Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Discrete geometry). Showing records 1 – 30 of 138 total matches.

[1] [2] [3] [4] [5]

Search Limiters

Last 2 Years | English Only

Department

Degrees

Levels

Languages

Country

▼ Search Limiters


Universidad de Cantabria

1. Criado Gallart, Francisco. Diameter of simplicial complexes, a computational approach.: Diámetro de complejos simpliciales, un enfoque computacional.

Degree: Máster en Matemáticas y Computación, 2016, Universidad de Cantabria

 ABSTRACT: The computational complexity of the simplex method, widely used for linear programming, depends on the combinatorial diameter of the edge graph of a polyhedron… (more)

Subjects/Keywords: Discrete Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Criado Gallart, F. (2016). Diameter of simplicial complexes, a computational approach.: Diámetro de complejos simpliciales, un enfoque computacional. (Masters Thesis). Universidad de Cantabria. Retrieved from http://hdl.handle.net/10902/9379

Chicago Manual of Style (16th Edition):

Criado Gallart, Francisco. “Diameter of simplicial complexes, a computational approach.: Diámetro de complejos simpliciales, un enfoque computacional.” 2016. Masters Thesis, Universidad de Cantabria. Accessed September 23, 2020. http://hdl.handle.net/10902/9379.

MLA Handbook (7th Edition):

Criado Gallart, Francisco. “Diameter of simplicial complexes, a computational approach.: Diámetro de complejos simpliciales, un enfoque computacional.” 2016. Web. 23 Sep 2020.

Vancouver:

Criado Gallart F. Diameter of simplicial complexes, a computational approach.: Diámetro de complejos simpliciales, un enfoque computacional. [Internet] [Masters thesis]. Universidad de Cantabria; 2016. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/10902/9379.

Council of Science Editors:

Criado Gallart F. Diameter of simplicial complexes, a computational approach.: Diámetro de complejos simpliciales, un enfoque computacional. [Masters Thesis]. Universidad de Cantabria; 2016. Available from: http://hdl.handle.net/10902/9379


Rutgers University

2. Shabbir, Mudassir. Some results in computational and combinatorial geometry.

Degree: PhD, Computer Science, 2014, Rutgers University

In this thesis we present some new results in the field of discrete and computational geometry. The techniques and tools developed to achieve these results… (more)

Subjects/Keywords: Discrete geometry; Computational geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shabbir, M. (2014). Some results in computational and combinatorial geometry. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45458/

Chicago Manual of Style (16th Edition):

Shabbir, Mudassir. “Some results in computational and combinatorial geometry.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 23, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45458/.

MLA Handbook (7th Edition):

Shabbir, Mudassir. “Some results in computational and combinatorial geometry.” 2014. Web. 23 Sep 2020.

Vancouver:

Shabbir M. Some results in computational and combinatorial geometry. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 23]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45458/.

Council of Science Editors:

Shabbir M. Some results in computational and combinatorial geometry. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45458/


Rutgers University

3. Zhao, Jihui, 1971-. Partitioning problems in discrete and computational geometry:.

Degree: PhD, Computer Science, 2010, Rutgers University

Many interesting problems in Discrete and Computational Geometry involve partitioning. A main question is whether a given set, or sets, may be separated into parts… (more)

Subjects/Keywords: Discrete geometry; Geometry – Data processing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, Jihui, 1. (2010). Partitioning problems in discrete and computational geometry:. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052168

Chicago Manual of Style (16th Edition):

Zhao, Jihui, 1971-. “Partitioning problems in discrete and computational geometry:.” 2010. Doctoral Dissertation, Rutgers University. Accessed September 23, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052168.

MLA Handbook (7th Edition):

Zhao, Jihui, 1971-. “Partitioning problems in discrete and computational geometry:.” 2010. Web. 23 Sep 2020.

Vancouver:

Zhao, Jihui 1. Partitioning problems in discrete and computational geometry:. [Internet] [Doctoral dissertation]. Rutgers University; 2010. [cited 2020 Sep 23]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052168.

Council of Science Editors:

Zhao, Jihui 1. Partitioning problems in discrete and computational geometry:. [Doctoral Dissertation]. Rutgers University; 2010. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052168


Temple University

4. Dobbins, Michael Gene. Representations of Polytopes.

Degree: PhD, 2011, Temple University

Mathematics

Here we investigate a variety of ways to represent polytopes and related objects. We define a class of posets, which includes all abstract polytopes,… (more)

Subjects/Keywords: Mathematics; Combinatorics; Discrete Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dobbins, M. G. (2011). Representations of Polytopes. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,141523

Chicago Manual of Style (16th Edition):

Dobbins, Michael Gene. “Representations of Polytopes.” 2011. Doctoral Dissertation, Temple University. Accessed September 23, 2020. http://digital.library.temple.edu/u?/p245801coll10,141523.

MLA Handbook (7th Edition):

Dobbins, Michael Gene. “Representations of Polytopes.” 2011. Web. 23 Sep 2020.

Vancouver:

Dobbins MG. Representations of Polytopes. [Internet] [Doctoral dissertation]. Temple University; 2011. [cited 2020 Sep 23]. Available from: http://digital.library.temple.edu/u?/p245801coll10,141523.

Council of Science Editors:

Dobbins MG. Representations of Polytopes. [Doctoral Dissertation]. Temple University; 2011. Available from: http://digital.library.temple.edu/u?/p245801coll10,141523


Victoria University of Wellington

5. Prideaux, Kadin. Matroids, Cyclic Flats, and Polyhedra.

Degree: 2016, Victoria University of Wellington

 Matroids have a wide variety of distinct, cryptomorphic axiom systems that are capable of defining them. A common feature of these is that they are… (more)

Subjects/Keywords: Matroid theory; Discrete geometry; Combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prideaux, K. (2016). Matroids, Cyclic Flats, and Polyhedra. (Masters Thesis). Victoria University of Wellington. Retrieved from http://hdl.handle.net/10063/5204

Chicago Manual of Style (16th Edition):

Prideaux, Kadin. “Matroids, Cyclic Flats, and Polyhedra.” 2016. Masters Thesis, Victoria University of Wellington. Accessed September 23, 2020. http://hdl.handle.net/10063/5204.

MLA Handbook (7th Edition):

Prideaux, Kadin. “Matroids, Cyclic Flats, and Polyhedra.” 2016. Web. 23 Sep 2020.

Vancouver:

Prideaux K. Matroids, Cyclic Flats, and Polyhedra. [Internet] [Masters thesis]. Victoria University of Wellington; 2016. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/10063/5204.

Council of Science Editors:

Prideaux K. Matroids, Cyclic Flats, and Polyhedra. [Masters Thesis]. Victoria University of Wellington; 2016. Available from: http://hdl.handle.net/10063/5204


University of Melbourne

6. PAYNE, MICHAEL. Combinatorial geometry of point sets with collinearities.

Degree: 2014, University of Melbourne

 In this thesis various combinatorial problems relating to the geometry of point sets in the Euclidean plane are studied. The unifying theme is that all… (more)

Subjects/Keywords: discrete geometry; combinatorics; graph theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

PAYNE, M. (2014). Combinatorial geometry of point sets with collinearities. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/40866

Chicago Manual of Style (16th Edition):

PAYNE, MICHAEL. “Combinatorial geometry of point sets with collinearities.” 2014. Doctoral Dissertation, University of Melbourne. Accessed September 23, 2020. http://hdl.handle.net/11343/40866.

MLA Handbook (7th Edition):

PAYNE, MICHAEL. “Combinatorial geometry of point sets with collinearities.” 2014. Web. 23 Sep 2020.

Vancouver:

PAYNE M. Combinatorial geometry of point sets with collinearities. [Internet] [Doctoral dissertation]. University of Melbourne; 2014. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/11343/40866.

Council of Science Editors:

PAYNE M. Combinatorial geometry of point sets with collinearities. [Doctoral Dissertation]. University of Melbourne; 2014. Available from: http://hdl.handle.net/11343/40866


Northeastern University

7. Williams, Abigail. Wythoffian skeletal polyhedra.

Degree: PhD, Department of Mathematics, 2015, Northeastern University

 Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that… (more)

Subjects/Keywords: discrete geometry; Wythoff's construction; Polyhedra; Geometry, Solid; Symmetry groups; Discrete geometry; Polytopes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Williams, A. (2015). Wythoffian skeletal polyhedra. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20194323

Chicago Manual of Style (16th Edition):

Williams, Abigail. “Wythoffian skeletal polyhedra.” 2015. Doctoral Dissertation, Northeastern University. Accessed September 23, 2020. http://hdl.handle.net/2047/D20194323.

MLA Handbook (7th Edition):

Williams, Abigail. “Wythoffian skeletal polyhedra.” 2015. Web. 23 Sep 2020.

Vancouver:

Williams A. Wythoffian skeletal polyhedra. [Internet] [Doctoral dissertation]. Northeastern University; 2015. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/2047/D20194323.

Council of Science Editors:

Williams A. Wythoffian skeletal polyhedra. [Doctoral Dissertation]. Northeastern University; 2015. Available from: http://hdl.handle.net/2047/D20194323

8. Lund, Benjamin, 1979-. Incidences and extremal problems on finite point sets.

Degree: PhD, Computer Science, 2017, Rutgers University

This thesis consists of three papers, each addressing a different collection of problems on the extremal combinatorics of finite point sets. The first collection of… (more)

Subjects/Keywords: Discrete geometry

…combinatorial geometry, additive combinatorics, and computational geometry; for examples, see [50… …classical problems in combinatorial geometry. The remainder of the introduction gives additional… …projective geometry, combinatorics, and the Szemerédi-Trotter bound on the number of incidences… …complex affine geometry. 1. If n = gk (i.e., K(P ) ≤ k), then either fk−1… …appears in well-known collections of open problems in combinatorial geometry [12, 16]… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lund, Benjamin, 1. (2017). Incidences and extremal problems on finite point sets. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/53694/

Chicago Manual of Style (16th Edition):

Lund, Benjamin, 1979-. “Incidences and extremal problems on finite point sets.” 2017. Doctoral Dissertation, Rutgers University. Accessed September 23, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/53694/.

MLA Handbook (7th Edition):

Lund, Benjamin, 1979-. “Incidences and extremal problems on finite point sets.” 2017. Web. 23 Sep 2020.

Vancouver:

Lund, Benjamin 1. Incidences and extremal problems on finite point sets. [Internet] [Doctoral dissertation]. Rutgers University; 2017. [cited 2020 Sep 23]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/53694/.

Council of Science Editors:

Lund, Benjamin 1. Incidences and extremal problems on finite point sets. [Doctoral Dissertation]. Rutgers University; 2017. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/53694/


University of Bath

9. Clarke, Daniel. Integrability in submanifold geometry.

Degree: PhD, 2012, University of Bath

 This thesis concerns the relationship of submanifold geometry, in both the smooth and discrete sense, to representation theory and the theory of integrable systems. We… (more)

Subjects/Keywords: 516.362; differential geometry; integrable systems; discrete

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Clarke, D. (2012). Integrability in submanifold geometry. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890

Chicago Manual of Style (16th Edition):

Clarke, Daniel. “Integrability in submanifold geometry.” 2012. Doctoral Dissertation, University of Bath. Accessed September 23, 2020. https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890.

MLA Handbook (7th Edition):

Clarke, Daniel. “Integrability in submanifold geometry.” 2012. Web. 23 Sep 2020.

Vancouver:

Clarke D. Integrability in submanifold geometry. [Internet] [Doctoral dissertation]. University of Bath; 2012. [cited 2020 Sep 23]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890.

Council of Science Editors:

Clarke D. Integrability in submanifold geometry. [Doctoral Dissertation]. University of Bath; 2012. Available from: https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890

10. Wolf, Charles, 1989-. Incidence problems in discrete geometry.

Degree: PhD, Mathematics, 2017, Rutgers University

Over the past decade, discrete geometry research has flourished with clever uses of algebraic methods. The polynomial method has had a deep impact on a… (more)

Subjects/Keywords: Discrete geometry

…1 Chapter 1 Introduction Discrete geometry problems are attributed to mathematicians as… …early as the ancient Greeks. Recently, discrete geometry research has been reinvigorated via… …problems in discrete geometry. We will briefly summarize the results of this thesis in the… …combinatorial geometry is the Sylvester-Gallai theorem. Theorem 2.1.1 (Sylvester-Gallai theorem… …2.1.4 used a deep result of Hirzebruch [Hir83] from algebraic geometry. In… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wolf, Charles, 1. (2017). Incidence problems in discrete geometry. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/54042/

Chicago Manual of Style (16th Edition):

Wolf, Charles, 1989-. “Incidence problems in discrete geometry.” 2017. Doctoral Dissertation, Rutgers University. Accessed September 23, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/54042/.

MLA Handbook (7th Edition):

Wolf, Charles, 1989-. “Incidence problems in discrete geometry.” 2017. Web. 23 Sep 2020.

Vancouver:

Wolf, Charles 1. Incidence problems in discrete geometry. [Internet] [Doctoral dissertation]. Rutgers University; 2017. [cited 2020 Sep 23]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/54042/.

Council of Science Editors:

Wolf, Charles 1. Incidence problems in discrete geometry. [Doctoral Dissertation]. Rutgers University; 2017. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/54042/


Kent State University

11. Alajmi, Abdulrahman N. On The Lattice Size With Respect To The Standard Simplex in 3D.

Degree: PhD, College of Arts and Sciences / Department of Mathematical Science, 2020, Kent State University

 We study the lattice size lsΔ(P) of a lattice polytope P, which is defined to be the smallestinteger dilation of the standard simplex Δ that… (more)

Subjects/Keywords: Mathematics; lattice size, discrete geometry, polytopes, simplex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alajmi, A. N. (2020). On The Lattice Size With Respect To The Standard Simplex in 3D. (Doctoral Dissertation). Kent State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=kent1598893373379275

Chicago Manual of Style (16th Edition):

Alajmi, Abdulrahman N. “On The Lattice Size With Respect To The Standard Simplex in 3D.” 2020. Doctoral Dissertation, Kent State University. Accessed September 23, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1598893373379275.

MLA Handbook (7th Edition):

Alajmi, Abdulrahman N. “On The Lattice Size With Respect To The Standard Simplex in 3D.” 2020. Web. 23 Sep 2020.

Vancouver:

Alajmi AN. On The Lattice Size With Respect To The Standard Simplex in 3D. [Internet] [Doctoral dissertation]. Kent State University; 2020. [cited 2020 Sep 23]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1598893373379275.

Council of Science Editors:

Alajmi AN. On The Lattice Size With Respect To The Standard Simplex in 3D. [Doctoral Dissertation]. Kent State University; 2020. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1598893373379275


University of Tennessee – Knoxville

12. Ashe, James Russell. Generalized Branching in Circle Packing.

Degree: 2012, University of Tennessee – Knoxville

 Circle packings are configurations of circle with prescribed patterns of tangency. They relate to a surprisingly diverse array of topics. Connections to Riemann surfaces, Apollonian… (more)

Subjects/Keywords: circle packing; branching; geometry; discrete; conformal; Analysis; Discrete Mathematics and Combinatorics; Geometry and Topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ashe, J. R. (2012). Generalized Branching in Circle Packing. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/1263

Chicago Manual of Style (16th Edition):

Ashe, James Russell. “Generalized Branching in Circle Packing.” 2012. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed September 23, 2020. https://trace.tennessee.edu/utk_graddiss/1263.

MLA Handbook (7th Edition):

Ashe, James Russell. “Generalized Branching in Circle Packing.” 2012. Web. 23 Sep 2020.

Vancouver:

Ashe JR. Generalized Branching in Circle Packing. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2012. [cited 2020 Sep 23]. Available from: https://trace.tennessee.edu/utk_graddiss/1263.

Council of Science Editors:

Ashe JR. Generalized Branching in Circle Packing. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2012. Available from: https://trace.tennessee.edu/utk_graddiss/1263


University of Kentucky

13. Taylor, Clifford T. Deletion-Induced Triangulations.

Degree: 2015, University of Kentucky

 Let d > 0 be a fixed integer and let A ⊆ ℝd be a collection of n ≥ d + 2 points which we… (more)

Subjects/Keywords: Discrete Geometry; Polytopes; Secondary polytopes; Lawrence Polytopes; Discrete Mathematics and Combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, C. T. (2015). Deletion-Induced Triangulations. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/24

Chicago Manual of Style (16th Edition):

Taylor, Clifford T. “Deletion-Induced Triangulations.” 2015. Doctoral Dissertation, University of Kentucky. Accessed September 23, 2020. https://uknowledge.uky.edu/math_etds/24.

MLA Handbook (7th Edition):

Taylor, Clifford T. “Deletion-Induced Triangulations.” 2015. Web. 23 Sep 2020.

Vancouver:

Taylor CT. Deletion-Induced Triangulations. [Internet] [Doctoral dissertation]. University of Kentucky; 2015. [cited 2020 Sep 23]. Available from: https://uknowledge.uky.edu/math_etds/24.

Council of Science Editors:

Taylor CT. Deletion-Induced Triangulations. [Doctoral Dissertation]. University of Kentucky; 2015. Available from: https://uknowledge.uky.edu/math_etds/24


UCLA

14. Kinneberg, Kyle Edward. A coarse entropy-rigidity theorem and discrete length-volume inequalities.

Degree: Mathematics, 2014, UCLA

 In [5], M. Bonk and B. Kleiner proved a rigidity theorem for expanding quasi-M"obius group actions on Ahlfors n-regular metric spaces with topological dimension n.… (more)

Subjects/Keywords: Mathematics; Theoretical mathematics; Discrete geometry; Hyperbolic groups; Quasiconformal geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kinneberg, K. E. (2014). A coarse entropy-rigidity theorem and discrete length-volume inequalities. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/3c04z060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kinneberg, Kyle Edward. “A coarse entropy-rigidity theorem and discrete length-volume inequalities.” 2014. Thesis, UCLA. Accessed September 23, 2020. http://www.escholarship.org/uc/item/3c04z060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kinneberg, Kyle Edward. “A coarse entropy-rigidity theorem and discrete length-volume inequalities.” 2014. Web. 23 Sep 2020.

Vancouver:

Kinneberg KE. A coarse entropy-rigidity theorem and discrete length-volume inequalities. [Internet] [Thesis]. UCLA; 2014. [cited 2020 Sep 23]. Available from: http://www.escholarship.org/uc/item/3c04z060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kinneberg KE. A coarse entropy-rigidity theorem and discrete length-volume inequalities. [Thesis]. UCLA; 2014. Available from: http://www.escholarship.org/uc/item/3c04z060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Northeastern University

15. Cunningham, Gabe. Internal and external invariance of abstract polytopes.

Degree: PhD, Department of Mathematics, 2012, Northeastern University

 In addition to the usual symmetries by reflections and rotations, abstract polytopes can have external symmetries such as self-duality and self-Petriality. In this dissertation, we… (more)

Subjects/Keywords: chiral polytope; discrete geometry; duality; polytope; regular polytope; Discrete Mathematics and Combinatorics; Geometry and Topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cunningham, G. (2012). Internal and external invariance of abstract polytopes. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/d20002986

Chicago Manual of Style (16th Edition):

Cunningham, Gabe. “Internal and external invariance of abstract polytopes.” 2012. Doctoral Dissertation, Northeastern University. Accessed September 23, 2020. http://hdl.handle.net/2047/d20002986.

MLA Handbook (7th Edition):

Cunningham, Gabe. “Internal and external invariance of abstract polytopes.” 2012. Web. 23 Sep 2020.

Vancouver:

Cunningham G. Internal and external invariance of abstract polytopes. [Internet] [Doctoral dissertation]. Northeastern University; 2012. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/2047/d20002986.

Council of Science Editors:

Cunningham G. Internal and external invariance of abstract polytopes. [Doctoral Dissertation]. Northeastern University; 2012. Available from: http://hdl.handle.net/2047/d20002986


University of California – Berkeley

16. Mitchell, Toby. A Limit of Economy of Material in Shell Structures.

Degree: Civil and Environmental Engineering, 2013, University of California – Berkeley

 An engineering structure can be optimized to maximize its stiffness under a setof applied loads, or (equivalently) to ensure all stresses in the structure are… (more)

Subjects/Keywords: Civil engineering; continuum mechanics; differential geometry; discrete differential geometry; Michell trusses; shell theory; structural optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mitchell, T. (2013). A Limit of Economy of Material in Shell Structures. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/0m72v2tt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mitchell, Toby. “A Limit of Economy of Material in Shell Structures.” 2013. Thesis, University of California – Berkeley. Accessed September 23, 2020. http://www.escholarship.org/uc/item/0m72v2tt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mitchell, Toby. “A Limit of Economy of Material in Shell Structures.” 2013. Web. 23 Sep 2020.

Vancouver:

Mitchell T. A Limit of Economy of Material in Shell Structures. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2020 Sep 23]. Available from: http://www.escholarship.org/uc/item/0m72v2tt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mitchell T. A Limit of Economy of Material in Shell Structures. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/0m72v2tt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

17. Vigolo, Federico. Geometry of actions, expanders and warped cones.

Degree: PhD, 2018, University of Oxford

 In this thesis we introduce a notion of graphs approximating actions of finitely generated groups on metric and measure spaces. We systematically investigate expansion properties… (more)

Subjects/Keywords: Mathematics; Geometry; Warped Cone; Approximating Graphs; Expanders; Discrete Fundamental Group; Coarse Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vigolo, F. (2018). Geometry of actions, expanders and warped cones. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:0b094203-6f94-4b3b-826e-c8b1ac6203b8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757794

Chicago Manual of Style (16th Edition):

Vigolo, Federico. “Geometry of actions, expanders and warped cones.” 2018. Doctoral Dissertation, University of Oxford. Accessed September 23, 2020. http://ora.ox.ac.uk/objects/uuid:0b094203-6f94-4b3b-826e-c8b1ac6203b8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757794.

MLA Handbook (7th Edition):

Vigolo, Federico. “Geometry of actions, expanders and warped cones.” 2018. Web. 23 Sep 2020.

Vancouver:

Vigolo F. Geometry of actions, expanders and warped cones. [Internet] [Doctoral dissertation]. University of Oxford; 2018. [cited 2020 Sep 23]. Available from: http://ora.ox.ac.uk/objects/uuid:0b094203-6f94-4b3b-826e-c8b1ac6203b8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757794.

Council of Science Editors:

Vigolo F. Geometry of actions, expanders and warped cones. [Doctoral Dissertation]. University of Oxford; 2018. Available from: http://ora.ox.ac.uk/objects/uuid:0b094203-6f94-4b3b-826e-c8b1ac6203b8 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757794


Delft University of Technology

18. Oud, G.T. (author). An Application of Discrete Differential Geometry to the Spectral Element Method.

Degree: 2011, Delft University of Technology

The thesis describes how differential geometry and algebraic topology together can be applied to an existing numerical method. After some introduction, the central idea is… (more)

Subjects/Keywords: discrete differential geometry; spectral element method; differential geometry; algebraic topology; mimetic methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oud, G. T. (. (2011). An Application of Discrete Differential Geometry to the Spectral Element Method. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85

Chicago Manual of Style (16th Edition):

Oud, G T (author). “An Application of Discrete Differential Geometry to the Spectral Element Method.” 2011. Masters Thesis, Delft University of Technology. Accessed September 23, 2020. http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85.

MLA Handbook (7th Edition):

Oud, G T (author). “An Application of Discrete Differential Geometry to the Spectral Element Method.” 2011. Web. 23 Sep 2020.

Vancouver:

Oud GT(. An Application of Discrete Differential Geometry to the Spectral Element Method. [Internet] [Masters thesis]. Delft University of Technology; 2011. [cited 2020 Sep 23]. Available from: http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85.

Council of Science Editors:

Oud GT(. An Application of Discrete Differential Geometry to the Spectral Element Method. [Masters Thesis]. Delft University of Technology; 2011. Available from: http://resolver.tudelft.nl/uuid:f7851d2d-b066-4568-a2ab-11a879164f85


University of Illinois – Urbana-Champaign

19. Raichel, Benjamin A. In pursuit of linear complexity in discrete and computational geometry.

Degree: PhD, Computer Science, 2015, University of Illinois – Urbana-Champaign

 Many computational problems arise naturally from geometric data. In this thesis, we consider three such problems: (i) distance optimization problems over point sets, (ii) computing… (more)

Subjects/Keywords: Computational Geometry; Discrete Geometry; Computational Topology; Geometric Optimization; Contour Trees; Voronoi Diagrams

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Raichel, B. A. (2015). In pursuit of linear complexity in discrete and computational geometry. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/88048

Chicago Manual of Style (16th Edition):

Raichel, Benjamin A. “In pursuit of linear complexity in discrete and computational geometry.” 2015. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 23, 2020. http://hdl.handle.net/2142/88048.

MLA Handbook (7th Edition):

Raichel, Benjamin A. “In pursuit of linear complexity in discrete and computational geometry.” 2015. Web. 23 Sep 2020.

Vancouver:

Raichel BA. In pursuit of linear complexity in discrete and computational geometry. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2015. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/2142/88048.

Council of Science Editors:

Raichel BA. In pursuit of linear complexity in discrete and computational geometry. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/88048


University of Tennessee – Knoxville

20. Lewis, Paul Wayne, Jr. Lagrangian Representations of (p, p, p)-triangle Groups.

Degree: 2011, University of Tennessee – Knoxville

 We obtain explicit formulae for Lagrangian representations of the (p, q, r)-triangle group into the group of direct isometries of the complex hyperbolic plane in… (more)

Subjects/Keywords: complex hyperbolic geometry; discrete group; triangle group; Lagrangian representation; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lewis, Paul Wayne, J. (2011). Lagrangian Representations of (p, p, p)-triangle Groups. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/1203

Chicago Manual of Style (16th Edition):

Lewis, Paul Wayne, Jr. “Lagrangian Representations of (p, p, p)-triangle Groups.” 2011. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed September 23, 2020. https://trace.tennessee.edu/utk_graddiss/1203.

MLA Handbook (7th Edition):

Lewis, Paul Wayne, Jr. “Lagrangian Representations of (p, p, p)-triangle Groups.” 2011. Web. 23 Sep 2020.

Vancouver:

Lewis, Paul Wayne J. Lagrangian Representations of (p, p, p)-triangle Groups. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2011. [cited 2020 Sep 23]. Available from: https://trace.tennessee.edu/utk_graddiss/1203.

Council of Science Editors:

Lewis, Paul Wayne J. Lagrangian Representations of (p, p, p)-triangle Groups. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2011. Available from: https://trace.tennessee.edu/utk_graddiss/1203


Freie Universität Berlin

21. Hildebrandt, Klaus. Diskretisierung und Approximation der Weingartenabbildung, des Laplace- Beltrami-Operators und der Willmore-Energie von Flächen.

Degree: 2013, Freie Universität Berlin

 Die diskrete Differentialgeometrie ist ein mathematisches Gebiet, in dem diskrete Entsprechungen zu Begriffen und Konzepten der klassischen und modernen Differentialgeometrie glatter Mannigfaltigkeiten konstruiert und analysiert… (more)

Subjects/Keywords: discrete differential geometry; convergence; finite elements; discrete Laplace-Beltrami operator; discrete curvatures; 500 Naturwissenschaften und Mathematik::510 Mathematik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hildebrandt, K. (2013). Diskretisierung und Approximation der Weingartenabbildung, des Laplace- Beltrami-Operators und der Willmore-Energie von Flächen. (Thesis). Freie Universität Berlin. Retrieved from https://refubium.fu-berlin.de/handle/fub188/10704

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hildebrandt, Klaus. “Diskretisierung und Approximation der Weingartenabbildung, des Laplace- Beltrami-Operators und der Willmore-Energie von Flächen.” 2013. Thesis, Freie Universität Berlin. Accessed September 23, 2020. https://refubium.fu-berlin.de/handle/fub188/10704.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hildebrandt, Klaus. “Diskretisierung und Approximation der Weingartenabbildung, des Laplace- Beltrami-Operators und der Willmore-Energie von Flächen.” 2013. Web. 23 Sep 2020.

Vancouver:

Hildebrandt K. Diskretisierung und Approximation der Weingartenabbildung, des Laplace- Beltrami-Operators und der Willmore-Energie von Flächen. [Internet] [Thesis]. Freie Universität Berlin; 2013. [cited 2020 Sep 23]. Available from: https://refubium.fu-berlin.de/handle/fub188/10704.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hildebrandt K. Diskretisierung und Approximation der Weingartenabbildung, des Laplace- Beltrami-Operators und der Willmore-Energie von Flächen. [Thesis]. Freie Universität Berlin; 2013. Available from: https://refubium.fu-berlin.de/handle/fub188/10704

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

22. Rabinowitz, Michael. Modeling Developable Surfaces with Discrete Orthogonal Geodesic Nets.

Degree: 2020, ETH Zürich

 Surfaces that are locally isometric to a plane are called developable surfaces. In the physical world, these surfaces can be formed by bending thin flat… (more)

Subjects/Keywords: Geometry processing; Discrete differential geometry; Developable surfaces; Architectural geometry; Shape modeling; info:eu-repo/classification/ddc/004; Data processing, computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rabinowitz, M. (2020). Modeling Developable Surfaces with Discrete Orthogonal Geodesic Nets. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/427802

Chicago Manual of Style (16th Edition):

Rabinowitz, Michael. “Modeling Developable Surfaces with Discrete Orthogonal Geodesic Nets.” 2020. Doctoral Dissertation, ETH Zürich. Accessed September 23, 2020. http://hdl.handle.net/20.500.11850/427802.

MLA Handbook (7th Edition):

Rabinowitz, Michael. “Modeling Developable Surfaces with Discrete Orthogonal Geodesic Nets.” 2020. Web. 23 Sep 2020.

Vancouver:

Rabinowitz M. Modeling Developable Surfaces with Discrete Orthogonal Geodesic Nets. [Internet] [Doctoral dissertation]. ETH Zürich; 2020. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/20.500.11850/427802.

Council of Science Editors:

Rabinowitz M. Modeling Developable Surfaces with Discrete Orthogonal Geodesic Nets. [Doctoral Dissertation]. ETH Zürich; 2020. Available from: http://hdl.handle.net/20.500.11850/427802

23. Manoj, Changat. Studies on Convexity in Some Discrete Structures.

Degree: 1990, Cochin University of Science and Technology

Subjects/Keywords: Discrete Geometry; Convexity; Helly's Theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Manoj, C. (1990). Studies on Convexity in Some Discrete Structures. (Thesis). Cochin University of Science and Technology. Retrieved from http://dyuthi.cusat.ac.in/purl/1601

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Manoj, Changat. “Studies on Convexity in Some Discrete Structures.” 1990. Thesis, Cochin University of Science and Technology. Accessed September 23, 2020. http://dyuthi.cusat.ac.in/purl/1601.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Manoj, Changat. “Studies on Convexity in Some Discrete Structures.” 1990. Web. 23 Sep 2020.

Vancouver:

Manoj C. Studies on Convexity in Some Discrete Structures. [Internet] [Thesis]. Cochin University of Science and Technology; 1990. [cited 2020 Sep 23]. Available from: http://dyuthi.cusat.ac.in/purl/1601.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Manoj C. Studies on Convexity in Some Discrete Structures. [Thesis]. Cochin University of Science and Technology; 1990. Available from: http://dyuthi.cusat.ac.in/purl/1601

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – San Diego

24. Moody, John Brogan. Discrete Differential Structures on Simplicial Complexes.

Degree: Mathematics, 2016, University of California – San Diego

 One of the principle concerns of computational mathematics is the discrete representation and approximation of mathematical objects. It is common for classical definitions of mathematical… (more)

Subjects/Keywords: Mathematics; approximation; discrete differentiable structure; geometry; manifold; simplicial complex; splines

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moody, J. B. (2016). Discrete Differential Structures on Simplicial Complexes. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/3r68j50r

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Moody, John Brogan. “Discrete Differential Structures on Simplicial Complexes.” 2016. Thesis, University of California – San Diego. Accessed September 23, 2020. http://www.escholarship.org/uc/item/3r68j50r.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Moody, John Brogan. “Discrete Differential Structures on Simplicial Complexes.” 2016. Web. 23 Sep 2020.

Vancouver:

Moody JB. Discrete Differential Structures on Simplicial Complexes. [Internet] [Thesis]. University of California – San Diego; 2016. [cited 2020 Sep 23]. Available from: http://www.escholarship.org/uc/item/3r68j50r.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Moody JB. Discrete Differential Structures on Simplicial Complexes. [Thesis]. University of California – San Diego; 2016. Available from: http://www.escholarship.org/uc/item/3r68j50r

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Cincinnati

25. Smith, Justin W. Problems and Results in Discrete and Computational Geometry.

Degree: PhD, Engineering and Applied Science: Computer Science and Engineering, 2012, University of Cincinnati

 Let S be a set of n points in R3 , no three collinear and not all coplanar. Ifat most n - k are coplanar… (more)

Subjects/Keywords: Computer Science; pseudoline arrangement; discrete geometry; dirac conjecture; orchard problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, J. W. (2012). Problems and Results in Discrete and Computational Geometry. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352402504

Chicago Manual of Style (16th Edition):

Smith, Justin W. “Problems and Results in Discrete and Computational Geometry.” 2012. Doctoral Dissertation, University of Cincinnati. Accessed September 23, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352402504.

MLA Handbook (7th Edition):

Smith, Justin W. “Problems and Results in Discrete and Computational Geometry.” 2012. Web. 23 Sep 2020.

Vancouver:

Smith JW. Problems and Results in Discrete and Computational Geometry. [Internet] [Doctoral dissertation]. University of Cincinnati; 2012. [cited 2020 Sep 23]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352402504.

Council of Science Editors:

Smith JW. Problems and Results in Discrete and Computational Geometry. [Doctoral Dissertation]. University of Cincinnati; 2012. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1352402504


Northeastern University

26. Scheidwasser, Ilya. Contractions of polygons in abstract polytopes.

Degree: PhD, Department of Mathematics, 2015, Northeastern University

 There are several well-known constructions of new polytopes from old, such as the pyramid and prism constructions. This thesis defines two new local constructions on… (more)

Subjects/Keywords: abstract polytopes; combinatorics; Polytopes; Polygons; Combinatorial analysis; Discrete geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scheidwasser, I. (2015). Contractions of polygons in abstract polytopes. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20194153

Chicago Manual of Style (16th Edition):

Scheidwasser, Ilya. “Contractions of polygons in abstract polytopes.” 2015. Doctoral Dissertation, Northeastern University. Accessed September 23, 2020. http://hdl.handle.net/2047/D20194153.

MLA Handbook (7th Edition):

Scheidwasser, Ilya. “Contractions of polygons in abstract polytopes.” 2015. Web. 23 Sep 2020.

Vancouver:

Scheidwasser I. Contractions of polygons in abstract polytopes. [Internet] [Doctoral dissertation]. Northeastern University; 2015. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/2047/D20194153.

Council of Science Editors:

Scheidwasser I. Contractions of polygons in abstract polytopes. [Doctoral Dissertation]. Northeastern University; 2015. Available from: http://hdl.handle.net/2047/D20194153


Hong Kong University of Science and Technology

27. Lau, Yun Man. Discrete element method simulations on triaxial test and triaxial creep tests.

Degree: 2011, Hong Kong University of Science and Technology

 Numerical triaxial simulations using the discrete element method (DEM) were performed to examine how the adopted contact models and the associated parameters affect the response.… (more)

Subjects/Keywords: Sand  – Creep  – Mathematical models ; Discrete geometry ; Soil mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lau, Y. M. (2011). Discrete element method simulations on triaxial test and triaxial creep tests. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-7385 ; https://doi.org/10.14711/thesis-b1154783 ; http://repository.ust.hk/ir/bitstream/1783.1-7385/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lau, Yun Man. “Discrete element method simulations on triaxial test and triaxial creep tests.” 2011. Thesis, Hong Kong University of Science and Technology. Accessed September 23, 2020. http://repository.ust.hk/ir/Record/1783.1-7385 ; https://doi.org/10.14711/thesis-b1154783 ; http://repository.ust.hk/ir/bitstream/1783.1-7385/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lau, Yun Man. “Discrete element method simulations on triaxial test and triaxial creep tests.” 2011. Web. 23 Sep 2020.

Vancouver:

Lau YM. Discrete element method simulations on triaxial test and triaxial creep tests. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2011. [cited 2020 Sep 23]. Available from: http://repository.ust.hk/ir/Record/1783.1-7385 ; https://doi.org/10.14711/thesis-b1154783 ; http://repository.ust.hk/ir/bitstream/1783.1-7385/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lau YM. Discrete element method simulations on triaxial test and triaxial creep tests. [Thesis]. Hong Kong University of Science and Technology; 2011. Available from: http://repository.ust.hk/ir/Record/1783.1-7385 ; https://doi.org/10.14711/thesis-b1154783 ; http://repository.ust.hk/ir/bitstream/1783.1-7385/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Hong Kong University of Science and Technology

28. Luo, Tao MATH. Analysis of epitaxial growth and dislocation models at different scales.

Degree: 2017, Hong Kong University of Science and Technology

 In the first part of this thesis, we study the epitaxial growth on vicinal surfaces, where elasticity effects give rise to step bunching instability and… (more)

Subjects/Keywords: Epitaxy ; Mathematical models ; Dislocations in crystals ; Discrete geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luo, T. M. (2017). Analysis of epitaxial growth and dislocation models at different scales. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-91179 ; https://doi.org/10.14711/thesis-991012564466903412 ; http://repository.ust.hk/ir/bitstream/1783.1-91179/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Luo, Tao MATH. “Analysis of epitaxial growth and dislocation models at different scales.” 2017. Thesis, Hong Kong University of Science and Technology. Accessed September 23, 2020. http://repository.ust.hk/ir/Record/1783.1-91179 ; https://doi.org/10.14711/thesis-991012564466903412 ; http://repository.ust.hk/ir/bitstream/1783.1-91179/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Luo, Tao MATH. “Analysis of epitaxial growth and dislocation models at different scales.” 2017. Web. 23 Sep 2020.

Vancouver:

Luo TM. Analysis of epitaxial growth and dislocation models at different scales. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2017. [cited 2020 Sep 23]. Available from: http://repository.ust.hk/ir/Record/1783.1-91179 ; https://doi.org/10.14711/thesis-991012564466903412 ; http://repository.ust.hk/ir/bitstream/1783.1-91179/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Luo TM. Analysis of epitaxial growth and dislocation models at different scales. [Thesis]. Hong Kong University of Science and Technology; 2017. Available from: http://repository.ust.hk/ir/Record/1783.1-91179 ; https://doi.org/10.14711/thesis-991012564466903412 ; http://repository.ust.hk/ir/bitstream/1783.1-91179/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Tennessee – Knoxville

29. Wilkins, Leonard Duane. Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces.

Degree: 2011, University of Tennessee – Knoxville

 Building on the work of Conrad Plaut and Valera Berestovskii regarding uniform spaces and the covering spectrum of Christina Sormani and Guofang Wei developed for… (more)

Subjects/Keywords: Gromov-Hausdorff; convergence; metric; space; discrete; homotopy; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilkins, L. D. (2011). Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/1039

Chicago Manual of Style (16th Edition):

Wilkins, Leonard Duane. “Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces.” 2011. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed September 23, 2020. https://trace.tennessee.edu/utk_graddiss/1039.

MLA Handbook (7th Edition):

Wilkins, Leonard Duane. “Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces.” 2011. Web. 23 Sep 2020.

Vancouver:

Wilkins LD. Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2011. [cited 2020 Sep 23]. Available from: https://trace.tennessee.edu/utk_graddiss/1039.

Council of Science Editors:

Wilkins LD. Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2011. Available from: https://trace.tennessee.edu/utk_graddiss/1039


King Abdullah University of Science and Technology

30. Sun, Xiang. Discrete Curvatures and Discrete Minimal Surfaces.

Degree: 2012, King Abdullah University of Science and Technology

 This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of… (more)

Subjects/Keywords: Curvature; Discret minimal surface; Discrete differential geometry; Koenigs mesh; Optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sun, X. (2012). Discrete Curvatures and Discrete Minimal Surfaces. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/273092

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sun, Xiang. “Discrete Curvatures and Discrete Minimal Surfaces.” 2012. Thesis, King Abdullah University of Science and Technology. Accessed September 23, 2020. http://hdl.handle.net/10754/273092.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sun, Xiang. “Discrete Curvatures and Discrete Minimal Surfaces.” 2012. Web. 23 Sep 2020.

Vancouver:

Sun X. Discrete Curvatures and Discrete Minimal Surfaces. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2012. [cited 2020 Sep 23]. Available from: http://hdl.handle.net/10754/273092.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sun X. Discrete Curvatures and Discrete Minimal Surfaces. [Thesis]. King Abdullah University of Science and Technology; 2012. Available from: http://hdl.handle.net/10754/273092

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5]

.