Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Eigenvalue). Showing records 1 – 30 of 286 total matches.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Search Limiters

Last 2 Years | English Only

Department

Degrees

Levels

Languages

Country

▼ Search Limiters


Kwame Nkrumah University of Science and Technology

1. Kayode, Oladejo Nathaniel. Linear-quadratic optimal control as an inverse eigenvalue problem.

Degree: 2013, Kwame Nkrumah University of Science and Technology

This thesis investigates Linear-quadratic Control (LQOC)by which is meant a problem in which a linear plant is to be controlled such as to minimize a… (more)

Subjects/Keywords: Linear-Quadratic; Eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kayode, O. N. (2013). Linear-quadratic optimal control as an inverse eigenvalue problem. (Thesis). Kwame Nkrumah University of Science and Technology. Retrieved from http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kayode, Oladejo Nathaniel. “Linear-quadratic optimal control as an inverse eigenvalue problem.” 2013. Thesis, Kwame Nkrumah University of Science and Technology. Accessed March 30, 2020. http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kayode, Oladejo Nathaniel. “Linear-quadratic optimal control as an inverse eigenvalue problem.” 2013. Web. 30 Mar 2020.

Vancouver:

Kayode ON. Linear-quadratic optimal control as an inverse eigenvalue problem. [Internet] [Thesis]. Kwame Nkrumah University of Science and Technology; 2013. [cited 2020 Mar 30]. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kayode ON. Linear-quadratic optimal control as an inverse eigenvalue problem. [Thesis]. Kwame Nkrumah University of Science and Technology; 2013. Available from: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/9361

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

2. Chen, Chao-Zhong. Optimal upper bounds of eigenvalue ratios for the p-Laplacian.

Degree: Master, Applied Mathematics, 2008, NSYSU

 In this thesis, we study the optimal estimate of eigenvalue ratios λn/λm of the Sturm-Liouville equation with Dirichlet boundary conditions on (0, Ï). In 2005,… (more)

Subjects/Keywords: Eigenvalue ratio; Sturm-Liouville equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, C. (2008). Optimal upper bounds of eigenvalue ratios for the p-Laplacian. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Chao-Zhong. “Optimal upper bounds of eigenvalue ratios for the p-Laplacian.” 2008. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Chao-Zhong. “Optimal upper bounds of eigenvalue ratios for the p-Laplacian.” 2008. Web. 30 Mar 2020.

Vancouver:

Chen C. Optimal upper bounds of eigenvalue ratios for the p-Laplacian. [Internet] [Thesis]. NSYSU; 2008. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen C. Optimal upper bounds of eigenvalue ratios for the p-Laplacian. [Thesis]. NSYSU; 2008. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0819108-160107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

3. Gill, Daniel Fury. Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations.

Degree: PhD, Nuclear Engineering, 2009, Penn State University

 In this work we propose using Newton's method, specifically the inexact Newton-GMRES formulation, to solve the k-eigenvalue problem in both transport and diffusion neutronics problems.… (more)

Subjects/Keywords: JFNK; Criticality; Neutron transport; eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gill, D. F. (2009). Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/10162

Chicago Manual of Style (16th Edition):

Gill, Daniel Fury. “Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations.” 2009. Doctoral Dissertation, Penn State University. Accessed March 30, 2020. https://etda.libraries.psu.edu/catalog/10162.

MLA Handbook (7th Edition):

Gill, Daniel Fury. “Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations.” 2009. Web. 30 Mar 2020.

Vancouver:

Gill DF. Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations. [Internet] [Doctoral dissertation]. Penn State University; 2009. [cited 2020 Mar 30]. Available from: https://etda.libraries.psu.edu/catalog/10162.

Council of Science Editors:

Gill DF. Newton-Krylov Methods for the Solution of the k-Eigenvalue Problem in Multigroup Neutronics Calculations. [Doctoral Dissertation]. Penn State University; 2009. Available from: https://etda.libraries.psu.edu/catalog/10162


Delft University of Technology

4. Li, L. A fundamental study of the Morphological Acceleration Factor:.

Degree: 2010, Delft University of Technology

 Long-term prediction of sediment transport and morphology has become increasingly important. One of the key issues in carrying out long-term modeling is to bridge the… (more)

Subjects/Keywords: Delft3D; eigenvalue analysis; morphological acceleration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, L. (2010). A fundamental study of the Morphological Acceleration Factor:. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e

Chicago Manual of Style (16th Edition):

Li, L. “A fundamental study of the Morphological Acceleration Factor:.” 2010. Masters Thesis, Delft University of Technology. Accessed March 30, 2020. http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e.

MLA Handbook (7th Edition):

Li, L. “A fundamental study of the Morphological Acceleration Factor:.” 2010. Web. 30 Mar 2020.

Vancouver:

Li L. A fundamental study of the Morphological Acceleration Factor:. [Internet] [Masters thesis]. Delft University of Technology; 2010. [cited 2020 Mar 30]. Available from: http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e.

Council of Science Editors:

Li L. A fundamental study of the Morphological Acceleration Factor:. [Masters Thesis]. Delft University of Technology; 2010. Available from: http://resolver.tudelft.nl/uuid:2780f537-402b-427a-9147-b8652279a83e


Baylor University

5. Nelms, Charles F. Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem.

Degree: PhD, Baylor University. Dept. of Mathematics., 2016, Baylor University

 Comparison of smallest eigenvalues for certain two point boundary value problems for a fifth order linear differential equation are first obtained. The results are extended… (more)

Subjects/Keywords: Eigenvalue. Comparison. Boundary Value.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nelms, C. F. (2016). Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9631

Chicago Manual of Style (16th Edition):

Nelms, Charles F. “Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem.” 2016. Doctoral Dissertation, Baylor University. Accessed March 30, 2020. http://hdl.handle.net/2104/9631.

MLA Handbook (7th Edition):

Nelms, Charles F. “Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem.” 2016. Web. 30 Mar 2020.

Vancouver:

Nelms CF. Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem. [Internet] [Doctoral dissertation]. Baylor University; 2016. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/2104/9631.

Council of Science Editors:

Nelms CF. Eigenvalue comparison theorems for certain boundary value problems and positive solutions for a fifth order singular boundary value problem. [Doctoral Dissertation]. Baylor University; 2016. Available from: http://hdl.handle.net/2104/9631


Georgia State University

6. Marsli, Rachid. New Extensions and Applications of Geršgorin Theory.

Degree: PhD, Mathematics and Statistics, 2015, Georgia State University

  In this work we discover for the first time a strong relationship between Geršgorin theory and the geometric multiplicities of eigenvalues. In fact, if… (more)

Subjects/Keywords: Geršgorin; eigenvalue; geometric multiplicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marsli, R. (2015). New Extensions and Applications of Geršgorin Theory. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/26

Chicago Manual of Style (16th Edition):

Marsli, Rachid. “New Extensions and Applications of Geršgorin Theory.” 2015. Doctoral Dissertation, Georgia State University. Accessed March 30, 2020. https://scholarworks.gsu.edu/math_diss/26.

MLA Handbook (7th Edition):

Marsli, Rachid. “New Extensions and Applications of Geršgorin Theory.” 2015. Web. 30 Mar 2020.

Vancouver:

Marsli R. New Extensions and Applications of Geršgorin Theory. [Internet] [Doctoral dissertation]. Georgia State University; 2015. [cited 2020 Mar 30]. Available from: https://scholarworks.gsu.edu/math_diss/26.

Council of Science Editors:

Marsli R. New Extensions and Applications of Geršgorin Theory. [Doctoral Dissertation]. Georgia State University; 2015. Available from: https://scholarworks.gsu.edu/math_diss/26


University of Iowa

7. Landgren, Jeffrey K. An acoustic eigenvalue problem and its application to electrochemistry.

Degree: PhD, Applied Mathematical and Computational Sciences, 2016, University of Iowa

  The fundamental process that lies at the foundation of batteries, capacitors, and solar cells is the electron transfer process. This takes place at an… (more)

Subjects/Keywords: Eigenvalue; Electrochemistry; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Landgren, J. K. (2016). An acoustic eigenvalue problem and its application to electrochemistry. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/2104

Chicago Manual of Style (16th Edition):

Landgren, Jeffrey K. “An acoustic eigenvalue problem and its application to electrochemistry.” 2016. Doctoral Dissertation, University of Iowa. Accessed March 30, 2020. https://ir.uiowa.edu/etd/2104.

MLA Handbook (7th Edition):

Landgren, Jeffrey K. “An acoustic eigenvalue problem and its application to electrochemistry.” 2016. Web. 30 Mar 2020.

Vancouver:

Landgren JK. An acoustic eigenvalue problem and its application to electrochemistry. [Internet] [Doctoral dissertation]. University of Iowa; 2016. [cited 2020 Mar 30]. Available from: https://ir.uiowa.edu/etd/2104.

Council of Science Editors:

Landgren JK. An acoustic eigenvalue problem and its application to electrochemistry. [Doctoral Dissertation]. University of Iowa; 2016. Available from: https://ir.uiowa.edu/etd/2104


Iowa State University

8. Luo, Cheng. A comprehensive invariant subspace-based framework for power system small-signal stability analysis.

Degree: 2011, Iowa State University

 With the growth of interconnected power system, and especially the deregulation of the power market, the problems related to small-signal stability have become a critical… (more)

Subjects/Keywords: continuation of invariant subspace; critical eigenvalue; damping margin; eigenvalue sensitivity; eigenvalue trajectory; oscillatory stability margin; Electrical and Computer Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luo, C. (2011). A comprehensive invariant subspace-based framework for power system small-signal stability analysis. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/10109

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Luo, Cheng. “A comprehensive invariant subspace-based framework for power system small-signal stability analysis.” 2011. Thesis, Iowa State University. Accessed March 30, 2020. https://lib.dr.iastate.edu/etd/10109.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Luo, Cheng. “A comprehensive invariant subspace-based framework for power system small-signal stability analysis.” 2011. Web. 30 Mar 2020.

Vancouver:

Luo C. A comprehensive invariant subspace-based framework for power system small-signal stability analysis. [Internet] [Thesis]. Iowa State University; 2011. [cited 2020 Mar 30]. Available from: https://lib.dr.iastate.edu/etd/10109.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Luo C. A comprehensive invariant subspace-based framework for power system small-signal stability analysis. [Thesis]. Iowa State University; 2011. Available from: https://lib.dr.iastate.edu/etd/10109

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

9. Liu, Ning. Spectral Clustering for Graphs and Markov Chains.

Degree: PhD, Computer Science, 2010, North Carolina State University

 Spectral graph partitioning based on spectral theory has become a popular clustering method over the last few years. The starting point is the work of… (more)

Subjects/Keywords: spectral clustering; graph partitioning; markov chains; eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liu, N. (2010). Spectral Clustering for Graphs and Markov Chains. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4886

Chicago Manual of Style (16th Edition):

Liu, Ning. “Spectral Clustering for Graphs and Markov Chains.” 2010. Doctoral Dissertation, North Carolina State University. Accessed March 30, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4886.

MLA Handbook (7th Edition):

Liu, Ning. “Spectral Clustering for Graphs and Markov Chains.” 2010. Web. 30 Mar 2020.

Vancouver:

Liu N. Spectral Clustering for Graphs and Markov Chains. [Internet] [Doctoral dissertation]. North Carolina State University; 2010. [cited 2020 Mar 30]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4886.

Council of Science Editors:

Liu N. Spectral Clustering for Graphs and Markov Chains. [Doctoral Dissertation]. North Carolina State University; 2010. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4886


NSYSU

10. Chang, Hen-wen. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.

Degree: Master, Applied Mathematics, 2013, NSYSU

 The homotopy continuation method is considered to solve polynomial systems. If the number of solutions of the starting system is much more than that of… (more)

Subjects/Keywords: end game problem; eigenvalue problems; homotopy continuation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, H. (2013). The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Web. 30 Mar 2020.

Vancouver:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Internet] [Thesis]. NSYSU; 2013. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

11. Fu, Wen-Chuan. The Evolution of Mass Species under the Replicator Equation.

Degree: Master, Physics, 2014, NSYSU

 We study the evolutionary of species under the replicator equation with antisymmetric payoff . All of out results show odd number of species survived and… (more)

Subjects/Keywords: Replicator Equation; Game Theory; eigenvalue; Payoff

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fu, W. (2014). The Evolution of Mass Species under the Replicator Equation. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fu, Wen-Chuan. “The Evolution of Mass Species under the Replicator Equation.” 2014. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fu, Wen-Chuan. “The Evolution of Mass Species under the Replicator Equation.” 2014. Web. 30 Mar 2020.

Vancouver:

Fu W. The Evolution of Mass Species under the Replicator Equation. [Internet] [Thesis]. NSYSU; 2014. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fu W. The Evolution of Mass Species under the Replicator Equation. [Thesis]. NSYSU; 2014. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0516114-205812

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

12. Huang, Hsien-kuei. Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational.

Degree: Master, Applied Mathematics, 2004, NSYSU

 The optimal estimates of the eigenvalue gaps and eigenvalue ratios for the Sturm-Liouville operators have been of fundamental importance. Recently a series of works by… (more)

Subjects/Keywords: optimal estimates; eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, H. (2004). Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huang, Hsien-kuei. “Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational.” 2004. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huang, Hsien-kuei. “Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational.” 2004. Web. 30 Mar 2020.

Vancouver:

Huang H. Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational. [Internet] [Thesis]. NSYSU; 2004. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huang H. Optimal estimates of the eigenvalue gap and eigenvalue ratio with variational. [Thesis]. NSYSU; 2004. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0911104-022942

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

13. Kung, Shing-Yuan. Density functions with extremal antiperiodic eigenvalues and related topics.

Degree: Master, Applied Mathematics, 2005, NSYSU

 In this thesis, we prove 2 theorems. First let Ï0 be a minimizing (or maximizing) density function for the first antiperiodic eigenvalue λ1' in E[h,H,M],… (more)

Subjects/Keywords: Density functions; eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kung, S. (2005). Density functions with extremal antiperiodic eigenvalues and related topics. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kung, Shing-Yuan. “Density functions with extremal antiperiodic eigenvalues and related topics.” 2005. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kung, Shing-Yuan. “Density functions with extremal antiperiodic eigenvalues and related topics.” 2005. Web. 30 Mar 2020.

Vancouver:

Kung S. Density functions with extremal antiperiodic eigenvalues and related topics. [Internet] [Thesis]. NSYSU; 2005. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kung S. Density functions with extremal antiperiodic eigenvalues and related topics. [Thesis]. NSYSU; 2005. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0122105-211845

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

14. Chan, Yu-Lin. A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction.

Degree: Master, Electrical Engineering, 2012, NSYSU

 With the development of consumer electronics, the circuitry structure become more complex, For this reason, it might cause numerical errors to be cumulated in the… (more)

Subjects/Keywords: Singular Value; Eigenvalue; Causality; Passivity; Hilbert Transform

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, Y. (2012). A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chan, Yu-Lin. “A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction.” 2012. Thesis, NSYSU. Accessed March 30, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chan, Yu-Lin. “A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction.” 2012. Web. 30 Mar 2020.

Vancouver:

Chan Y. A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction. [Internet] [Thesis]. NSYSU; 2012. [cited 2020 Mar 30]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan Y. A Numerical Method to Solve the Divergence Issue of Microwave Circuit Model Extraction. [Thesis]. NSYSU; 2012. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0808112-141533

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universiteit Utrecht

15. Rommes, J. Methods for eigenvalue problems with applications in model order reduction.

Degree: 2007, Universiteit Utrecht

 Physical structures and processes are modeled by dynamical systems in a wide range of application areas. The increasing demand for complex components and large structures,… (more)

Subjects/Keywords: Wiskunde en Informatica; eigenvalue problems; model order reduction; eigenvalue methods; modal approximation; dominant poles; generalized eigenvalue problems; quadratic eigenvalue problems; purification; Jacobi-Davidson method; two-sided Rayleigh quotient iteration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rommes, J. (2007). Methods for eigenvalue problems with applications in model order reduction. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/21787

Chicago Manual of Style (16th Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Doctoral Dissertation, Universiteit Utrecht. Accessed March 30, 2020. http://dspace.library.uu.nl:8080/handle/1874/21787.

MLA Handbook (7th Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Web. 30 Mar 2020.

Vancouver:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2007. [cited 2020 Mar 30]. Available from: http://dspace.library.uu.nl:8080/handle/1874/21787.

Council of Science Editors:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Doctoral Dissertation]. Universiteit Utrecht; 2007. Available from: http://dspace.library.uu.nl:8080/handle/1874/21787


University of Arkansas

16. Hutchison, Brandon. A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem.

Degree: PhD, 2011, University of Arkansas

  The eigenvalues and eigenvectors of a Hessenberg matrix, H, are computed with a combination of homotopy increments and the Arnoldi method. Given a set,… (more)

Subjects/Keywords: Arnoldi; Continuation; Eigenvalue; Homotopy; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hutchison, B. (2011). A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem. (Doctoral Dissertation). University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/74

Chicago Manual of Style (16th Edition):

Hutchison, Brandon. “A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem.” 2011. Doctoral Dissertation, University of Arkansas. Accessed March 30, 2020. https://scholarworks.uark.edu/etd/74.

MLA Handbook (7th Edition):

Hutchison, Brandon. “A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem.” 2011. Web. 30 Mar 2020.

Vancouver:

Hutchison B. A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem. [Internet] [Doctoral dissertation]. University of Arkansas; 2011. [cited 2020 Mar 30]. Available from: https://scholarworks.uark.edu/etd/74.

Council of Science Editors:

Hutchison B. A Restarted Homotopy Method for the Nonsymmetric Eigenvalue Problem. [Doctoral Dissertation]. University of Arkansas; 2011. Available from: https://scholarworks.uark.edu/etd/74


University of Arizona

17. Fox, Matthew Kins. Spectrum of Hamiltonian Matrices .

Degree: 2018, University of Arizona

 Random Hamiltonian Matrices are a Lie Algebra that can be connected to approximations of random Hamiltonian systems near equilibria. In Alan Edelman’s paper, he was… (more)

Subjects/Keywords: Density; Eigenvalue; Ginibre; Hamiltonian; Probability; Spectrum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fox, M. K. (2018). Spectrum of Hamiltonian Matrices . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/628423

Chicago Manual of Style (16th Edition):

Fox, Matthew Kins. “Spectrum of Hamiltonian Matrices .” 2018. Doctoral Dissertation, University of Arizona. Accessed March 30, 2020. http://hdl.handle.net/10150/628423.

MLA Handbook (7th Edition):

Fox, Matthew Kins. “Spectrum of Hamiltonian Matrices .” 2018. Web. 30 Mar 2020.

Vancouver:

Fox MK. Spectrum of Hamiltonian Matrices . [Internet] [Doctoral dissertation]. University of Arizona; 2018. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10150/628423.

Council of Science Editors:

Fox MK. Spectrum of Hamiltonian Matrices . [Doctoral Dissertation]. University of Arizona; 2018. Available from: http://hdl.handle.net/10150/628423


University of Waterloo

18. Wang, Ningchuan. Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems.

Degree: 2014, University of Waterloo

 The Graph Partitioning problems are hard combinatorial optimization problems. We are interested in both lower bounds and upper bounds. We introduce several methods including basic… (more)

Subjects/Keywords: Graph Partitioning; Semidefinite Programming; eigenvalue bounds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, N. (2014). Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/8760

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Ningchuan. “Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems.” 2014. Thesis, University of Waterloo. Accessed March 30, 2020. http://hdl.handle.net/10012/8760.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Ningchuan. “Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems.” 2014. Web. 30 Mar 2020.

Vancouver:

Wang N. Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems. [Internet] [Thesis]. University of Waterloo; 2014. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10012/8760.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang N. Eigenvalue, Quadratic Programming and Semidefinite Programming Bounds for Graph Partitioning Problems. [Thesis]. University of Waterloo; 2014. Available from: http://hdl.handle.net/10012/8760

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universitat Politècnica de València

19. Romero Alcalde, Eloy. Parallel implementation of Davidson-type methods for large-scale eigenvalue problems .

Degree: 2012, Universitat Politècnica de València

 El problema de valores propios (tambien llamado de autovalores, o eigenvalues) esta presente en diversas tareas cienficas a traves de la resolucion de ecuaciones diferenciales,… (more)

Subjects/Keywords: Eigenvalue problems; Davidson methods; Distributed computing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Romero Alcalde, E. (2012). Parallel implementation of Davidson-type methods for large-scale eigenvalue problems . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/15188

Chicago Manual of Style (16th Edition):

Romero Alcalde, Eloy. “Parallel implementation of Davidson-type methods for large-scale eigenvalue problems .” 2012. Doctoral Dissertation, Universitat Politècnica de València. Accessed March 30, 2020. http://hdl.handle.net/10251/15188.

MLA Handbook (7th Edition):

Romero Alcalde, Eloy. “Parallel implementation of Davidson-type methods for large-scale eigenvalue problems .” 2012. Web. 30 Mar 2020.

Vancouver:

Romero Alcalde E. Parallel implementation of Davidson-type methods for large-scale eigenvalue problems . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2012. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10251/15188.

Council of Science Editors:

Romero Alcalde E. Parallel implementation of Davidson-type methods for large-scale eigenvalue problems . [Doctoral Dissertation]. Universitat Politècnica de València; 2012. Available from: http://hdl.handle.net/10251/15188


Baylor University

20. Neugebauer, Jeffrey T. Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems.

Degree: PhD, Mathematics., 2011, Baylor University

 The theory of u₀-positive operators with respect to a cone in a Banach space is applied to the linear differential equations u⁽⁴⁾ + λ₁p(x)u =… (more)

Subjects/Keywords: Differential equations.; Eigenvalue problems.; Extremal points.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neugebauer, J. T. (2011). Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/8235

Chicago Manual of Style (16th Edition):

Neugebauer, Jeffrey T. “Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems.” 2011. Doctoral Dissertation, Baylor University. Accessed March 30, 2020. http://hdl.handle.net/2104/8235.

MLA Handbook (7th Edition):

Neugebauer, Jeffrey T. “Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems.” 2011. Web. 30 Mar 2020.

Vancouver:

Neugebauer JT. Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems. [Internet] [Doctoral dissertation]. Baylor University; 2011. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/2104/8235.

Council of Science Editors:

Neugebauer JT. Comparison of smallest eigenvalues and extremal points for third and fourth order three point boundary value problems. [Doctoral Dissertation]. Baylor University; 2011. Available from: http://hdl.handle.net/2104/8235


University of Minnesota

21. Kakade, Virendra Vilas. Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation.

Degree: MS, Electrical Engineering, 2013, University of Minnesota

 Ventricular fibrillation, a leading cause of death in the US, is an instability observed at the whole heart level which may result from the alternation… (more)

Subjects/Keywords: Alternans; Eigenvalue; Heart; Heart rate variability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kakade, V. V. (2013). Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation. (Masters Thesis). University of Minnesota. Retrieved from http://hdl.handle.net/11299/165538

Chicago Manual of Style (16th Edition):

Kakade, Virendra Vilas. “Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation.” 2013. Masters Thesis, University of Minnesota. Accessed March 30, 2020. http://hdl.handle.net/11299/165538.

MLA Handbook (7th Edition):

Kakade, Virendra Vilas. “Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation.” 2013. Web. 30 Mar 2020.

Vancouver:

Kakade VV. Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation. [Internet] [Masters thesis]. University of Minnesota; 2013. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/11299/165538.

Council of Science Editors:

Kakade VV. Eigenvalue based alternans prediction and the effects of heart rate variability on alternans formation. [Masters Thesis]. University of Minnesota; 2013. Available from: http://hdl.handle.net/11299/165538


University of New Mexico

22. Myers, Nicholas. An Sn Application of Homotopy Continuation in Neutral Particle Transport.

Degree: Nuclear Engineering, 2014, University of New Mexico

 The objective of this dissertation is to investigate the usefulness of homotopy continuation applied in the context of neutral particle transport where traditional methods of… (more)

Subjects/Keywords: Homotopy; Sn; Continuation; Transport; Eigenvalue; Diffusive

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Myers, N. (2014). An Sn Application of Homotopy Continuation in Neutral Particle Transport. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/24581

Chicago Manual of Style (16th Edition):

Myers, Nicholas. “An Sn Application of Homotopy Continuation in Neutral Particle Transport.” 2014. Doctoral Dissertation, University of New Mexico. Accessed March 30, 2020. http://hdl.handle.net/1928/24581.

MLA Handbook (7th Edition):

Myers, Nicholas. “An Sn Application of Homotopy Continuation in Neutral Particle Transport.” 2014. Web. 30 Mar 2020.

Vancouver:

Myers N. An Sn Application of Homotopy Continuation in Neutral Particle Transport. [Internet] [Doctoral dissertation]. University of New Mexico; 2014. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/1928/24581.

Council of Science Editors:

Myers N. An Sn Application of Homotopy Continuation in Neutral Particle Transport. [Doctoral Dissertation]. University of New Mexico; 2014. Available from: http://hdl.handle.net/1928/24581


University of Ontario Institute of Technology

23. Lee, Eungkil. Design optimization of active trailer differential braking systems for car-trailer combinations.

Degree: 2016, University of Ontario Institute of Technology

 The thesis studies active trailer differential braking (ATDB) systems to improve the lateral stability of car-trailer (CT) combinations. CT combinations exhibit unique unstable motion modes,… (more)

Subjects/Keywords: ATDB; Genetic algorithm; LQR; Mu synthesis; Eigenvalue

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, E. (2016). Design optimization of active trailer differential braking systems for car-trailer combinations. (Thesis). University of Ontario Institute of Technology. Retrieved from http://hdl.handle.net/10155/701

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lee, Eungkil. “Design optimization of active trailer differential braking systems for car-trailer combinations.” 2016. Thesis, University of Ontario Institute of Technology. Accessed March 30, 2020. http://hdl.handle.net/10155/701.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lee, Eungkil. “Design optimization of active trailer differential braking systems for car-trailer combinations.” 2016. Web. 30 Mar 2020.

Vancouver:

Lee E. Design optimization of active trailer differential braking systems for car-trailer combinations. [Internet] [Thesis]. University of Ontario Institute of Technology; 2016. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10155/701.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee E. Design optimization of active trailer differential braking systems for car-trailer combinations. [Thesis]. University of Ontario Institute of Technology; 2016. Available from: http://hdl.handle.net/10155/701

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Wayne State University

24. Hu, Jiaxi. Shape Analysis Using Spectral Geometry.

Degree: PhD, Computer Science, 2015, Wayne State University

  Shape analysis is a fundamental research topic in computer graphics and computer vision. To date, more and more 3D data is produced by those… (more)

Subjects/Keywords: eigenfunction; eigenvalue; eigenvalue variation; shape analysis; shape spectrum; spectral geometry; Computer Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hu, J. (2015). Shape Analysis Using Spectral Geometry. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1143

Chicago Manual of Style (16th Edition):

Hu, Jiaxi. “Shape Analysis Using Spectral Geometry.” 2015. Doctoral Dissertation, Wayne State University. Accessed March 30, 2020. https://digitalcommons.wayne.edu/oa_dissertations/1143.

MLA Handbook (7th Edition):

Hu, Jiaxi. “Shape Analysis Using Spectral Geometry.” 2015. Web. 30 Mar 2020.

Vancouver:

Hu J. Shape Analysis Using Spectral Geometry. [Internet] [Doctoral dissertation]. Wayne State University; 2015. [cited 2020 Mar 30]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1143.

Council of Science Editors:

Hu J. Shape Analysis Using Spectral Geometry. [Doctoral Dissertation]. Wayne State University; 2015. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1143


Wright State University

25. Ali, Ali Hasan. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.

Degree: MS, Mathematics, 2017, Wright State University

 In this thesis, we are investigating the solutions ¿ of a typical quadratic eigenvalue problem (QEP). Indeed, solutions ¿ of a QEP of the form… (more)

Subjects/Keywords: Mathematics; Applied Mathematics; Quadratic Eigenvalue problem; Matrix Polynomial Problem; Nonlinear Eigenvalue Problem; Newton Iteration; Generalized Eigenvalue Problem; Newton Maehly Method; Newton Maehly Iteration; Newton Correction; QEP; NLEP; NLEVP; MPP; GEP

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ali, A. H. (2017). Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. (Masters Thesis). Wright State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

Chicago Manual of Style (16th Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Masters Thesis, Wright State University. Accessed March 30, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

MLA Handbook (7th Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Web. 30 Mar 2020.

Vancouver:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Internet] [Masters thesis]. Wright State University; 2017. [cited 2020 Mar 30]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

Council of Science Editors:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Masters Thesis]. Wright State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239


University of Houston

26. Nyberg, Amy 1975-. The Laplacian Spectra of Random Geometric Graphs.

Degree: PhD, Physics, 2014, University of Houston

 In this dissertation we study a problem in mathematical physics concerning the eigenvalues of random matrices. A network may be represented by any of several… (more)

Subjects/Keywords: Complex networks; Spatial networks; Random geometric graphs; Motifs; Graph Laplacian; Eigenvalue spectra; Algebraic connectivity; Eigenvalue separation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nyberg, A. 1. (2014). The Laplacian Spectra of Random Geometric Graphs. (Doctoral Dissertation). University of Houston. Retrieved from http://hdl.handle.net/10657/1646

Chicago Manual of Style (16th Edition):

Nyberg, Amy 1975-. “The Laplacian Spectra of Random Geometric Graphs.” 2014. Doctoral Dissertation, University of Houston. Accessed March 30, 2020. http://hdl.handle.net/10657/1646.

MLA Handbook (7th Edition):

Nyberg, Amy 1975-. “The Laplacian Spectra of Random Geometric Graphs.” 2014. Web. 30 Mar 2020.

Vancouver:

Nyberg A1. The Laplacian Spectra of Random Geometric Graphs. [Internet] [Doctoral dissertation]. University of Houston; 2014. [cited 2020 Mar 30]. Available from: http://hdl.handle.net/10657/1646.

Council of Science Editors:

Nyberg A1. The Laplacian Spectra of Random Geometric Graphs. [Doctoral Dissertation]. University of Houston; 2014. Available from: http://hdl.handle.net/10657/1646


University of Manchester

27. Zemaityte, Mante. Theory and Algorithms for Linear Eigenvalue Problems.

Degree: 2020, University of Manchester

 In the first part of this thesis, methods for the partial solution of generalized eigenvalue problems arising from structural dynamics are studied. A natural choice… (more)

Subjects/Keywords: shift-and-invert Lanczos algorithm; symmetric generalized eigenvalue problem; shifting strategy; structural analysis; orthogonal polynomials; max-plus eigenvalue problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zemaityte, M. (2020). Theory and Algorithms for Linear Eigenvalue Problems. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865

Chicago Manual of Style (16th Edition):

Zemaityte, Mante. “Theory and Algorithms for Linear Eigenvalue Problems.” 2020. Doctoral Dissertation, University of Manchester. Accessed March 30, 2020. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865.

MLA Handbook (7th Edition):

Zemaityte, Mante. “Theory and Algorithms for Linear Eigenvalue Problems.” 2020. Web. 30 Mar 2020.

Vancouver:

Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2020 Mar 30]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865.

Council of Science Editors:

Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems. [Doctoral Dissertation]. University of Manchester; 2020. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:323865


University of Manchester

28. Zemaityte, Mante. Theory and algorithms for linear eigenvalue problems.

Degree: PhD, 2020, University of Manchester

 In the first part of this thesis, methods for the partial solution of generalized eigenvalue problems arising from structural dynamics are studied. A natural choice… (more)

Subjects/Keywords: max-plus eigenvalue problems; orthogonal polynomials; structural analysis; symmetric generalized eigenvalue problem; shift-and-invert Lanczos algorithm; shifting strategy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zemaityte, M. (2020). Theory and algorithms for linear eigenvalue problems. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528

Chicago Manual of Style (16th Edition):

Zemaityte, Mante. “Theory and algorithms for linear eigenvalue problems.” 2020. Doctoral Dissertation, University of Manchester. Accessed March 30, 2020. https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528.

MLA Handbook (7th Edition):

Zemaityte, Mante. “Theory and algorithms for linear eigenvalue problems.” 2020. Web. 30 Mar 2020.

Vancouver:

Zemaityte M. Theory and algorithms for linear eigenvalue problems. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2020 Mar 30]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528.

Council of Science Editors:

Zemaityte M. Theory and algorithms for linear eigenvalue problems. [Doctoral Dissertation]. University of Manchester; 2020. Available from: https://www.research.manchester.ac.uk/portal/en/theses/theory-and-algorithms-for-linear-eigenvalue-problems(d363b322-5b7f-420c-930a-91dfad9a9c0f).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799528


University of South Carolina

29. Dutle, Aaron Michael. Spectra of Hypergraphs.

Degree: PhD, Mathematics, 2012, University of South Carolina

  We present a spectral theory of uniform hypergraphs that closely parallels Spectral Graph Theory. A number of developments building upon classical work has led… (more)

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; Eigenvalue; Hypergraph; Spectrum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dutle, A. M. (2012). Spectra of Hypergraphs. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/1593

Chicago Manual of Style (16th Edition):

Dutle, Aaron Michael. “Spectra of Hypergraphs.” 2012. Doctoral Dissertation, University of South Carolina. Accessed March 30, 2020. https://scholarcommons.sc.edu/etd/1593.

MLA Handbook (7th Edition):

Dutle, Aaron Michael. “Spectra of Hypergraphs.” 2012. Web. 30 Mar 2020.

Vancouver:

Dutle AM. Spectra of Hypergraphs. [Internet] [Doctoral dissertation]. University of South Carolina; 2012. [cited 2020 Mar 30]. Available from: https://scholarcommons.sc.edu/etd/1593.

Council of Science Editors:

Dutle AM. Spectra of Hypergraphs. [Doctoral Dissertation]. University of South Carolina; 2012. Available from: https://scholarcommons.sc.edu/etd/1593


University of Southern California

30. Zhang, Beijia. Geometric bounds for Markov Chain and brief applications in Monte Carlo methods.

Degree: MS, Statistics, 2010, University of Southern California

 Since we have the preliminary fact that the irreducible, aperiodic and reversible Markov Chain can asymptotically converge to a unique stationary distribution, and then the… (more)

Subjects/Keywords: second largest eigenvalue; Markov chain; Monte Carlo; simulation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, B. (2010). Geometric bounds for Markov Chain and brief applications in Monte Carlo methods. (Masters Thesis). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027

Chicago Manual of Style (16th Edition):

Zhang, Beijia. “Geometric bounds for Markov Chain and brief applications in Monte Carlo methods.” 2010. Masters Thesis, University of Southern California. Accessed March 30, 2020. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027.

MLA Handbook (7th Edition):

Zhang, Beijia. “Geometric bounds for Markov Chain and brief applications in Monte Carlo methods.” 2010. Web. 30 Mar 2020.

Vancouver:

Zhang B. Geometric bounds for Markov Chain and brief applications in Monte Carlo methods. [Internet] [Masters thesis]. University of Southern California; 2010. [cited 2020 Mar 30]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027.

Council of Science Editors:

Zhang B. Geometric bounds for Markov Chain and brief applications in Monte Carlo methods. [Masters Thesis]. University of Southern California; 2010. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/301124/rec/3027

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

.