of mathematics applied to biology. [Doctoral Dissertation]. Lyon; 2017. Available from: http://www.theses.fr/2017LYSE1117


University of California – Irvine

16. Gao, Hongwei. Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D.

Degree: Mathematics, 2016, University of California – Irvine

 This dissertation considers the random homogenization of coercive Hamilton-Jacobi equations and it gives the most generalized result in 1-D. Basically, we can prove that in… (more)

Subjects/Keywords: Mathematics; G-equations; Hamilton-Jacobi equation; homogenization; nonconvex; random; strain effect

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gao, H. (2016). Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D. (Thesis). University of California – Irvine. Retrieved from http://www.escholarship.org/uc/item/0wx3x8kw

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gao, Hongwei. “Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D.” 2016. Thesis, University of California – Irvine. Accessed October 29, 2020. http://www.escholarship.org/uc/item/0wx3x8kw.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gao, Hongwei. “Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D.” 2016. Web. 29 Oct 2020.

Vancouver:

Gao H. Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D. [Internet] [Thesis]. University of California – Irvine; 2016. [cited 2020 Oct 29]. Available from: http://www.escholarship.org/uc/item/0wx3x8kw.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gao H. Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D. [Thesis]. University of California – Irvine; 2016. Available from: http://www.escholarship.org/uc/item/0wx3x8kw

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

17. Garnica, Alvaro David. A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics.

Degree: MS, Civil Engineering, 2016, University of Illinois – Urbana-Champaign

Hamilton-Jacobi equations have repeatedly emerged in many fields of physics, most notably, optimal control, differential games, geometric optics, and image processing. This thesis presents a… (more)

Subjects/Keywords: Electroelastotstatics; Hamilton-Jacobi equations; Homogenization; WENO scheme; Elastic energy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garnica, A. D. (2016). A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/92764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Garnica, Alvaro David. “A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics.” 2016. Thesis, University of Illinois – Urbana-Champaign. Accessed October 29, 2020. http://hdl.handle.net/2142/92764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Garnica, Alvaro David. “A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics.” 2016. Web. 29 Oct 2020.

Vancouver:

Garnica AD. A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2016. [cited 2020 Oct 29]. Available from: http://hdl.handle.net/2142/92764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Garnica AD. A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics. [Thesis]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/92764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


King Abdullah University of Science and Technology

18. Duisembay, Serikbolsyn. Convergent Difference Schemes for Hamilton-Jacobi equations.

Degree: 2018, King Abdullah University of Science and Technology

 In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes… (more)

Subjects/Keywords: Hamilton-Jacobi equations; difference schemes; Viscosity solutions; numerical methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duisembay, S. (2018). Convergent Difference Schemes for Hamilton-Jacobi equations. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/627772

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Duisembay, Serikbolsyn. “Convergent Difference Schemes for Hamilton-Jacobi equations.” 2018. Thesis, King Abdullah University of Science and Technology. Accessed October 29, 2020. http://hdl.handle.net/10754/627772.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Duisembay, Serikbolsyn. “Convergent Difference Schemes for Hamilton-Jacobi equations.” 2018. Web. 29 Oct 2020.

Vancouver:

Duisembay S. Convergent Difference Schemes for Hamilton-Jacobi equations. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2018. [cited 2020 Oct 29]. Available from: http://hdl.handle.net/10754/627772.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Duisembay S. Convergent Difference Schemes for Hamilton-Jacobi equations. [Thesis]. King Abdullah University of Science and Technology; 2018. Available from: http://hdl.handle.net/10754/627772

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Hajej, Ahmed. Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris Sciences et Lettres (ComUE)

Dans ce travail, on étudie l'homogénéisation de quelques problèmes de propagations de fronts dans des milieux stationnaires et ergodiques. Dans la première partie, on étudie… (more)

Subjects/Keywords: Homogénéisation stochastique; Equations de Hamilton-Jacobi; Propagations de fronts; Contrôle optimal; Problème métrique; Approximation numérique; Stochastic homogenization; Hamilton-Jacobi equations; Front propagation; Optimal control; Metric problem; Numerical approximation; Viscosity solutions; 515.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hajej, A. (2016). Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2016PSLED048

Chicago Manual of Style (16th Edition):

Hajej, Ahmed. “Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems.” 2016. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed October 29, 2020. http://www.theses.fr/2016PSLED048.

MLA Handbook (7th Edition):

Hajej, Ahmed. “Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems.” 2016. Web. 29 Oct 2020.

Vancouver:

Hajej A. Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2016. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2016PSLED048.

Council of Science Editors:

Hajej A. Homogénéisation stochastique de quelques problèmes de propagations d'interfaces : Stochastic homogenization of some front propagation problems. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2016. Available from: http://www.theses.fr/2016PSLED048

20. Guerand, Jessica. Équations de Hamilton-Jacobi discontinues et régularité parabolique à la De Giorgi : Discontinuous Hamilton-Jacobi equations and parabolic regularity à la De Giorgi.

Degree: Docteur es, Mathématiques, 2018, Paris Sciences et Lettres (ComUE)

Cette thèse est constituée de deux parties. Une première partie est consacrée à l’étude des équations de Hamilton-Jacobi du premier ordre. Ces équations apparaissent en… (more)

Subjects/Keywords: Équations de Hamilton-Jacobi; Solutions de viscosité; Conditions de bord effectives; Régularité elliptique à la De Giorgi; Lemme des valeurs intermédiaires; Hamilton-Jacobi equations; Viscosity solutions; Effective boundary conditions; De Giorgi elliptic regularity; Intermediate value lemma; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guerand, J. (2018). Équations de Hamilton-Jacobi discontinues et régularité parabolique à la De Giorgi : Discontinuous Hamilton-Jacobi equations and parabolic regularity à la De Giorgi. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2018PSLEE059

Chicago Manual of Style (16th Edition):

Guerand, Jessica. “Équations de Hamilton-Jacobi discontinues et régularité parabolique à la De Giorgi : Discontinuous Hamilton-Jacobi equations and parabolic regularity à la De Giorgi.” 2018. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed October 29, 2020. http://www.theses.fr/2018PSLEE059.

MLA Handbook (7th Edition):

Guerand, Jessica. “Équations de Hamilton-Jacobi discontinues et régularité parabolique à la De Giorgi : Discontinuous Hamilton-Jacobi equations and parabolic regularity à la De Giorgi.” 2018. Web. 29 Oct 2020.

Vancouver:

Guerand J. Équations de Hamilton-Jacobi discontinues et régularité parabolique à la De Giorgi : Discontinuous Hamilton-Jacobi equations and parabolic regularity à la De Giorgi. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2018. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2018PSLEE059.

Council of Science Editors:

Guerand J. Équations de Hamilton-Jacobi discontinues et régularité parabolique à la De Giorgi : Discontinuous Hamilton-Jacobi equations and parabolic regularity à la De Giorgi. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2018. Available from: http://www.theses.fr/2018PSLEE059


Michigan State University

21. Wang, Zixuan. Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations.

Degree: 2015, Michigan State University

Thesis Ph. D. Michigan State University. Applied Mathematics 2015

This thesis focuses on two related topics, which are to design efficient discontinuous Galerkin (DG) schemes… (more)

Subjects/Keywords: Galerkin methods; Hamilton-Jacobi equations – Numerical solutions; Differential equations, Elliptic – Numerical solutions; Applied mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Z. (2015). Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:3704

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Zixuan. “Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations.” 2015. Thesis, Michigan State University. Accessed October 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:3704.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Zixuan. “Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations.” 2015. Web. 29 Oct 2020.

Vancouver:

Wang Z. Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations. [Internet] [Thesis]. Michigan State University; 2015. [cited 2020 Oct 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:3704.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang Z. Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations. [Thesis]. Michigan State University; 2015. Available from: http://etd.lib.msu.edu/islandora/object/etd:3704

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Wu, Xiaochi. Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation.

Degree: Docteur es, Mathématiques, 2018, Brest

Cette thèse concerne les jeux différentiels à somme nulle et à deux joueurs avec information incomplète. La structure de l'information est liée à un signal… (more)

Subjects/Keywords: Jeux Différentiels; Information incomplète; Equations d’Hamilton-Jacobi; Révélation; Signaux; Differential games; Incomplete information; Hamilton-Jacobi equations; Revealing; Signals; 519.32

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, X. (2018). Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation. (Doctoral Dissertation). Brest. Retrieved from http://www.theses.fr/2018BRES0023

Chicago Manual of Style (16th Edition):

Wu, Xiaochi. “Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation.” 2018. Doctoral Dissertation, Brest. Accessed October 29, 2020. http://www.theses.fr/2018BRES0023.

MLA Handbook (7th Edition):

Wu, Xiaochi. “Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation.” 2018. Web. 29 Oct 2020.

Vancouver:

Wu X. Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation. [Internet] [Doctoral dissertation]. Brest; 2018. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2018BRES0023.

Council of Science Editors:

Wu X. Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation. [Doctoral Dissertation]. Brest; 2018. Available from: http://www.theses.fr/2018BRES0023

23. Pimentel, Edgard Almeida. Um ensaio em teoria dos jogos.

Degree: Mestrado, Matemática Aplicada, 2010, University of São Paulo

Esta dissertação aborda a teoria dos jogos diferenciais em sua estreita relação com a teoria das equações de Hamilton-Jacobi (HJ). Inicialmente, uma revisão da noção… (more)

Subjects/Keywords: Differential game theory and value functions; Equilíbrio de Nash e refinamentos; Game Theory; Hamilton- Jacobi e soluções viscosas.; Hamilton-Jacobi equations and viscosity solutions; jogos diferenciais e função de valor; Nash equilibria and its refinements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pimentel, E. A. (2010). Um ensaio em teoria dos jogos. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45132/tde-31082010-091851/ ;

Chicago Manual of Style (16th Edition):

Pimentel, Edgard Almeida. “Um ensaio em teoria dos jogos.” 2010. Masters Thesis, University of São Paulo. Accessed October 29, 2020. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-31082010-091851/ ;.

MLA Handbook (7th Edition):

Pimentel, Edgard Almeida. “Um ensaio em teoria dos jogos.” 2010. Web. 29 Oct 2020.

Vancouver:

Pimentel EA. Um ensaio em teoria dos jogos. [Internet] [Masters thesis]. University of São Paulo; 2010. [cited 2020 Oct 29]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-31082010-091851/ ;.

Council of Science Editors:

Pimentel EA. Um ensaio em teoria dos jogos. [Masters Thesis]. University of São Paulo; 2010. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-31082010-091851/ ;

24. Abadie, Jean-Francois. Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading » : Reliable estimations of a function and its derivatives & Theoretical and numerical study of a shape from shading problem.

Degree: Docteur es, Mathématiques appliquées, 2019, Sorbonne université

Les travaux présentés dans la première partie de ce manuscrit de thèse sont le fruit d’une collaboration entre Alstom et la RATP. Nous y présentons… (more)

Subjects/Keywords: Fonctions différentiables; Bornes certifiées; Calculs en temps réel; Équations de Hamilton-Jacobi; Schémas aux différences finies; Problème de « shape from shading »; Differentiable functtioions; Certified bounds; Real time computations; Hamilton-Jacobi equations; FInite differences schemes; Shape from shading problem; 518

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abadie, J. (2019). Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading » : Reliable estimations of a function and its derivatives & Theoretical and numerical study of a shape from shading problem. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2019SORUS445

Chicago Manual of Style (16th Edition):

Abadie, Jean-Francois. “Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading » : Reliable estimations of a function and its derivatives & Theoretical and numerical study of a shape from shading problem.” 2019. Doctoral Dissertation, Sorbonne université. Accessed October 29, 2020. http://www.theses.fr/2019SORUS445.

MLA Handbook (7th Edition):

Abadie, Jean-Francois. “Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading » : Reliable estimations of a function and its derivatives & Theoretical and numerical study of a shape from shading problem.” 2019. Web. 29 Oct 2020.

Vancouver:

Abadie J. Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading » : Reliable estimations of a function and its derivatives & Theoretical and numerical study of a shape from shading problem. [Internet] [Doctoral dissertation]. Sorbonne université; 2019. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2019SORUS445.

Council of Science Editors:

Abadie J. Estimations fiables d'une fonction et de ses dérivées & Étude théorique et numérique d'un problème de « shape from shading » : Reliable estimations of a function and its derivatives & Theoretical and numerical study of a shape from shading problem. [Doctoral Dissertation]. Sorbonne université; 2019. Available from: http://www.theses.fr/2019SORUS445

25. Koumaiha, Marwa. Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D : Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations.

Degree: Docteur es, Mathématiques, 2017, Université Paris-Est

Cette thèse est composée de deux parties dans lesquelles nous étudions d'une part des estimations d'erreurs pour des schémas numériques associés à des équations de(more)

Subjects/Keywords: Estimations d'erreur; Equations de Hamilton - Jacobi; Schéma numérique montone; Équations d'ondes couplées; Controllabilité exacte; Approche spectrale; Error estimates; Hamiton -Jacobi equations; Monotone numerical scheme; Coupled wave equations; Exact controllability; Spectral approach

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koumaiha, M. (2017). Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D : Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2017PESC1122

Chicago Manual of Style (16th Edition):

Koumaiha, Marwa. “Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D : Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations.” 2017. Doctoral Dissertation, Université Paris-Est. Accessed October 29, 2020. http://www.theses.fr/2017PESC1122.

MLA Handbook (7th Edition):

Koumaiha, Marwa. “Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D : Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations.” 2017. Web. 29 Oct 2020.

Vancouver:

Koumaiha M. Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D : Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations. [Internet] [Doctoral dissertation]. Université Paris-Est; 2017. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2017PESC1122.

Council of Science Editors:

Koumaiha M. Analyse numérique pour les équations de Hamilton-Jacobi sur réseaux et contrôlabilité / stabilité indirecte d'un système d'équations des ondes 1D : Numerical analysis for Hamilton-Jacobi equations on networks and indirect controllability/stability of a 1D system of wave equations. [Doctoral Dissertation]. Université Paris-Est; 2017. Available from: http://www.theses.fr/2017PESC1122

26. Zhao, Xuzhe. Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. : Multi-modes switching problem, backward stochastic differential equations and partial differential equations.

Degree: Docteur es, Mathématiques, 2014, Le Mans

Cette thèse est composée de trois parties. Dans la première nous montrons l'existence et l'unicité de la solution continue et à croissance polynomiale, au sensviscosité,… (more)

Subjects/Keywords: Equations intégro-différentielles à obstacles interconnectés; Equations différentielles stochastiques rétrogrades; Equation de Hamilton-Jacobi-Bellman-Isaacs; Switching optimal; Jeu à somme nulle; Méthode de Perron; Processus de Lévy; IPDE with interconnected obstacles; Multi-modes switching problem; Backward stochastic differential equations; Switching zero-sum game; Lévy process; Perron's method; Hamilton-Jacobi-Bellman-Isaacs equation; 515.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, X. (2014). Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. : Multi-modes switching problem, backward stochastic differential equations and partial differential equations. (Doctoral Dissertation). Le Mans. Retrieved from http://www.theses.fr/2014LEMA1008

Chicago Manual of Style (16th Edition):

Zhao, Xuzhe. “Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. : Multi-modes switching problem, backward stochastic differential equations and partial differential equations.” 2014. Doctoral Dissertation, Le Mans. Accessed October 29, 2020. http://www.theses.fr/2014LEMA1008.

MLA Handbook (7th Edition):

Zhao, Xuzhe. “Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. : Multi-modes switching problem, backward stochastic differential equations and partial differential equations.” 2014. Web. 29 Oct 2020.

Vancouver:

Zhao X. Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. : Multi-modes switching problem, backward stochastic differential equations and partial differential equations. [Internet] [Doctoral dissertation]. Le Mans; 2014. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2014LEMA1008.

Council of Science Editors:

Zhao X. Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales. : Multi-modes switching problem, backward stochastic differential equations and partial differential equations. [Doctoral Dissertation]. Le Mans; 2014. Available from: http://www.theses.fr/2014LEMA1008

27. Ferreira, Henrique Cezar. Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs.

Degree: PhD, Engenharia de Sistemas, 2008, University of São Paulo

O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle.… (more)

Subjects/Keywords: Equações de Riccati; Galerkin approximation; Hamilton-Jacobi-Isaacs equations; Nonlinear H1 control; Output feedback; Successive approximation; Teoria de sistemas; Teoria de sistemas e controle; Weighting functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferreira, H. C. (2008). Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/3/3139/tde-14052009-142310/ ;

Chicago Manual of Style (16th Edition):

Ferreira, Henrique Cezar. “Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs.” 2008. Doctoral Dissertation, University of São Paulo. Accessed October 29, 2020. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-14052009-142310/ ;.

MLA Handbook (7th Edition):

Ferreira, Henrique Cezar. “Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs.” 2008. Web. 29 Oct 2020.

Vancouver:

Ferreira HC. Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. [Internet] [Doctoral dissertation]. University of São Paulo; 2008. [cited 2020 Oct 29]. Available from: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-14052009-142310/ ;.

Council of Science Editors:

Ferreira HC. Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. [Doctoral Dissertation]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-14052009-142310/ ;

28. Therme, Nicolas. Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards.

Degree: Docteur es, Mathématiques, 2015, Aix Marseille Université

Dans les installations nucléaires, les explosions, qu’elles soient d’origine interne ou externe, peuvent entrainer la rupture du confinement et le rejet de matières radioactives dans… (more)

Subjects/Keywords: Volumes finis; Equations d'Euler; Hamilton-Jacobi; Muscl; Mailage décalé; Stabilité; Analyse numérique; Fluides compressibles; Finite Volumes; Euler equations; Hamilton-Jacobi; Compressible flows; Staggered discretization; Muscl; Numerical Analysis; Stability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Therme, N. (2015). Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2015AIXM4775

Chicago Manual of Style (16th Edition):

Therme, Nicolas. “Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards.” 2015. Doctoral Dissertation, Aix Marseille Université. Accessed October 29, 2020. http://www.theses.fr/2015AIXM4775.

MLA Handbook (7th Edition):

Therme, Nicolas. “Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards.” 2015. Web. 29 Oct 2020.

Vancouver:

Therme N. Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards. [Internet] [Doctoral dissertation]. Aix Marseille Université 2015. [cited 2020 Oct 29]. Available from: http://www.theses.fr/2015AIXM4775.

Council of Science Editors:

Therme N. Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards. [Doctoral Dissertation]. Aix Marseille Université 2015. Available from: http://www.theses.fr/2015AIXM4775


Rhodes University

29. Adams, Ross Montague. A study of a class of invariant optimal control problems on the Euclidean group SE(2).

Degree: Faculty of Science, Mathematics (Pure and Applied), 2011, Rhodes University

 The aim of this thesis is to study a class of left-invariant optimal control problems on the matrix Lie group SE(2). We classify, under detached… (more)

Subjects/Keywords: Matrix groups; Lie groups; Extremal problems (Mathematics); Maximum principles (Mathematics); Hamilton-Jacobi equations; Lyapunov stability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Adams, R. M. (2011). A study of a class of invariant optimal control problems on the Euclidean group SE(2). (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1006060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Adams, Ross Montague. “A study of a class of invariant optimal control problems on the Euclidean group SE(2).” 2011. Thesis, Rhodes University. Accessed October 29, 2020. http://hdl.handle.net/10962/d1006060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Adams, Ross Montague. “A study of a class of invariant optimal control problems on the Euclidean group SE(2).” 2011. Web. 29 Oct 2020.

Vancouver:

Adams RM. A study of a class of invariant optimal control problems on the Euclidean group SE(2). [Internet] [Thesis]. Rhodes University; 2011. [cited 2020 Oct 29]. Available from: http://hdl.handle.net/10962/d1006060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Adams RM. A study of a class of invariant optimal control problems on the Euclidean group SE(2). [Thesis]. Rhodes University; 2011. Available from: http://hdl.handle.net/10962/d1006060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

30. Smears, Iain Robert Nicholas. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

Degree: PhD, 2015, University of Oxford

 We propose a discontinuous Galerkin finite element method (DGFEM) for fully nonlinear elliptic Hamilton – Jacobi – Bellman (HJB) partial differential equations (PDE) of second order with… (more)

Subjects/Keywords: 515; Mathematics; Numerical analysis; Finite element methods; discontinuous Galerkin; Hamilton-Jacobi-Bellman equations; Cordes coefficients

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smears, I. R. N. (2015). Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

Chicago Manual of Style (16th Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Doctoral Dissertation, University of Oxford. Accessed October 29, 2020. http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

MLA Handbook (7th Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Web. 29 Oct 2020.

Vancouver:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Internet] [Doctoral dissertation]. University of Oxford; 2015. [cited 2020 Oct 29]. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

Council of Science Editors:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Doctoral Dissertation]. University of Oxford; 2015. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

[1] [2] [3] [4] [5] … [11898]

.