Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Enveloping Algebra). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Wisconsin – Milwaukee

1. Yee, Daniel Owen. Extensions of Enveloping Algebras Via Anti-cocommutative Elements.

Degree: PhD, Mathematics, 2017, University of Wisconsin – Milwaukee

  We know that given a connected Hopf algebra H, the universal enveloping algebra U(P(H)) embeds in H as a Hopf subalgebra. Depending on P(H),… (more)

Subjects/Keywords: Anti-cocommutative; Connected Algebra; Enveloping Algebra; Global Dimension; HOPF Algebra; Non-commutative Algebra; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yee, D. O. (2017). Extensions of Enveloping Algebras Via Anti-cocommutative Elements. (Doctoral Dissertation). University of Wisconsin – Milwaukee. Retrieved from https://dc.uwm.edu/etd/1728

Chicago Manual of Style (16th Edition):

Yee, Daniel Owen. “Extensions of Enveloping Algebras Via Anti-cocommutative Elements.” 2017. Doctoral Dissertation, University of Wisconsin – Milwaukee. Accessed July 07, 2020. https://dc.uwm.edu/etd/1728.

MLA Handbook (7th Edition):

Yee, Daniel Owen. “Extensions of Enveloping Algebras Via Anti-cocommutative Elements.” 2017. Web. 07 Jul 2020.

Vancouver:

Yee DO. Extensions of Enveloping Algebras Via Anti-cocommutative Elements. [Internet] [Doctoral dissertation]. University of Wisconsin – Milwaukee; 2017. [cited 2020 Jul 07]. Available from: https://dc.uwm.edu/etd/1728.

Council of Science Editors:

Yee DO. Extensions of Enveloping Algebras Via Anti-cocommutative Elements. [Doctoral Dissertation]. University of Wisconsin – Milwaukee; 2017. Available from: https://dc.uwm.edu/etd/1728

2. Bou Daher, Rabih. Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras.

Degree: Docteur es, Mathématiques Fondamentales, 2017, Clermont Auvergne

Dans cette thèse, nous décrivons explicitement la structure multiplicative et la structure d’algèbre de Lie graduée sur la cohomologie de l’algèbre enveloppante d’une algèbre de… (more)

Subjects/Keywords: (Co)homologie de Hochschild; Produit cup; Produit cap; Algèbre de Gerstenhaber; Algèbre enveloppante; Hochschild (co)homology; Cup product; Cap product; Gerstenhaber algebra; Enveloping algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bou Daher, R. (2017). Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras. (Doctoral Dissertation). Clermont Auvergne. Retrieved from http://www.theses.fr/2017CLFAC039

Chicago Manual of Style (16th Edition):

Bou Daher, Rabih. “Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras.” 2017. Doctoral Dissertation, Clermont Auvergne. Accessed July 07, 2020. http://www.theses.fr/2017CLFAC039.

MLA Handbook (7th Edition):

Bou Daher, Rabih. “Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras.” 2017. Web. 07 Jul 2020.

Vancouver:

Bou Daher R. Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras. [Internet] [Doctoral dissertation]. Clermont Auvergne; 2017. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2017CLFAC039.

Council of Science Editors:

Bou Daher R. Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras. [Doctoral Dissertation]. Clermont Auvergne; 2017. Available from: http://www.theses.fr/2017CLFAC039


ETH Zürich

3. Moezzi, Arvin. The injective hull of hyperbolic groups.

Degree: 2010, ETH Zürich

Subjects/Keywords: GRUPPENOPERATIONEN (ALGEBRA); GROUP ACTIONS (ALGEBRA); ENDLICH ERZEUGTE GRUPPEN (ALGEBRA); EINHÜLLENDE ALGEBREN (ALGEBRA); ENVELOPING ALGEBRAS (ALGEBRA); INJECTIVE MODULES (ALGEBRA); INJEKTIVE MODULN (ALGEBRA); FINITELY GENERATED GROUPS (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moezzi, A. (2010). The injective hull of hyperbolic groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/29445

Chicago Manual of Style (16th Edition):

Moezzi, Arvin. “The injective hull of hyperbolic groups.” 2010. Doctoral Dissertation, ETH Zürich. Accessed July 07, 2020. http://hdl.handle.net/20.500.11850/29445.

MLA Handbook (7th Edition):

Moezzi, Arvin. “The injective hull of hyperbolic groups.” 2010. Web. 07 Jul 2020.

Vancouver:

Moezzi A. The injective hull of hyperbolic groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/20.500.11850/29445.

Council of Science Editors:

Moezzi A. The injective hull of hyperbolic groups. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/29445

4. Masaros, America. Category O Representations of the Lie Superalgebra osp(3,2).

Degree: PhD, Mathematics, 2013, University of Wisconsin – Milwaukee

  In his seminal 1977 paper [Kac77], V. G. Kac classified the finite dimensional simple Lie superalgebras over algebraically closed fields of characteristic zero. However,… (more)

Subjects/Keywords: Enveloping Algebra; Lie Superalgebra; Orthosymplectic; Representation; Verma Module; Mathematics; Other Mathematics

…place in G. Such an algebra is called an enveloping algebra, and the universal enveloping… …algebra Upgq is universal among such algebras, in the sense that for any enveloping algebra G… …unique; to prove existance, we construct a universal enveloping algebra as a quotient of a Z2… …algebra to the enveloping algebras of subalgebras. Corollary 1.5.4 ( [Mus12, Lem… …his book, Lie Superalgebras and Enveloping Algebras [Mus12], which appear in… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Masaros, A. (2013). Category O Representations of the Lie Superalgebra osp(3,2). (Doctoral Dissertation). University of Wisconsin – Milwaukee. Retrieved from https://dc.uwm.edu/etd/137

Chicago Manual of Style (16th Edition):

Masaros, America. “Category O Representations of the Lie Superalgebra osp(3,2).” 2013. Doctoral Dissertation, University of Wisconsin – Milwaukee. Accessed July 07, 2020. https://dc.uwm.edu/etd/137.

MLA Handbook (7th Edition):

Masaros, America. “Category O Representations of the Lie Superalgebra osp(3,2).” 2013. Web. 07 Jul 2020.

Vancouver:

Masaros A. Category O Representations of the Lie Superalgebra osp(3,2). [Internet] [Doctoral dissertation]. University of Wisconsin – Milwaukee; 2013. [cited 2020 Jul 07]. Available from: https://dc.uwm.edu/etd/137.

Council of Science Editors:

Masaros A. Category O Representations of the Lie Superalgebra osp(3,2). [Doctoral Dissertation]. University of Wisconsin – Milwaukee; 2013. Available from: https://dc.uwm.edu/etd/137

5. Herlemont, Basile. Differential calculus on h-deformed spaces : Calcul différentiel sur des espaces h-déformés.

Degree: Docteur es, Physique Théorique et Mathématique, 2017, Aix Marseille Université

L'anneau \Diff(n) des opérateurs différentiels \h-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur… (more)

Subjects/Keywords: Opérateurs différentiels; Équation de Yang-Baxter; Algèbres de réduction; Algèbre enveloppante universelle; Théorie des représentations; Propriété de Poincaré – Birkhoff – Witt; Corps des fractions; Differential operators; Yang-Baxter equation; Reduction algebras; Universal enveloping algebra; Representation theory; Poincaré – Birkhoff – Witt; Rings of fractions; 530

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herlemont, B. (2017). Differential calculus on h-deformed spaces : Calcul différentiel sur des espaces h-déformés. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2017AIXM0377

Chicago Manual of Style (16th Edition):

Herlemont, Basile. “Differential calculus on h-deformed spaces : Calcul différentiel sur des espaces h-déformés.” 2017. Doctoral Dissertation, Aix Marseille Université. Accessed July 07, 2020. http://www.theses.fr/2017AIXM0377.

MLA Handbook (7th Edition):

Herlemont, Basile. “Differential calculus on h-deformed spaces : Calcul différentiel sur des espaces h-déformés.” 2017. Web. 07 Jul 2020.

Vancouver:

Herlemont B. Differential calculus on h-deformed spaces : Calcul différentiel sur des espaces h-déformés. [Internet] [Doctoral dissertation]. Aix Marseille Université 2017. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2017AIXM0377.

Council of Science Editors:

Herlemont B. Differential calculus on h-deformed spaces : Calcul différentiel sur des espaces h-déformés. [Doctoral Dissertation]. Aix Marseille Université 2017. Available from: http://www.theses.fr/2017AIXM0377

.