Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Electronic stopping power). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Xue, Haizhou. Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate.

Degree: 2015, University of Tennessee – Knoxville

The objective of this thesis work is to gain better understanding of ion-solid interaction in the energy regime where electronic and nuclear energy loss are comparable. Such responses of materials to ion irradiations are of fundamental importance for micro-electronics and nuclear applications. The ion irradiation induced modification for the crystal structure, the physical and chemical properties etc. may strongly affect the performance of functional materials that needs to be better understood. Experimentally, ion irradiation induced damage accumulation and dynamic recovery in SiC [silicon carbide] and SrTiO3 [strontium titanate] were studied in this dissertation project. Five chapters are presented: Firstly, electronic stopping power for heavy ions in light targets was experimentally evaluated for SiC. Secondly, out-surface diffusion of Ag atoms through SiC coating layer was studied by ion implantation and thermal annealing. The result also suggested that a SiO2 [silicon dioxide] thin film might serve as a diffusion barrier. Thirdly, a thermally induced recovery was studied for single crystal SiC. Through well controlled isothermal and isochronal annealing processes, activation energies were estimated and attributed to certain defect migration/recombination mechanisms. The fourth chapter focuses on a competing effect on defect dynamics due to ionization-induced defect recovery in SiC. Recovery of the existing defects resulting from a thermal spike along the ion path was expected, and was experimentally confirmed by using energetic ions. The results suggest a low threshold of electronic stopping power for the ionization-induced recovery. In the last chapter, an example of how the target material responses differently to energy deposition are demonstrated for single crystal SrTiO3. Instead of the recovery that was observed in SiC, a synergy effect of the coupled electronic and nuclear stopping energy deposition leads to formation of amorphous ion tracks. Systematic studies towards the role of defect concentration and electronic stopping power in the synergy effect were performed.

Subjects/Keywords: silicon carbide; strontium titanate; radiation damage; dynamic recovery; electronic stopping power; Ceramic Materials; Nuclear Engineering; Semiconductor and Optical Materials

…concentration and electronic stopping power ......................................... 109 1. Abstract… …stopping and nuclear stopping power of the ions, as well as the ratio between the electronic and… …interactions, which are the electronic and nuclear stopping powers. 1.1. Nuclear stopping power and… …collision cascade will be produced. 3 1.2. Electronic stopping power, ionization and ion track… …formation Electronic stopping power is the energy loss due to inelastic collisions between the… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xue, H. (2015). Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/3486

Chicago Manual of Style (16th Edition):

Xue, Haizhou. “Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate.” 2015. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed January 21, 2019. https://trace.tennessee.edu/utk_graddiss/3486.

MLA Handbook (7th Edition):

Xue, Haizhou. “Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate.” 2015. Web. 21 Jan 2019.

Vancouver:

Xue H. Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2015. [cited 2019 Jan 21]. Available from: https://trace.tennessee.edu/utk_graddiss/3486.

Council of Science Editors:

Xue H. Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2015. Available from: https://trace.tennessee.edu/utk_graddiss/3486

2. Jin, Ke. Electronic Energy Loss of Heavy Ions and Its Effects in Ceramics.

Degree: 2015, University of Tennessee – Knoxville

Energy loss of medium energy heavy ions (i.e. Cl, Br, I, and Au) in thin compound foils containing light elements (i.e. silicon carbide and silicon dioxide) is directly measured using a time-of-flight elastic recoil detection analysis (ToF-ERDA) technique. An improved data analysis procedure is proposed to provide the experimentally determined electronic stopping powers. This analysis procedure requires reliable predictions of nuclear stopping. Thus, the nuclear stopping predicted by the Stopping and Range of Ions in Matter (SRIM) code is validated by measuring the angular distribution of 1 MeV Au ions after penetrating a thin silicon nitride foil, using a secondary ion mass spectrometry (SIMS). In order to validate our derived electronic stopping power values, Rutherford backscattering spectrometry (RBS) and SIMS are utilized as complementary techniques to measure the depth profiles of implanted Au ions in SiC. Moreover, the original version of the SRIM code, TRIM-85, is modified to adopt our derived electronic stopping powers to predict ion distributions. The comparison studies show that the ion distributions predicted based on our derived electronic stopping powers agree well with the experimental results, but exhibit considerable discrepancies with the SRIM predictions. The large deviation from SRIM predictions is further observed in other materials. The distributions of implanted Au ions with various energies from 1 to 15 MeV are measured in Si and MgO. The electronic stopping powers for Au ions in Si are estimated based on the measured ion profiles. For Au ion irradiation in MgO, significant channeling effects on the ion and damage profiles are observed for the irradiations along both axial and planar channels. Furthermore, the effect of electronic energy deposition from medium energy heavy ions (i.e. 21 MeV Ni) on the damage evolution in MgO, in which the initial defects are induced using 1 MeV Au, is studied. The evolution in damage level and damage structure under the irradiations is characterized using RBS/ion channeling technique combined with transmission electron microscopy (TEM).

Subjects/Keywords: Electronic stopping power; Heavy ion; ion irradiation; SiC; MgO; Ceramic Materials; Nuclear Engineering; Semiconductor and Optical Materials

…2 1.1.2 Electronic stopping power… …48 3.3 Electronic stopping power values… …76 5.3 Electronic stopping power derived from the Au ion profiles in Si… …80 5.6 Electronic stopping power for Au ions in MgO… …17 Fig. 1.3. Ratio of nuclear stopping power to electronic stopping power for ions in SiC… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jin, K. (2015). Electronic Energy Loss of Heavy Ions and Its Effects in Ceramics. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/3342

Chicago Manual of Style (16th Edition):

Jin, Ke. “Electronic Energy Loss of Heavy Ions and Its Effects in Ceramics.” 2015. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed January 21, 2019. https://trace.tennessee.edu/utk_graddiss/3342.

MLA Handbook (7th Edition):

Jin, Ke. “Electronic Energy Loss of Heavy Ions and Its Effects in Ceramics.” 2015. Web. 21 Jan 2019.

Vancouver:

Jin K. Electronic Energy Loss of Heavy Ions and Its Effects in Ceramics. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2015. [cited 2019 Jan 21]. Available from: https://trace.tennessee.edu/utk_graddiss/3342.

Council of Science Editors:

Jin K. Electronic Energy Loss of Heavy Ions and Its Effects in Ceramics. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2015. Available from: https://trace.tennessee.edu/utk_graddiss/3342

3. Harkati Kerboua, Chahineze. Mécanismes de déformation de nanoparticules d’Au par irradiation ionique .

Degree: 2011, Université de Montréal

Résumé Dans la présente thèse, nous avons étudié la déformation anisotrope par bombardement ionique de nanoparticules d'or intégrées dans une matrice de silice amorphe ou d'arséniure d’aluminium cristallin. On s’est intéressé à la compréhension du mécanisme responsable de cette déformation pour lever toute ambigüité quant à l’explication de ce phénomène et pour avoir une interprétation consistante et unique. Un procédé hybride combinant la pulvérisation et le dépôt chimique en phase vapeur assisté par plasma a été utilisé pour la fabrication de couches nanocomposites Au/SiO2 sur des substrats de silice fondue. Des structures à couches simples et multiples ont été obtenues. Le chauffage pendant ou après le dépôt active l’agglomération des atomes d’Au et par conséquent favorise la croissance des nanoparticules. Les nanocomposites Au/AlAs ont été obtenus par implantation ionique de couches d’AlAs suivie de recuit thermique rapide. Les échantillons des deux nanocomposites refroidis avec de l’azote liquide ont été irradiés avec des faisceaux de Cu, de Si, d’Au ou d’In d’énergie allant de 2 à 40 MeV, aux fluences s'étendant de 1×1013 à 4×1015 ions/cm2, en utilisant le Tandem ou le Tandetron. Les propriétés structurales et morphologiques du nanocomposite Au/SiO2 sont extraites en utilisant des techniques optiques car la fréquence et la largeur de la résonance plasmon de surface dépendent de la forme et de la taille des nanoparticules, de leur concentration et de la distance qui les séparent ainsi que des propriétés diélectriques du matériau dans lequel les particules sont intégrées. La cristallinité de l’arséniure d’aluminium est étudiée par deux techniques: spectroscopie Raman et spectrométrie de rétrodiffusion Rutherford en mode canalisation (RBS/canalisation). La quantité d’Au dans les couches nanocomposites est déduite des résultats RBS. La distribution de taille et l’étude de la transformation de forme des nanoparticules métalliques dans les deux nanocomposites sont déterminées par microscopie électronique en transmission. Les résultats obtenus dans le cadre de ce travail ont fait l’objet de trois articles de revue. La première publication montre la possibilité de manipuler la position spectrale et la largeur de la bande d’absorption des nanoparticules d’or dans les nanocomposites Au/SiO2 en modifiant leur structure (forme, taille et distance entre particules). Les nanoparticules d’Au obtenues sont presque sphériques. La bande d’absorption plasmon de surface (PS) correspondante aux particules distantes est située à 520 nm. Lorsque la distance entre les particules est réduite, l’interaction dipolaire augmente ce qui élargit la bande de PS et la déplace vers le rouge (602 nm). Après irradiation ionique, les nanoparticules sphériques se transforment en ellipsoïdes alignés suivant la direction du faisceau. La bande d’absorption se divise en deux bandes : transversale et longitudinale. La bande correspondante au petit axe (transversale) est décalée vers le bleu et celle correspondante au grand axe… Advisors/Committee Members: Roorda, Sjoerd (advisor).

Subjects/Keywords: irradiation ionique; nanoparticules; Au; pouvoir d’arrêt électronique; résonance plasmon de surface; élongation; silice; arséniure d’aluminium; ion irradiation; nanoparticles; Au; electronic stopping power; surface plasmon resonance; elongation; silica; aluminum arsenide

…value of 2 keV/nm (electronic stopping power) is necessary for the deformation of Au… …electronic stopping power for Cu ( ) and Si (▲) ions. The data are extracted… …electronic stopping power for Cu ( ) and Si (▲) ions. The data are extracted… …electronic stopping power. The symbols ▲ and correspond, respectively, to Si and Cu ions. The… …latent track. This is consistent with the observed threshold value in the electronic stopping… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Harkati Kerboua, C. (2011). Mécanismes de déformation de nanoparticules d’Au par irradiation ionique . (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/4985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Harkati Kerboua, Chahineze. “Mécanismes de déformation de nanoparticules d’Au par irradiation ionique .” 2011. Thesis, Université de Montréal. Accessed January 21, 2019. http://hdl.handle.net/1866/4985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Harkati Kerboua, Chahineze. “Mécanismes de déformation de nanoparticules d’Au par irradiation ionique .” 2011. Web. 21 Jan 2019.

Vancouver:

Harkati Kerboua C. Mécanismes de déformation de nanoparticules d’Au par irradiation ionique . [Internet] [Thesis]. Université de Montréal; 2011. [cited 2019 Jan 21]. Available from: http://hdl.handle.net/1866/4985.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Harkati Kerboua C. Mécanismes de déformation de nanoparticules d’Au par irradiation ionique . [Thesis]. Université de Montréal; 2011. Available from: http://hdl.handle.net/1866/4985

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.