Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Ellipsoidal packing). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Brindley, Kyle. Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys.

Degree: PhD, Mechanical Engineering, 2017, Georgia Tech

Refractory metals and their alloys offer higher temperature alternatives to Ni-base superalloys. In particular, Mo-Si and Mo-Si-B intermetallics offer excellent oxidation and creep resistance at temperatures up to 1400°C. However, these intermetallics present a significant design challenge due to their low ductility and low fracture toughness at room temperature. A balance of high temperature and low temperature mechanical properties may be achieved in Mo-Si-B alloys by including the α-Mo phase in addition to the intermetallic phases. Balancing the mechanical properties requires proper microstructure optimization. Through the use of finite element simulations, microstructure-sensitive structure-property modeling allows for this optimization to be done faster and less expensively than traditional methods. Three modeling tools are required for microstructural modeling: microstructure generators to re-create statistically realistic microstructures, crystal viscoplasticity constitutive equations implemented for use with finite element solvers, and post-processing tools to evaluate important mechanical properties. This work presents the development and application of these tools for triplex Mo-Si-B alloys by first developing these tools for the α-Mo phase and calibrating the constitutive equations for the α-Mo phase as a function of Si content, temperature, and strain rate. Following the calibration of the α-Mo phase constitutive equations, an initial model for the fully triplex microstructure is achieved by treating the intermetallic phases as purely elastic. Finally, the triplex microstructure is evaluated for an optimized microstructure balancing strength, fatigue, and ductility. Advisors/Committee Members: Neu, Richard W. (advisor), Antoniou, Antonia (committee member), Gokhale, Arun (committee member), Kalidindi, Surya (committee member), McDowell, David L. (committee member).

Subjects/Keywords: Microstructure-sensitive; Structure-property relationships; Crystal viscoplasticity; Mo-Si-B; ICME; Integrated computational materials engineering; Ellipsoidal packing

packing of grain equivalent ellipsoids in an predefined area [54]… …packing algorithm of Przybyla [54]. . . . . . . . . . . . . . . 35 2.31 Comparison… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brindley, K. (2017). Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/58303

Chicago Manual of Style (16th Edition):

Brindley, Kyle. “Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys.” 2017. Doctoral Dissertation, Georgia Tech. Accessed March 24, 2019. http://hdl.handle.net/1853/58303.

MLA Handbook (7th Edition):

Brindley, Kyle. “Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys.” 2017. Web. 24 Mar 2019.

Vancouver:

Brindley K. Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys. [Internet] [Doctoral dissertation]. Georgia Tech; 2017. [cited 2019 Mar 24]. Available from: http://hdl.handle.net/1853/58303.

Council of Science Editors:

Brindley K. Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys. [Doctoral Dissertation]. Georgia Tech; 2017. Available from: http://hdl.handle.net/1853/58303

.