Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Eigenvalue)`

.
Showing records 1 – 30 of
286 total matches.

◁ [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] ▶

Search Limiters

Dates

- 2016 – 2020 (69)
- 2011 – 2015 (114)
- 2006 – 2010 (77)
- 2001 – 2005 (32)

Department

- Mathematics (24)
- Applied Mathematics (14)

Degrees

- PhD (69)
- MS (28)
- Docteur es (20)
- Master (19)

▼ Search Limiters

Kwame Nkrumah University of Science and Technology

1.
Kayode, Oladejo Nathaniel.
Linear-quadratic optimal control as an inverse *eigenvalue* problem.

Degree: 2013, Kwame Nkrumah University of Science and Technology

URL: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361

►

This thesis investigates Linear-quadratic Control (LQOC)by which is meant a problem in which a linear plant is to be controlled such as to minimize a… (more)

Subjects/Keywords: Linear-Quadratic; Eigenvalue

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kayode, O. N. (2013). Linear-quadratic optimal control as an inverse eigenvalue problem. (Thesis). Kwame Nkrumah University of Science and Technology. Retrieved from http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kayode, Oladejo Nathaniel. “Linear-quadratic optimal control as an inverse eigenvalue problem.” 2013. Thesis, Kwame Nkrumah University of Science and Technology. Accessed March 30, 2020. http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kayode, Oladejo Nathaniel. “Linear-quadratic optimal control as an inverse eigenvalue problem.” 2013. Web. 30 Mar 2020.

Vancouver:

Kayode ON. Linear-quadratic optimal control as an inverse eigenvalue problem. [Internet] [Thesis]. Kwame Nkrumah University of Science and Technology; 2013. [cited 2020 Mar 30]. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kayode ON. Linear-quadratic optimal control as an inverse eigenvalue problem. [Thesis]. Kwame Nkrumah University of Science and Technology; 2013. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

2.
Chen, Chao-Zhong.
Optimal upper bounds of *eigenvalue* ratios for the p-Laplacian.

Degree: Master, Applied Mathematics, 2008, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107

► In this thesis, we study the optimal estimate of *eigenvalue* ratios Î»_{n}/Î»_{m} of the Sturm-Liouville equation with Dirichlet boundary conditions on (0, Ï). In 2005,…
(more)

Subjects/Keywords: Eigenvalue ratio; Sturm-Liouville equation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, C. (2008). Optimal upper bounds of eigenvalue ratios for the p-Laplacian. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, Chao-Zhong. “Optimal upper bounds of eigenvalue ratios for the p-Laplacian.” 2008. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, Chao-Zhong. “Optimal upper bounds of eigenvalue ratios for the p-Laplacian.” 2008. Web. 30 Mar 2020.

Vancouver:

Chen C. Optimal upper bounds of eigenvalue ratios for the p-Laplacian. [Internet] [Thesis]. NSYSU; 2008. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen C. Optimal upper bounds of eigenvalue ratios for the p-Laplacian. [Thesis]. NSYSU; 2008. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

3.
Gill, Daniel Fury.
Newton-Krylov Methods for the Solution of the k-*Eigenvalue*
Problem in Multigroup Neutronics Calculations.

Degree: PhD, Nuclear Engineering, 2009, Penn State University

URL: https://etda.libraries.psu.edu/catalog/10162

► In this work we propose using Newton's method, specifically the inexact Newton-GMRES formulation, to solve the k-*eigenvalue* problem in both transport and diffusion neutronics problems.…
(more)

Subjects/Keywords: JFNK; Criticality; Neutron transport; eigenvalue

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gill, D. F. (2009). Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/10162

Chicago Manual of Style (16^{th} Edition):

Gill, Daniel Fury. “Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations.” 2009. Doctoral Dissertation, Penn State University. Accessed March 30, 2020. https://etda.libraries.psu.edu/catalog/10162.

MLA Handbook (7^{th} Edition):

Gill, Daniel Fury. “Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations.” 2009. Web. 30 Mar 2020.

Vancouver:

Gill DF. Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations. [Internet] [Doctoral dissertation]. Penn State University; 2009. [cited 2020 Mar 30]. Available from: https://etda.libraries.psu.edu/catalog/10162.

Council of Science Editors:

Gill DF. Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations. [Doctoral Dissertation]. Penn State University; 2009. Available from: https://etda.libraries.psu.edu/catalog/10162

Delft University of Technology

4. Li, L. A fundamental study of the Morphological Acceleration Factor:.

Degree: 2010, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e

► Long-term prediction of sediment transport and morphology has become increasingly important. One of the key issues in carrying out long-term modeling is to bridge the…
(more)

Subjects/Keywords: Delft3D; eigenvalue analysis; morphological acceleration

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, L. (2010). A fundamental study of the Morphological Acceleration Factor:. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e

Chicago Manual of Style (16^{th} Edition):

Li, L. “A fundamental study of the Morphological Acceleration Factor:.” 2010. Masters Thesis, Delft University of Technology. Accessed March 30, 2020. http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e.

MLA Handbook (7^{th} Edition):

Li, L. “A fundamental study of the Morphological Acceleration Factor:.” 2010. Web. 30 Mar 2020.

Vancouver:

Li L. A fundamental study of the Morphological Acceleration Factor:. [Internet] [Masters thesis]. Delft University of Technology; 2010. [cited 2020 Mar 30]. Available from: http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e.

Council of Science Editors:

Li L. A fundamental study of the Morphological Acceleration Factor:. [Masters Thesis]. Delft University of Technology; 2010. Available from: http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e

Baylor University

5.
Nelms, Charles F.
* Eigenvalue* comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem.

Degree: PhD, Baylor University. Dept. of Mathematics., 2016, Baylor University

URL: http://hdl.handle.net/2104/9631

► Comparison of smallest eigenvalues for certain two point boundary value problems for a fifth order linear differential equation are first obtained. The results are extended…
(more)

Subjects/Keywords: Eigenvalue. Comparison. Boundary Value.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nelms, C. F. (2016). Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9631

Chicago Manual of Style (16^{th} Edition):

Nelms, Charles F. “Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem.” 2016. Doctoral Dissertation, Baylor University. Accessed March 30, 2020. http://hdl.handle.net/2104/9631.

MLA Handbook (7^{th} Edition):

Nelms, Charles F. “Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem.” 2016. Web. 30 Mar 2020.

Vancouver:

Nelms CF. Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem. [Internet] [Doctoral dissertation]. Baylor University; 2016. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/2104/9631.

Council of Science Editors:

Nelms CF. Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem. [Doctoral Dissertation]. Baylor University; 2016. Available from: http://hdl.handle.net/2104/9631

Georgia State University

6. Marsli, Rachid. New Extensions and Applications of Geršgorin Theory.

Degree: PhD, Mathematics and Statistics, 2015, Georgia State University

URL: https://scholarworks.gsu.edu/math_diss/26

► In this work we discover for the first time a strong relationship between Geršgorin theory and the geometric multiplicities of eigenvalues. In fact, if…
(more)

Subjects/Keywords: Geršgorin; eigenvalue; geometric multiplicity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Marsli, R. (2015). New Extensions and Applications of Geršgorin Theory. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/26

Chicago Manual of Style (16^{th} Edition):

Marsli, Rachid. “New Extensions and Applications of Geršgorin Theory.” 2015. Doctoral Dissertation, Georgia State University. Accessed March 30, 2020. https://scholarworks.gsu.edu/math_diss/26.

MLA Handbook (7^{th} Edition):

Marsli, Rachid. “New Extensions and Applications of Geršgorin Theory.” 2015. Web. 30 Mar 2020.

Vancouver:

Marsli R. New Extensions and Applications of Geršgorin Theory. [Internet] [Doctoral dissertation]. Georgia State University; 2015. [cited 2020 Mar 30]. Available from: https://scholarworks.gsu.edu/math_diss/26.

Council of Science Editors:

Marsli R. New Extensions and Applications of Geršgorin Theory. [Doctoral Dissertation]. Georgia State University; 2015. Available from: https://scholarworks.gsu.edu/math_diss/26

University of Iowa

7.
Landgren, Jeffrey K.
An acoustic *eigenvalue* problem and its application to electrochemistry.

Degree: PhD, Applied Mathematical and Computational Sciences, 2016, University of Iowa

URL: https://ir.uiowa.edu/etd/2104

► The fundamental process that lies at the foundation of batteries, capacitors, and solar cells is the electron transfer process. This takes place at an…
(more)

Subjects/Keywords: Eigenvalue; Electrochemistry; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Landgren, J. K. (2016). An acoustic eigenvalue problem and its application to electrochemistry. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/2104

Chicago Manual of Style (16^{th} Edition):

Landgren, Jeffrey K. “An acoustic eigenvalue problem and its application to electrochemistry.” 2016. Doctoral Dissertation, University of Iowa. Accessed March 30, 2020. https://ir.uiowa.edu/etd/2104.

MLA Handbook (7^{th} Edition):

Landgren, Jeffrey K. “An acoustic eigenvalue problem and its application to electrochemistry.” 2016. Web. 30 Mar 2020.

Vancouver:

Landgren JK. An acoustic eigenvalue problem and its application to electrochemistry. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2020 Mar 30]. Available from: https://ir.uiowa.edu/etd/2104.

Council of Science Editors:

Landgren JK. An acoustic eigenvalue problem and its application to electrochemistry. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/2104

Iowa State University

8. Luo, Cheng. A comprehensive invariant subspace-based framework for power system small-signal stability analysis.

Degree: 2011, Iowa State University

URL: https://lib.dr.iastate.edu/etd/10109

► With the growth of interconnected power system, and especially the deregulation of the power market, the problems related to small-signal stability have become a critical…
(more)

Subjects/Keywords: continuation of invariant subspace; critical eigenvalue; damping margin; eigenvalue sensitivity; eigenvalue trajectory; oscillatory stability margin; Electrical and Computer Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Luo, C. (2011). A comprehensive invariant subspace-based framework for power system small-signal stability analysis. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/10109

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Luo, Cheng. “A comprehensive invariant subspace-based framework for power system small-signal stability analysis.” 2011. Thesis, Iowa State University. Accessed March 30, 2020. https://lib.dr.iastate.edu/etd/10109.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Luo, Cheng. “A comprehensive invariant subspace-based framework for power system small-signal stability analysis.” 2011. Web. 30 Mar 2020.

Vancouver:

Luo C. A comprehensive invariant subspace-based framework for power system small-signal stability analysis. [Internet] [Thesis]. Iowa State University; 2011. [cited 2020 Mar 30]. Available from: https://lib.dr.iastate.edu/etd/10109.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Luo C. A comprehensive invariant subspace-based framework for power system small-signal stability analysis. [Thesis]. Iowa State University; 2011. Available from: https://lib.dr.iastate.edu/etd/10109

Not specified: Masters Thesis or Doctoral Dissertation

North Carolina State University

9. Liu, Ning. Spectral Clustering for Graphs and Markov Chains.

Degree: PhD, Computer Science, 2010, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/4886

► Spectral graph partitioning based on spectral theory has become a popular clustering method over the last few years. The starting point is the work of…
(more)

Subjects/Keywords: spectral clustering; graph partitioning; markov chains; eigenvalue

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liu, N. (2010). Spectral Clustering for Graphs and Markov Chains. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4886

Chicago Manual of Style (16^{th} Edition):

Liu, Ning. “Spectral Clustering for Graphs and Markov Chains.” 2010. Doctoral Dissertation, North Carolina State University. Accessed March 30, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4886.

MLA Handbook (7^{th} Edition):

Liu, Ning. “Spectral Clustering for Graphs and Markov Chains.” 2010. Web. 30 Mar 2020.

Vancouver:

Liu N. Spectral Clustering for Graphs and Markov Chains. [Internet] [Doctoral dissertation]. North Carolina State University; 2010. [cited 2020 Mar 30]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4886.

Council of Science Editors:

Liu N. Spectral Clustering for Graphs and Markov Chains. [Doctoral Dissertation]. North Carolina State University; 2010. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4886

NSYSU

10.
Chang, Hen-wen.
The End Game Problem in Solving Algebraic *Eigenvalue* Problems by Homotopy Continuation Method.

Degree: Master, Applied Mathematics, 2013, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

► The homotopy continuation method is considered to solve polynomial systems. If the number of solutions of the starting system is much more than that of…
(more)

Subjects/Keywords: end game problem; eigenvalue problems; homotopy continuation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chang, H. (2013). The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Web. 30 Mar 2020.

Vancouver:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Internet] [Thesis]. NSYSU; 2013. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

11. Fu, Wen-Chuan. The Evolution of Mass Species under the Replicator Equation.

Degree: Master, Physics, 2014, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812

► We study the evolutionary of species under the replicator equation with antisymmetric payoff . All of out results show odd number of species survived and…
(more)

Subjects/Keywords: Replicator Equation; Game Theory; eigenvalue; Payoff

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fu, W. (2014). The Evolution of Mass Species under the Replicator Equation. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Fu, Wen-Chuan. “The Evolution of Mass Species under the Replicator Equation.” 2014. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Fu, Wen-Chuan. “The Evolution of Mass Species under the Replicator Equation.” 2014. Web. 30 Mar 2020.

Vancouver:

Fu W. The Evolution of Mass Species under the Replicator Equation. [Internet] [Thesis]. NSYSU; 2014. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fu W. The Evolution of Mass Species under the Replicator Equation. [Thesis]. NSYSU; 2014. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

12.
Huang, Hsien-kuei.
Optimal estimates of the *eigenvalue* gap and *eigenvalue* ratio with variational.

Degree: Master, Applied Mathematics, 2004, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942

► The optimal estimates of the *eigenvalue* gaps and *eigenvalue* ratios for the Sturm-Liouville operators have been of fundamental importance. Recently a series of works by…
(more)

Subjects/Keywords: optimal estimates; eigenvalue

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Huang, H. (2004). Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Huang, Hsien-kuei. “Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational.” 2004. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Huang, Hsien-kuei. “Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational.” 2004. Web. 30 Mar 2020.

Vancouver:

Huang H. Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational. [Internet] [Thesis]. NSYSU; 2004. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huang H. Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational. [Thesis]. NSYSU; 2004. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

13. Kung, Shing-Yuan. Density functions with extremal antiperiodic eigenvalues and related topics.

Degree: Master, Applied Mathematics, 2005, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845

► In this thesis, we prove 2 theorems. First let Ï0 be a minimizing (or maximizing) density function for the first antiperiodic *eigenvalue* Î»1' in E[h,H,M],…
(more)

Subjects/Keywords: Density functions; eigenvalue

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kung, S. (2005). Density functions with extremal antiperiodic eigenvalues and related topics. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kung, Shing-Yuan. “Density functions with extremal antiperiodic eigenvalues and related topics.” 2005. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kung, Shing-Yuan. “Density functions with extremal antiperiodic eigenvalues and related topics.” 2005. Web. 30 Mar 2020.

Vancouver:

Kung S. Density functions with extremal antiperiodic eigenvalues and related topics. [Internet] [Thesis]. NSYSU; 2005. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kung S. Density functions with extremal antiperiodic eigenvalues and related topics. [Thesis]. NSYSU; 2005. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

14. Chan, Yu-Lin. A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction.

Degree: Master, Electrical Engineering, 2012, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533

► With the development of consumer electronics, the circuitry structure become more complex, For this reason, it might cause numerical errors to be cumulated in the…
(more)

Subjects/Keywords: Singular Value; Eigenvalue; Causality; Passivity; Hilbert Transform

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chan, Y. (2012). A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chan, Yu-Lin. “A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction.” 2012. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chan, Yu-Lin. “A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction.” 2012. Web. 30 Mar 2020.

Vancouver:

Chan Y. A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction. [Internet] [Thesis]. NSYSU; 2012. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan Y. A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction. [Thesis]. NSYSU; 2012. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533

Not specified: Masters Thesis or Doctoral Dissertation

Universiteit Utrecht

15.
Rommes, J.
Methods for *eigenvalue* problems with applications in model order reduction.

Degree: 2007, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/21787

► Physical structures and processes are modeled by dynamical systems in a wide range of application areas. The increasing demand for complex components and large structures,…
(more)

Subjects/Keywords: Wiskunde en Informatica; eigenvalue problems; model order reduction; eigenvalue methods; modal approximation; dominant poles; generalized eigenvalue problems; quadratic eigenvalue problems; purification; Jacobi-Davidson method; two-sided Rayleigh quotient iteration

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rommes, J. (2007). Methods for eigenvalue problems with applications in model order reduction. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/21787

Chicago Manual of Style (16^{th} Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Doctoral Dissertation, Universiteit Utrecht. Accessed March 30, 2020. http://dspace.library.uu.nl:8080/handle/1874/21787.

MLA Handbook (7^{th} Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Web. 30 Mar 2020.

Vancouver:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2007. [cited 2020 Mar 30]. Available from: http://dspace.library.uu.nl:8080/handle/1874/21787.

Council of Science Editors:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Doctoral Dissertation]. Universiteit Utrecht; 2007. Available from: http://dspace.library.uu.nl:8080/handle/1874/21787

University of Arkansas

16.
Hutchison, Brandon.
A Restarted Homotopy Method for the Nonsymmetric *Eigenvalue* Problem.

Degree: PhD, 2011, University of Arkansas

URL: https://scholarworks.uark.edu/etd/74

► The eigenvalues and eigenvectors of a Hessenberg matrix, H, are computed with a combination of homotopy increments and the Arnoldi method. Given a set,…
(more)

Subjects/Keywords: Arnoldi; Continuation; Eigenvalue; Homotopy; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hutchison, B. (2011). A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem. (Doctoral Dissertation). University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/74

Chicago Manual of Style (16^{th} Edition):

Hutchison, Brandon. “A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem.” 2011. Doctoral Dissertation, University of Arkansas. Accessed March 30, 2020. https://scholarworks.uark.edu/etd/74.

MLA Handbook (7^{th} Edition):

Hutchison, Brandon. “A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem.” 2011. Web. 30 Mar 2020.

Vancouver:

Hutchison B. A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem. [Internet] [Doctoral dissertation]. University of Arkansas; 2011. [cited 2020 Mar 30]. Available from: https://scholarworks.uark.edu/etd/74.

Council of Science Editors:

Hutchison B. A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem. [Doctoral Dissertation]. University of Arkansas; 2011. Available from: https://scholarworks.uark.edu/etd/74

University of Arizona

17. Fox, Matthew Kins. Spectrum of Hamiltonian Matrices .

Degree: 2018, University of Arizona

URL: http://hdl.handle.net/10150/628423

► Random Hamiltonian Matrices are a Lie Algebra that can be connected to approximations of random Hamiltonian systems near equilibria. In Alan Edelman’s paper, he was…
(more)

Subjects/Keywords: Density; Eigenvalue; Ginibre; Hamiltonian; Probability; Spectrum

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fox, M. K. (2018). Spectrum of Hamiltonian Matrices . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/628423

Chicago Manual of Style (16^{th} Edition):

Fox, Matthew Kins. “Spectrum of Hamiltonian Matrices .” 2018. Doctoral Dissertation, University of Arizona. Accessed March 30, 2020. http://hdl.handle.net/10150/628423.

MLA Handbook (7^{th} Edition):

Fox, Matthew Kins. “Spectrum of Hamiltonian Matrices .” 2018. Web. 30 Mar 2020.

Vancouver:

Fox MK. Spectrum of Hamiltonian Matrices . [Internet] [Doctoral dissertation]. University of Arizona; 2018. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10150/628423.

Council of Science Editors:

Fox MK. Spectrum of Hamiltonian Matrices . [Doctoral Dissertation]. University of Arizona; 2018. Available from: http://hdl.handle.net/10150/628423

University of Waterloo

18.
Wang, Ningchuan.
* Eigenvalue*, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems.

Degree: 2014, University of Waterloo

URL: http://hdl.handle.net/10012/8760

► The Graph Partitioning problems are hard combinatorial optimization problems. We are interested in both lower bounds and upper bounds. We introduce several methods including basic…
(more)

Subjects/Keywords: Graph Partitioning; Semidefinite Programming; eigenvalue bounds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, N. (2014). Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/8760

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wang, Ningchuan. “Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems.” 2014. Thesis, University of Waterloo. Accessed March 30, 2020. http://hdl.handle.net/10012/8760.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wang, Ningchuan. “Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems.” 2014. Web. 30 Mar 2020.

Vancouver:

Wang N. Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems. [Internet] [Thesis]. University of Waterloo; 2014. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10012/8760.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang N. Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems. [Thesis]. University of Waterloo; 2014. Available from: http://hdl.handle.net/10012/8760

Not specified: Masters Thesis or Doctoral Dissertation

Universitat Politècnica de València

19.
Romero Alcalde, Eloy.
Parallel implementation of Davidson-type methods for large-scale *eigenvalue* problems
.

Degree: 2012, Universitat Politècnica de València

URL: http://hdl.handle.net/10251/15188

► El problema de valores propios (tambien llamado de autovalores, o eigenvalues) esta presente en diversas tareas cienficas a traves de la resolucion de ecuaciones diferenciales,…
(more)

Subjects/Keywords: Eigenvalue problems; Davidson methods; Distributed computing

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Romero Alcalde, E. (2012). Parallel implementation of Davidson-type methods for large-scale eigenvalue problems . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/15188

Chicago Manual of Style (16^{th} Edition):

Romero Alcalde, Eloy. “Parallel implementation of Davidson-type methods for large-scale eigenvalue problems .” 2012. Doctoral Dissertation, Universitat Politècnica de València. Accessed March 30, 2020. http://hdl.handle.net/10251/15188.

MLA Handbook (7^{th} Edition):

Romero Alcalde, Eloy. “Parallel implementation of Davidson-type methods for large-scale eigenvalue problems .” 2012. Web. 30 Mar 2020.

Vancouver:

Romero Alcalde E. Parallel implementation of Davidson-type methods for large-scale eigenvalue problems . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2012. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10251/15188.

Council of Science Editors:

Romero Alcalde E. Parallel implementation of Davidson-type methods for large-scale eigenvalue problems . [Doctoral Dissertation]. Universitat Politècnica de València; 2012. Available from: http://hdl.handle.net/10251/15188

Baylor University

20. Neugebauer, Jeffrey T. Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems.

Degree: PhD, Mathematics., 2011, Baylor University

URL: http://hdl.handle.net/2104/8235

► The theory of u₀-positive operators with respect to a cone in a Banach space is applied to the linear differential equations u⁽⁴⁾ + λ₁p(x)u =…
(more)

Subjects/Keywords: Differential equations.; Eigenvalue problems.; Extremal points.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Neugebauer, J. T. (2011). Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/8235

Chicago Manual of Style (16^{th} Edition):

Neugebauer, Jeffrey T. “Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems.” 2011. Doctoral Dissertation, Baylor University. Accessed March 30, 2020. http://hdl.handle.net/2104/8235.

MLA Handbook (7^{th} Edition):

Neugebauer, Jeffrey T. “Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems.” 2011. Web. 30 Mar 2020.

Vancouver:

Neugebauer JT. Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2011. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/2104/8235.

Council of Science Editors:

Neugebauer JT. Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems. [Doctoral Dissertation]. Baylor University; 2011. Available from: http://hdl.handle.net/2104/8235

University of Minnesota

21.
Kakade, Virendra Vilas.
* Eigenvalue* based alternans prediction and the effects of heart rate variability on alternans formation.

Degree: MS, Electrical Engineering, 2013, University of Minnesota

URL: http://hdl.handle.net/11299/165538

► Ventricular fibrillation, a leading cause of death in the US, is an instability observed at the whole heart level which may result from the alternation…
(more)

Subjects/Keywords: Alternans; Eigenvalue; Heart; Heart rate variability

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kakade, V. V. (2013). Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation. (Masters Thesis). University of Minnesota. Retrieved from http://hdl.handle.net/11299/165538

Chicago Manual of Style (16^{th} Edition):

Kakade, Virendra Vilas. “Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation.” 2013. Masters Thesis, University of Minnesota. Accessed March 30, 2020. http://hdl.handle.net/11299/165538.

MLA Handbook (7^{th} Edition):

Kakade, Virendra Vilas. “Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation.” 2013. Web. 30 Mar 2020.

Vancouver:

Kakade VV. Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation. [Internet] [Masters thesis]. University of Minnesota; 2013. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/11299/165538.

Council of Science Editors:

Kakade VV. Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation. [Masters Thesis]. University of Minnesota; 2013. Available from: http://hdl.handle.net/11299/165538

University of New Mexico

22. Myers, Nicholas. An Sn Application of Homotopy Continuation in Neutral Particle Transport.

Degree: Nuclear Engineering, 2014, University of New Mexico

URL: http://hdl.handle.net/1928/24581

► The objective of this dissertation is to investigate the usefulness of homotopy continuation applied in the context of neutral particle transport where traditional methods of…
(more)

Subjects/Keywords: Homotopy; Sn; Continuation; Transport; Eigenvalue; Diffusive

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Myers, N. (2014). An Sn Application of Homotopy Continuation in Neutral Particle Transport. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/24581

Chicago Manual of Style (16^{th} Edition):

Myers, Nicholas. “An Sn Application of Homotopy Continuation in Neutral Particle Transport.” 2014. Doctoral Dissertation, University of New Mexico. Accessed March 30, 2020. http://hdl.handle.net/1928/24581.

MLA Handbook (7^{th} Edition):

Myers, Nicholas. “An Sn Application of Homotopy Continuation in Neutral Particle Transport.” 2014. Web. 30 Mar 2020.

Vancouver:

Myers N. An Sn Application of Homotopy Continuation in Neutral Particle Transport. [Internet] [Doctoral dissertation]. University of New Mexico; 2014. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/1928/24581.

Council of Science Editors:

Myers N. An Sn Application of Homotopy Continuation in Neutral Particle Transport. [Doctoral Dissertation]. University of New Mexico; 2014. Available from: http://hdl.handle.net/1928/24581

University of Ontario Institute of Technology

23. Lee, Eungkil. Design optimization of active trailer differential braking systems for car-trailer combinations.

Degree: 2016, University of Ontario Institute of Technology

URL: http://hdl.handle.net/10155/701

► The thesis studies active trailer differential braking (ATDB) systems to improve the lateral stability of car-trailer (CT) combinations. CT combinations exhibit unique unstable motion modes,…
(more)

Subjects/Keywords: ATDB; Genetic algorithm; LQR; Mu synthesis; Eigenvalue

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, E. (2016). Design optimization of active trailer differential braking systems for car-trailer combinations. (Thesis). University of Ontario Institute of Technology. Retrieved from http://hdl.handle.net/10155/701

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lee, Eungkil. “Design optimization of active trailer differential braking systems for car-trailer combinations.” 2016. Thesis, University of Ontario Institute of Technology. Accessed March 30, 2020. http://hdl.handle.net/10155/701.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lee, Eungkil. “Design optimization of active trailer differential braking systems for car-trailer combinations.” 2016. Web. 30 Mar 2020.

Vancouver:

Lee E. Design optimization of active trailer differential braking systems for car-trailer combinations. [Internet] [Thesis]. University of Ontario Institute of Technology; 2016. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10155/701.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee E. Design optimization of active trailer differential braking systems for car-trailer combinations. [Thesis]. University of Ontario Institute of Technology; 2016. Available from: http://hdl.handle.net/10155/701

Not specified: Masters Thesis or Doctoral Dissertation

Wayne State University

24. Hu, Jiaxi. Shape Analysis Using Spectral Geometry.

Degree: PhD, Computer Science, 2015, Wayne State University

URL: https://digitalcommons.wayne.edu/oa_dissertations/1143

► Shape analysis is a fundamental research topic in computer graphics and computer vision. To date, more and more 3D data is produced by those…
(more)

Subjects/Keywords: eigenfunction; eigenvalue; eigenvalue variation; shape analysis; shape spectrum; spectral geometry; Computer Sciences

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hu, J. (2015). Shape Analysis Using Spectral Geometry. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1143

Chicago Manual of Style (16^{th} Edition):

Hu, Jiaxi. “Shape Analysis Using Spectral Geometry.” 2015. Doctoral Dissertation, Wayne State University. Accessed March 30, 2020. https://digitalcommons.wayne.edu/oa_dissertations/1143.

MLA Handbook (7^{th} Edition):

Hu, Jiaxi. “Shape Analysis Using Spectral Geometry.” 2015. Web. 30 Mar 2020.

Vancouver:

Hu J. Shape Analysis Using Spectral Geometry. [Internet] [Doctoral dissertation]. Wayne State University; 2015. [cited 2020 Mar 30]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1143.

Council of Science Editors:

Hu J. Shape Analysis Using Spectral Geometry. [Doctoral Dissertation]. Wayne State University; 2015. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1143

Wright State University

25.
Ali, Ali Hasan.
Modifying Some Iterative Methods for Solving Quadratic
*Eigenvalue* Problems.

Degree: MS, Mathematics, 2017, Wright State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

► In this thesis, we are investigating the solutions ¿ of a typical quadratic *eigenvalue* problem (QEP). Indeed, solutions ¿ of a QEP of the form…
(more)

Subjects/Keywords: Mathematics; Applied Mathematics; Quadratic Eigenvalue problem; Matrix Polynomial Problem; Nonlinear Eigenvalue Problem; Newton Iteration; Generalized Eigenvalue Problem; Newton Maehly Method; Newton Maehly Iteration; Newton Correction; QEP; NLEP; NLEVP; MPP; GEP

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ali, A. H. (2017). Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. (Masters Thesis). Wright State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

Chicago Manual of Style (16^{th} Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Masters Thesis, Wright State University. Accessed March 30, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

MLA Handbook (7^{th} Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Web. 30 Mar 2020.

Vancouver:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Internet] [Masters thesis]. Wright State University; 2017. [cited 2020 Mar 30]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

Council of Science Editors:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Masters Thesis]. Wright State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

University of Houston

26. Nyberg, Amy 1975-. The Laplacian Spectra of Random Geometric Graphs.

Degree: PhD, Physics, 2014, University of Houston

URL: http://hdl.handle.net/10657/1646

► In this dissertation we study a problem in mathematical physics concerning the eigenvalues of random matrices. A network may be represented by any of several…
(more)

Subjects/Keywords: Complex networks; Spatial networks; Random geometric graphs; Motifs; Graph Laplacian; Eigenvalue spectra; Algebraic connectivity; Eigenvalue separation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nyberg, A. 1. (2014). The Laplacian Spectra of Random Geometric Graphs. (Doctoral Dissertation). University of Houston. Retrieved from http://hdl.handle.net/10657/1646

Chicago Manual of Style (16^{th} Edition):

Nyberg, Amy 1975-. “The Laplacian Spectra of Random Geometric Graphs.” 2014. Doctoral Dissertation, University of Houston. Accessed March 30, 2020. http://hdl.handle.net/10657/1646.

MLA Handbook (7^{th} Edition):

Nyberg, Amy 1975-. “The Laplacian Spectra of Random Geometric Graphs.” 2014. Web. 30 Mar 2020.

Vancouver:

Nyberg A1. The Laplacian Spectra of Random Geometric Graphs. [Internet] [Doctoral dissertation]. University of Houston; 2014. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10657/1646.

Council of Science Editors:

Nyberg A1. The Laplacian Spectra of Random Geometric Graphs. [Doctoral Dissertation]. University of Houston; 2014. Available from: http://hdl.handle.net/10657/1646

University of Manchester

27.
Zemaityte, Mante.
Theory and Algorithms for Linear *Eigenvalue*
Problems.

Degree: 2020, University of Manchester

URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865

► In the first part of this thesis, methods for the partial solution of generalized *eigenvalue* problems arising from structural dynamics are studied. A natural choice…
(more)

Subjects/Keywords: shift-and-invert Lanczos algorithm; symmetric generalized eigenvalue problem; shifting strategy; structural analysis; orthogonal polynomials; max-plus eigenvalue problems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zemaityte, M. (2020). Theory and Algorithms for Linear Eigenvalue Problems. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865

Chicago Manual of Style (16^{th} Edition):

Zemaityte, Mante. “Theory and Algorithms for Linear Eigenvalue Problems.” 2020. Doctoral Dissertation, University of Manchester. Accessed March 30, 2020. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865.

MLA Handbook (7^{th} Edition):

Zemaityte, Mante. “Theory and Algorithms for Linear Eigenvalue Problems.” 2020. Web. 30 Mar 2020.

Vancouver:

Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2020 Mar 30]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865.

Council of Science Editors:

Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems. [Doctoral Dissertation]. University of Manchester; 2020. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865

University of Manchester

28.
Zemaityte, Mante.
Theory and algorithms for linear *eigenvalue* problems.

Degree: PhD, 2020, University of Manchester

URL: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528

► In the first part of this thesis, methods for the partial solution of generalized *eigenvalue* problems arising from structural dynamics are studied. A natural choice…
(more)

Subjects/Keywords: max-plus eigenvalue problems; orthogonal polynomials; structural analysis; symmetric generalized eigenvalue problem; shift-and-invert Lanczos algorithm; shifting strategy

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zemaityte, M. (2020). Theory and algorithms for linear eigenvalue problems. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528

Chicago Manual of Style (16^{th} Edition):

Zemaityte, Mante. “Theory and algorithms for linear eigenvalue problems.” 2020. Doctoral Dissertation, University of Manchester. Accessed March 30, 2020. https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528.

MLA Handbook (7^{th} Edition):

Zemaityte, Mante. “Theory and algorithms for linear eigenvalue problems.” 2020. Web. 30 Mar 2020.

Vancouver:

Zemaityte M. Theory and algorithms for linear eigenvalue problems. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2020 Mar 30]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528.

Council of Science Editors:

Zemaityte M. Theory and algorithms for linear eigenvalue problems. [Doctoral Dissertation]. University of Manchester; 2020. Available from: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528

University of South Carolina

29. Dutle, Aaron Michael. Spectra of Hypergraphs.

Degree: PhD, Mathematics, 2012, University of South Carolina

URL: https://scholarcommons.sc.edu/etd/1593

► We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of developments building upon classical work has led…
(more)

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; Eigenvalue; Hypergraph; Spectrum

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dutle, A. M. (2012). Spectra of Hypergraphs. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/1593

Chicago Manual of Style (16^{th} Edition):

Dutle, Aaron Michael. “Spectra of Hypergraphs.” 2012. Doctoral Dissertation, University of South Carolina. Accessed March 30, 2020. https://scholarcommons.sc.edu/etd/1593.

MLA Handbook (7^{th} Edition):

Dutle, Aaron Michael. “Spectra of Hypergraphs.” 2012. Web. 30 Mar 2020.

Vancouver:

Dutle AM. Spectra of Hypergraphs. [Internet] [Doctoral dissertation]. University of South Carolina; 2012. [cited 2020 Mar 30]. Available from: https://scholarcommons.sc.edu/etd/1593.

Council of Science Editors:

Dutle AM. Spectra of Hypergraphs. [Doctoral Dissertation]. University of South Carolina; 2012. Available from: https://scholarcommons.sc.edu/etd/1593

University of Southern California

30. Zhang, Beijia. Geometric bounds for Markov Chain and brief applications in Monte Carlo methods.

Degree: MS, Statistics, 2010, University of Southern California

URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027

► Since we have the preliminary fact that the irreducible, aperiodic and reversible Markov Chain can asymptotically converge to a unique stationary distribution, and then the…
(more)

Subjects/Keywords: second largest eigenvalue; Markov chain; Monte Carlo; simulation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, B. (2010). Geometric bounds for Markov Chain and brief applications in Monte Carlo methods. (Masters Thesis). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027

Chicago Manual of Style (16^{th} Edition):

Zhang, Beijia. “Geometric bounds for Markov Chain and brief applications in Monte Carlo methods.” 2010. Masters Thesis, University of Southern California. Accessed March 30, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027.

MLA Handbook (7^{th} Edition):

Zhang, Beijia. “Geometric bounds for Markov Chain and brief applications in Monte Carlo methods.” 2010. Web. 30 Mar 2020.

Vancouver:

Zhang B. Geometric bounds for Markov Chain and brief applications in Monte Carlo methods. [Internet] [Masters thesis]. University of Southern California; 2010. [cited 2020 Mar 30]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027.

Council of Science Editors:

Zhang B. Geometric bounds for Markov Chain and brief applications in Monte Carlo methods. [Masters Thesis]. University of Southern California; 2010. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027