Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Discontinuous Galerkin methods)`

.
Showing records 1 – 30 of
75 total matches.

▼ Search Limiters

1.
Shi, Cengke.
Numerical *Methods* for Hyperbolic Equations: Generalized
Definition of Local Conservation and *Discontinuous* *Galerkin* *Methods*
for Maxwell's equations in Drude Metamaterials.

Degree: Department of Applied Mathematics, 2018, Brown University

URL: https://repository.library.brown.edu/studio/item/bdr:792729/

► This dissertation presents two topics on numerical solutions solving hyperbolic equations from both theoretical and practical points of view. In the first part, we introduce…
(more)

Subjects/Keywords: Discontinuous Galerkin Methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shi, C. (2018). Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials. (Thesis). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:792729/

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shi, Cengke. “Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials.” 2018. Thesis, Brown University. Accessed December 01, 2020. https://repository.library.brown.edu/studio/item/bdr:792729/.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shi, Cengke. “Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials.” 2018. Web. 01 Dec 2020.

Vancouver:

Shi C. Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials. [Internet] [Thesis]. Brown University; 2018. [cited 2020 Dec 01]. Available from: https://repository.library.brown.edu/studio/item/bdr:792729/.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shi C. Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials. [Thesis]. Brown University; 2018. Available from: https://repository.library.brown.edu/studio/item/bdr:792729/

Not specified: Masters Thesis or Doctoral Dissertation

University of Minnesota

2.
Fu, Guosheng.
Devising superconvergent HDG *methods* by M-decompositions.

Degree: PhD, Mathematics, 2016, University of Minnesota

URL: http://hdl.handle.net/11299/182270

► In this thesis, we develop the concept of an M-decomposition as an effective tool for devising high-order accurate hybridizable *discontinuous* *Galerkin* *methods* and hybridized mixed…
(more)

Subjects/Keywords: discontinuous Galerkin; hybridization; M-decomposition; mixed methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fu, G. (2016). Devising superconvergent HDG methods by M-decompositions. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/182270

Chicago Manual of Style (16^{th} Edition):

Fu, Guosheng. “Devising superconvergent HDG methods by M-decompositions.” 2016. Doctoral Dissertation, University of Minnesota. Accessed December 01, 2020. http://hdl.handle.net/11299/182270.

MLA Handbook (7^{th} Edition):

Fu, Guosheng. “Devising superconvergent HDG methods by M-decompositions.” 2016. Web. 01 Dec 2020.

Vancouver:

Fu G. Devising superconvergent HDG methods by M-decompositions. [Internet] [Doctoral dissertation]. University of Minnesota; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/11299/182270.

Council of Science Editors:

Fu G. Devising superconvergent HDG methods by M-decompositions. [Doctoral Dissertation]. University of Minnesota; 2016. Available from: http://hdl.handle.net/11299/182270

University of Texas – Austin

3.
-3203-266X.
Numerical algorithms based on *Galerkin* *methods* for the modeling of reactive interfaces in photoelectrochemical solar cells.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

URL: http://hdl.handle.net/2152/46973

► Large-scale utilization of photovoltaic (PV) devices, or solar cells, has been hampered for years due to high costs and lack of energy storage mechanisms. Photoelectrochemical…
(more)

Subjects/Keywords: Discontinuous Galerkin methods; Mixed methods; Domain decomposition methods; Solar cells

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-3203-266X. (2016). Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/46973

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-3203-266X. “Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/46973.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-3203-266X. “Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells.” 2016. Web. 01 Dec 2020.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Vancouver:

-3203-266X. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/46973.

Author name may be incomplete

Council of Science Editors:

-3203-266X. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/46973

Author name may be incomplete

University of Texas – Austin

4.
-6327-2527.
Hybridized *discontinuous* *Galerkin* *methods* for magnetohydrodynamics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

URL: http://dx.doi.org/10.26153/tsw/2865

► *Discontinuous* *Galerkin* (DG) *methods* combine the advantages of classical finite element and finite volume *methods*. Like finite volume *methods*, through the use of *discontinuous* spaces…
(more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin methods; Hybridized discontinuous Galerkin methods; Stokes equations; Oseen equations; Magnetohydrodynamics; Resistive magnetohydrodynamics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-6327-2527. (2018). Hybridized discontinuous Galerkin methods for magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2865

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://dx.doi.org/10.26153/tsw/2865.

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Web. 01 Dec 2020.

Author name may be incomplete

Vancouver:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2020 Dec 01]. Available from: http://dx.doi.org/10.26153/tsw/2865.

Author name may be incomplete

Council of Science Editors:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://dx.doi.org/10.26153/tsw/2865

Author name may be incomplete

University of Waterloo

5.
Sosa Jones, Giselle.
Space-time hybridizable *discontinuous* *Galerkin* *methods* for free-surface wave problems.

Degree: 2020, University of Waterloo

URL: http://hdl.handle.net/10012/16192

► Free-surface problems arise in many real-world applications such as in the design of ships and offshore structures, modeling of tsunamis, and dam breaking. Mathematically, free-surface…
(more)

Subjects/Keywords: free-surface waves; space-time methods; hybridizable discontinuous Galerkin methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sosa Jones, G. (2020). Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/16192

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sosa Jones, Giselle. “Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems.” 2020. Thesis, University of Waterloo. Accessed December 01, 2020. http://hdl.handle.net/10012/16192.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sosa Jones, Giselle. “Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems.” 2020. Web. 01 Dec 2020.

Vancouver:

Sosa Jones G. Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems. [Internet] [Thesis]. University of Waterloo; 2020. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10012/16192.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sosa Jones G. Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems. [Thesis]. University of Waterloo; 2020. Available from: http://hdl.handle.net/10012/16192

Not specified: Masters Thesis or Doctoral Dissertation

Rice University

6.
Tan, Jun.
Convergence Analysis of *Discontinuous* *Galerkin* *Methods* for Poroelasticity Equations.

Degree: MA, Engineering, 2013, Rice University

URL: http://hdl.handle.net/1911/77564

► This thesis analyzes a numerical method for solving the poroelasticity equations. The model incorporating the poroelasticity equations in this thesis can be applied in intestinal…
(more)

Subjects/Keywords: Discontinuous Galerkin methods; Poroelasticity equations; Error estimate; Intestinal edema; Numerical PDE

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tan, J. (2013). Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations. (Masters Thesis). Rice University. Retrieved from http://hdl.handle.net/1911/77564

Chicago Manual of Style (16^{th} Edition):

Tan, Jun. “Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations.” 2013. Masters Thesis, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/77564.

MLA Handbook (7^{th} Edition):

Tan, Jun. “Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations.” 2013. Web. 01 Dec 2020.

Vancouver:

Tan J. Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations. [Internet] [Masters thesis]. Rice University; 2013. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/77564.

Council of Science Editors:

Tan J. Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations. [Masters Thesis]. Rice University; 2013. Available from: http://hdl.handle.net/1911/77564

University of Texas – Austin

7. Zhang, Chenglong. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations.

Degree: PhD, Computational and applied mathematics, 2014, University of Texas – Austin

URL: http://hdl.handle.net/2152/26887

► The Boltzmann Transport Equation (BTE) has been the keystone of the kinetic theory, which is at the center of Statistical Mechanics bridging the gap between…
(more)

Subjects/Keywords: Boltzmann transport equation; Landau transport equation; Conservative methods; Discontinuous galerkin methods; Spectral methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, C. (2014). On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/26887

Chicago Manual of Style (16^{th} Edition):

Zhang, Chenglong. “On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations.” 2014. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/26887.

MLA Handbook (7^{th} Edition):

Zhang, Chenglong. “On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations.” 2014. Web. 01 Dec 2020.

Vancouver:

Zhang C. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2014. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/26887.

Council of Science Editors:

Zhang C. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations. [Doctoral Dissertation]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/26887

University of California – San Diego

8.
Nelson, Daniel Alan Wendell.
High-Fidelity Lagrangian Coherent Structures Analysis and DNS with *Discontinuous*-*Galerkin* * Methods*.

Degree: Engineering Sciences (Mech and Aerospace Eng-Jt Doc SDSU), 2015, University of California – San Diego

URL: http://www.escholarship.org/uc/item/2cv4f732

► High-fidelity numerical tools based on high-order *Discontinuous*-*Galerkin* (DG) *methods* and Lagrangian Coherent Structure (LCS) theory are developed and validated for the study of separated, vortex-dominated…
(more)

Subjects/Keywords: Aerospace engineering; Direct Numerical Simulation; Discontinuous-Galerkin Methods; Lagrangian Coherent Structures; Spectral Methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nelson, D. A. W. (2015). High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/2cv4f732

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Nelson, Daniel Alan Wendell. “High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods.” 2015. Thesis, University of California – San Diego. Accessed December 01, 2020. http://www.escholarship.org/uc/item/2cv4f732.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Nelson, Daniel Alan Wendell. “High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods.” 2015. Web. 01 Dec 2020.

Vancouver:

Nelson DAW. High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. [Internet] [Thesis]. University of California – San Diego; 2015. [cited 2020 Dec 01]. Available from: http://www.escholarship.org/uc/item/2cv4f732.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nelson DAW. High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. [Thesis]. University of California – San Diego; 2015. Available from: http://www.escholarship.org/uc/item/2cv4f732

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

9.
Moe, Scott.
High order shock capturing *methods* with compact stencils for use with adaptive mesh refinement and mapped grids.

Degree: PhD, 2017, University of Washington

URL: http://hdl.handle.net/1773/39932

► This thesis focuses on several developments toward creating a high order shock capturing method that can be used on mapped grids with block-structured adaptive mesh…
(more)

Subjects/Keywords: Conservation Laws; Discontinuous Galerkin Methods; Finite Element Methods; Hyperbolic PDEs; Applied mathematics; Applied mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moe, S. (2017). High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/39932

Chicago Manual of Style (16^{th} Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Doctoral Dissertation, University of Washington. Accessed December 01, 2020. http://hdl.handle.net/1773/39932.

MLA Handbook (7^{th} Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Web. 01 Dec 2020.

Vancouver:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1773/39932.

Council of Science Editors:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/39932

10. Chan, Jesse L. A DPG method for convection-diffusion problems.

Degree: PhD, Computational and Applied Mathematics, 2013, University of Texas – Austin

URL: http://hdl.handle.net/2152/21417

► Over the last three decades, CFD simulations have become commonplace as a tool in the engineering and design of high-speed aircraft. Experiments are often complemented…
(more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin; Petrov-Galerkin; Optimal test functions; Minimum residual methods; Convection-diffusion; Compressible flow

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chan, J. L. (2013). A DPG method for convection-diffusion problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21417

Chicago Manual of Style (16^{th} Edition):

Chan, Jesse L. “A DPG method for convection-diffusion problems.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/21417.

MLA Handbook (7^{th} Edition):

Chan, Jesse L. “A DPG method for convection-diffusion problems.” 2013. Web. 01 Dec 2020.

Vancouver:

Chan JL. A DPG method for convection-diffusion problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/21417.

Council of Science Editors:

Chan JL. A DPG method for convection-diffusion problems. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21417

University of Oxford

11.
Smears, Iain Robert Nicholas.
*Discontinuous**Galerkin* finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

Degree: PhD, 2015, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

► We propose a *discontinuous* *Galerkin* finite element method (DGFEM) for fully nonlinear elliptic Hamilton – Jacobi – Bellman (HJB) partial differential equations (PDE) of second order with…
(more)

Subjects/Keywords: 515; Mathematics; Numerical analysis; Finite element methods; discontinuous Galerkin; Hamilton-Jacobi-Bellman equations; Cordes coefficients

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Smears, I. R. N. (2015). Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

Chicago Manual of Style (16^{th} Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Doctoral Dissertation, University of Oxford. Accessed December 01, 2020. http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

MLA Handbook (7^{th} Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Web. 01 Dec 2020.

Vancouver:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Internet] [Doctoral dissertation]. University of Oxford; 2015. [cited 2020 Dec 01]. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

Council of Science Editors:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Doctoral Dissertation]. University of Oxford; 2015. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

Iowa State University

12.
Gao, Haiyang.
Differential formulation of *discontinuous* *Galerkin* and related *methods* for compressible Euler and Navier-Stokes equations.

Degree: 2011, Iowa State University

URL: https://lib.dr.iastate.edu/etd/12248

► A new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by the current work is…
(more)

Subjects/Keywords: curved boundary; differential formulation; discontinuous Galerkin; high-order methods; h/p adaptation; Aerospace Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gao, H. (2011). Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/12248

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gao, Haiyang. “Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations.” 2011. Thesis, Iowa State University. Accessed December 01, 2020. https://lib.dr.iastate.edu/etd/12248.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gao, Haiyang. “Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations.” 2011. Web. 01 Dec 2020.

Vancouver:

Gao H. Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations. [Internet] [Thesis]. Iowa State University; 2011. [cited 2020 Dec 01]. Available from: https://lib.dr.iastate.edu/etd/12248.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gao H. Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations. [Thesis]. Iowa State University; 2011. Available from: https://lib.dr.iastate.edu/etd/12248

Not specified: Masters Thesis or Doctoral Dissertation

13.
Miri, Seyedalireza.
Numerical Solution of Moment Equations Using the *Discontinuous*-*Galerkin* Hancock Method
.

Degree: 2019, University of Ottawa

URL: http://hdl.handle.net/10393/38678

► Moment *methods* from the kinetic theory of gases exist as an alternative to the Navier-Stokes model. Models in this family are described by first-order hyperbolic…
(more)

Subjects/Keywords: Moment Methods; Discontinuous Galerkin Scheme

…*methods* with the *discontinuous*-*Galerkin* Hancock
discretization leads to a very efficient… …*discontinuous*-*Galerkin* (DG) *methods* seem like good candidates for their numerical
solution… …reconstruction, which requires
5
extended stencils. Another class of *methods*, the *Discontinuous*… …*Galerkin* (DG) *methods*, are very well suited for distributed parallel solution of first… …Chapter 3
introduces the *discontinuous*-*Galerkin*-Hancock method. Following this, the exact
form…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Miri, S. (2019). Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/38678

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Miri, Seyedalireza. “Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method .” 2019. Thesis, University of Ottawa. Accessed December 01, 2020. http://hdl.handle.net/10393/38678.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Miri, Seyedalireza. “Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method .” 2019. Web. 01 Dec 2020.

Vancouver:

Miri S. Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method . [Internet] [Thesis]. University of Ottawa; 2019. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10393/38678.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Miri S. Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method . [Thesis]. University of Ottawa; 2019. Available from: http://hdl.handle.net/10393/38678

Not specified: Masters Thesis or Doctoral Dissertation

Rice University

14.
Wang, Zheng.
GPU-accelerated *discontinuous* *Galerkin* *methods* on hybrid meshes: applications in seismic imaging.

Degree: PhD, Engineering, 2017, Rice University

URL: http://hdl.handle.net/1911/96151

► Seismic imaging is a geophysical technique assisting in the understanding of subsurface structure on a regional and global scale. With the development of computer technology,…
(more)

Subjects/Keywords: discontinuous Galerkin methods; high performance computing; reverse time migration; full waveform inversion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, Z. (2017). GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/96151

Chicago Manual of Style (16^{th} Edition):

Wang, Zheng. “GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging.” 2017. Doctoral Dissertation, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/96151.

MLA Handbook (7^{th} Edition):

Wang, Zheng. “GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging.” 2017. Web. 01 Dec 2020.

Vancouver:

Wang Z. GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging. [Internet] [Doctoral dissertation]. Rice University; 2017. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/96151.

Council of Science Editors:

Wang Z. GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging. [Doctoral Dissertation]. Rice University; 2017. Available from: http://hdl.handle.net/1911/96151

University of Minnesota

15.
Ichikawa, Ryuhei.
Adjoint recovery of superconvergent linear functionals from *Galerkin* approximations.

Degree: PhD, Mathematics, 2010, University of Minnesota

URL: http://purl.umn.edu/59569

► The thesis is concerned with superconvergent approximations of linear functionals. We extend the adjoint error correction technique of Pierce and Giles [SIAM Review, 42 (2000),…
(more)

Subjects/Keywords: Discontinuous galerkin methods; Functional approximation; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ichikawa, R. (2010). Adjoint recovery of superconvergent linear functionals from Galerkin approximations. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/59569

Chicago Manual of Style (16^{th} Edition):

Ichikawa, Ryuhei. “Adjoint recovery of superconvergent linear functionals from Galerkin approximations.” 2010. Doctoral Dissertation, University of Minnesota. Accessed December 01, 2020. http://purl.umn.edu/59569.

MLA Handbook (7^{th} Edition):

Ichikawa, Ryuhei. “Adjoint recovery of superconvergent linear functionals from Galerkin approximations.” 2010. Web. 01 Dec 2020.

Vancouver:

Ichikawa R. Adjoint recovery of superconvergent linear functionals from Galerkin approximations. [Internet] [Doctoral dissertation]. University of Minnesota; 2010. [cited 2020 Dec 01]. Available from: http://purl.umn.edu/59569.

Council of Science Editors:

Ichikawa R. Adjoint recovery of superconvergent linear functionals from Galerkin approximations. [Doctoral Dissertation]. University of Minnesota; 2010. Available from: http://purl.umn.edu/59569

California State University – Northridge

16. Nguyen, Truong. Development of fast deterministic solvers for the Boltzmann equation.

Degree: MS, Department of Mathematics, 2015, California State University – Northridge

URL: http://hdl.handle.net/10211.3/150432

► Gas flows in hyper-sonic air breathing engines and rocket thrusters and flows of particles into vacuum contain regions where the distribution of particle velocities deviates…
(more)

Subjects/Keywords: Boltzmann kinetic equation Discontinuous Galerkin methods Dynamics of non-continuum gas; Dissertations, Academic – CSUN – Mathematics.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, T. (2015). Development of fast deterministic solvers for the Boltzmann equation. (Masters Thesis). California State University – Northridge. Retrieved from http://hdl.handle.net/10211.3/150432

Chicago Manual of Style (16^{th} Edition):

Nguyen, Truong. “Development of fast deterministic solvers for the Boltzmann equation.” 2015. Masters Thesis, California State University – Northridge. Accessed December 01, 2020. http://hdl.handle.net/10211.3/150432.

MLA Handbook (7^{th} Edition):

Nguyen, Truong. “Development of fast deterministic solvers for the Boltzmann equation.” 2015. Web. 01 Dec 2020.

Vancouver:

Nguyen T. Development of fast deterministic solvers for the Boltzmann equation. [Internet] [Masters thesis]. California State University – Northridge; 2015. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10211.3/150432.

Council of Science Editors:

Nguyen T. Development of fast deterministic solvers for the Boltzmann equation. [Masters Thesis]. California State University – Northridge; 2015. Available from: http://hdl.handle.net/10211.3/150432

The Ohio State University

17.
Conroy, Colton J.
hp *discontinuous* *Galerkin* (DG) *methods* for coastal
oceancirculation and transport.

Degree: PhD, Civil Engineering, 2014, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

► In this dissertation, we present the development and implementation of a high-order, *discontinuous* *Galerkin* (DG), three-dimensional coastal ocean circulation and transport model. The model solves…
(more)

Subjects/Keywords: Applied Mathematics; Civil Engineering; discontinuous Galerkin, coastal ocean circulation, finite element methods, superconvergence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Conroy, C. J. (2014). hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

Chicago Manual of Style (16^{th} Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Doctoral Dissertation, The Ohio State University. Accessed December 01, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

MLA Handbook (7^{th} Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Web. 01 Dec 2020.

Vancouver:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Internet] [Doctoral dissertation]. The Ohio State University; 2014. [cited 2020 Dec 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

Council of Science Editors:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Doctoral Dissertation]. The Ohio State University; 2014. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

Université Catholique de Louvain

18.
Hillewaert, Koen.
Development of the *discontinuous* *Galerkin* method for high-resolution, large scale CFD and acoustics in industrial geometries.

Degree: 2013, Université Catholique de Louvain

URL: http://hdl.handle.net/2078.1/128254

►

The recent advent of unstructured high order *methods* holds the promise of transforming industrial computational fluid dynamics practices. These novel *methods* combine high precision to…
(more)

Subjects/Keywords: Computational fluid dynamics; Discontinuous Galerkin; Finite element methods; Fast assembly; Iterative methods; Computational acoustics; Stability analysis; Interior penalty methods

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hillewaert, K. (2013). Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/128254

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hillewaert, Koen. “Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries.” 2013. Thesis, Université Catholique de Louvain. Accessed December 01, 2020. http://hdl.handle.net/2078.1/128254.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hillewaert, Koen. “Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries.” 2013. Web. 01 Dec 2020.

Vancouver:

Hillewaert K. Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. [Internet] [Thesis]. Université Catholique de Louvain; 2013. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2078.1/128254.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hillewaert K. Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. [Thesis]. Université Catholique de Louvain; 2013. Available from: http://hdl.handle.net/2078.1/128254

Not specified: Masters Thesis or Doctoral Dissertation

19.
Bonnasse-Gahot, Marie.
Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order *discontinuous* *Galerkin* *methods* for time-harmonic elastodynamics.

Degree: Docteur es, Mathématiques appliquées, 2015, Nice

URL: http://www.theses.fr/2015NICE4125

►

Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage… (more)

Subjects/Keywords: Méthodes Galerkine discontinues; Méthode Galerkine discontinue hybride; Ondes élastiques; Domaine fréquentiel; Imagerie sismique; Discontinuous Galerkin methods; Hybridizable discontinuous Galerkin method; Elastic waves; Harmonic domain; Seismic imaging

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bonnasse-Gahot, M. (2015). Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2015NICE4125

Chicago Manual of Style (16^{th} Edition):

Bonnasse-Gahot, Marie. “Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.” 2015. Doctoral Dissertation, Nice. Accessed December 01, 2020. http://www.theses.fr/2015NICE4125.

MLA Handbook (7^{th} Edition):

Bonnasse-Gahot, Marie. “Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.” 2015. Web. 01 Dec 2020.

Vancouver:

Bonnasse-Gahot M. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. [Internet] [Doctoral dissertation]. Nice; 2015. [cited 2020 Dec 01]. Available from: http://www.theses.fr/2015NICE4125.

Council of Science Editors:

Bonnasse-Gahot M. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. [Doctoral Dissertation]. Nice; 2015. Available from: http://www.theses.fr/2015NICE4125

20.
Li, Jizhou.
High order *discontinuous* *Galerkin* *methods* for simulating miscible displacement process in porous media with a focus on minimal regularity.

Degree: PhD, Engineering, 2015, Rice University

URL: http://hdl.handle.net/1911/88087

► In my thesis, I formulate, analyze and implement high order *discontinuous* *Galerkin* *methods* for simulating miscible displacement in porous media. The analysis concerning the stability…
(more)

Subjects/Keywords: discontinuous Galerkin methods; miscible displacement; reservoir simulations; high performance computing; high order methods; viscous fingering; algebraic multigrid; domain decomposition

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, J. (2015). High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/88087

Chicago Manual of Style (16^{th} Edition):

Li, Jizhou. “High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity.” 2015. Doctoral Dissertation, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/88087.

MLA Handbook (7^{th} Edition):

Li, Jizhou. “High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity.” 2015. Web. 01 Dec 2020.

Vancouver:

Li J. High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity. [Internet] [Doctoral dissertation]. Rice University; 2015. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/88087.

Council of Science Editors:

Li J. High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity. [Doctoral Dissertation]. Rice University; 2015. Available from: http://hdl.handle.net/1911/88087

INP Toulouse

21.
Murphy, Steven.
* Methods* for solving

Degree: Docteur es, Signal, Image, Acoustique et Optimisation, 2015, INP Toulouse

URL: http://www.theses.fr/2015INPT0072

►

Cette thèse traite des méthodes d’éléments finis *Galerkin* discontinus d’ordre élevé pour la résolution d’équations aux dérivées partielles, avec un intérêt particulier pour l’équation de…
(more)

Subjects/Keywords: Méthodes a posteriori; Algorithmes HP-adaptatif; Méthodes Galerkin discontinus; Neutronique; Matrices creuses; Solveurs linéaires; A-posteriori methods; Hp-refinement; Discontinuous-Galerkin methods; Neutron Transport; Sparse matrices; Linear Solvers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Murphy, S. (2015). Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2015INPT0072

Chicago Manual of Style (16^{th} Edition):

Murphy, Steven. “Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique.” 2015. Doctoral Dissertation, INP Toulouse. Accessed December 01, 2020. http://www.theses.fr/2015INPT0072.

MLA Handbook (7^{th} Edition):

Murphy, Steven. “Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique.” 2015. Web. 01 Dec 2020.

Vancouver:

Murphy S. Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique. [Internet] [Doctoral dissertation]. INP Toulouse; 2015. [cited 2020 Dec 01]. Available from: http://www.theses.fr/2015INPT0072.

Council of Science Editors:

Murphy S. Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique. [Doctoral Dissertation]. INP Toulouse; 2015. Available from: http://www.theses.fr/2015INPT0072

Penn State University

22.
Kauffman, Justin A.
An Overset Mesh Framework for the Hybridizable *Discontinuous* *Galerkin* Finite Element Method.

Degree: 2018, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/15005jak5378

► Computational simulations contain discretizations of both a physical domain and a mathematical model. In this dissertation, an overset mesh framework is used to discretize the…
(more)

Subjects/Keywords: Overset Mesh Methods; Hybridizable discontinuous Galerkin; HDG; Finite Element Method; Pseudo-compressibility; Arbitrary Lagrangian-Eulerian; Navier-Stokes; Elasticity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kauffman, J. A. (2018). An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/15005jak5378

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kauffman, Justin A. “An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.” 2018. Thesis, Penn State University. Accessed December 01, 2020. https://submit-etda.libraries.psu.edu/catalog/15005jak5378.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kauffman, Justin A. “An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.” 2018. Web. 01 Dec 2020.

Vancouver:

Kauffman JA. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. [Internet] [Thesis]. Penn State University; 2018. [cited 2020 Dec 01]. Available from: https://submit-etda.libraries.psu.edu/catalog/15005jak5378.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kauffman JA. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. [Thesis]. Penn State University; 2018. Available from: https://submit-etda.libraries.psu.edu/catalog/15005jak5378

Not specified: Masters Thesis or Doctoral Dissertation

23.
P. Zanotti.
QUASI-OPTIMAL NONCONFORMING *METHODS* FOR SYMMETRIC ELLIPTIC PROBLEMS.

Degree: 2018, Università degli Studi di Milano

URL: http://hdl.handle.net/2434/549113

► In this PhD thesis we characterize quasi-optimal nonconforming *methods* for symmetric elliptic linear variational problems and investigate their structure. The abstract analysis is complemented by…
(more)

Subjects/Keywords: quasi-optimality; nonconforming methods; stability; consistency; finite element method; Crouzeix-Raviart; Morley; Discontinuous Galerkin; Settore MAT/08 - Analisi Numerica

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zanotti, P. (2018). QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/549113

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zanotti, P.. “QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS.” 2018. Thesis, Università degli Studi di Milano. Accessed December 01, 2020. http://hdl.handle.net/2434/549113.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zanotti, P.. “QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS.” 2018. Web. 01 Dec 2020.

Vancouver:

Zanotti P. QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2434/549113.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zanotti P. QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/549113

Not specified: Masters Thesis or Doctoral Dissertation

Michigan Technological University

24.
Chuenjarern, Nattaporn.
*Discontinuous**Galerkin* *methods* for convection-diffusion equations and applications in petroleum engineering.

Degree: PhD, Department of Mathematical Sciences, 2019, Michigan Technological University

URL: https://digitalcommons.mtu.edu/etdr/786

► This dissertation contains research in *discontinuous* *Galerkin* (DG) *methods* applying to convection-diffusion equations. It contains both theoretical analysis and applications. Initially, we develop a…
(more)

Subjects/Keywords: Discontinuous Galerkin methods; Convection-diffusion equations; Bound-preserving; Overlapping meshes; Computational Engineering; Numerical Analysis and Computation; Partial Differential Equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chuenjarern, N. (2019). Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering. (Doctoral Dissertation). Michigan Technological University. Retrieved from https://digitalcommons.mtu.edu/etdr/786

Chicago Manual of Style (16^{th} Edition):

Chuenjarern, Nattaporn. “Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering.” 2019. Doctoral Dissertation, Michigan Technological University. Accessed December 01, 2020. https://digitalcommons.mtu.edu/etdr/786.

MLA Handbook (7^{th} Edition):

Chuenjarern, Nattaporn. “Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering.” 2019. Web. 01 Dec 2020.

Vancouver:

Chuenjarern N. Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering. [Internet] [Doctoral dissertation]. Michigan Technological University; 2019. [cited 2020 Dec 01]. Available from: https://digitalcommons.mtu.edu/etdr/786.

Council of Science Editors:

Chuenjarern N. Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering. [Doctoral Dissertation]. Michigan Technological University; 2019. Available from: https://digitalcommons.mtu.edu/etdr/786

Rice University

25.
Gandham, Rajesh.
High performance high-order numerical *methods*: applications in ocean modeling.

Degree: PhD, Engineering, 2015, Rice University

URL: http://hdl.handle.net/1911/88347

► This thesis presents high-order numerical *methods* for time-dependent simulations of oceanic wave propagation on modern many-core hardware architecture. Simulation of the waves such as tsunami,…
(more)

Subjects/Keywords: Tsunami modeling; ocean modeling; shallow water equations; discontinuous Galerkin methods; GPU computing; CUDA; OpenCL; OpenMP; faster than realtime simulation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gandham, R. (2015). High performance high-order numerical methods: applications in ocean modeling. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/88347

Chicago Manual of Style (16^{th} Edition):

Gandham, Rajesh. “High performance high-order numerical methods: applications in ocean modeling.” 2015. Doctoral Dissertation, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/88347.

MLA Handbook (7^{th} Edition):

Gandham, Rajesh. “High performance high-order numerical methods: applications in ocean modeling.” 2015. Web. 01 Dec 2020.

Vancouver:

Gandham R. High performance high-order numerical methods: applications in ocean modeling. [Internet] [Doctoral dissertation]. Rice University; 2015. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/88347.

Council of Science Editors:

Gandham R. High performance high-order numerical methods: applications in ocean modeling. [Doctoral Dissertation]. Rice University; 2015. Available from: http://hdl.handle.net/1911/88347

University of Tennessee – Knoxville

26.
Lorton, Cody Samuel.
Numerical *Methods* and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media.

Degree: 2014, University of Tennessee – Knoxville

URL: https://trace.tennessee.edu/utk_graddiss/2840

► This dissertation consists of four integral parts with a unified objective of developing efficient numerical *methods* for high frequency time-harmonic wave equations defined on both…
(more)

Subjects/Keywords: Wave Propagation; Numerical Analysis; PDE; Discontinuous Galerkin; Monte Carlo Method; Schwarz Methods; Numerical Analysis and Computation; Partial Differential Equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lorton, C. S. (2014). Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/2840

Chicago Manual of Style (16^{th} Edition):

Lorton, Cody Samuel. “Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media.” 2014. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed December 01, 2020. https://trace.tennessee.edu/utk_graddiss/2840.

MLA Handbook (7^{th} Edition):

Lorton, Cody Samuel. “Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media.” 2014. Web. 01 Dec 2020.

Vancouver:

Lorton CS. Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2014. [cited 2020 Dec 01]. Available from: https://trace.tennessee.edu/utk_graddiss/2840.

Council of Science Editors:

Lorton CS. Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2014. Available from: https://trace.tennessee.edu/utk_graddiss/2840

Delft University of Technology

27.
Nguyen, T.D.
Discontinious *Galerkin* formulations for thin bending problems.

Degree: 2008, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8

► A structural thin bending problem is essentially associated with a fourth-order partial differential equation. Within the finite element framework, the numerical solution of thin bending…
(more)

Subjects/Keywords: thin bending; geometrically nonlinear; discontinuous galerkin methods; rotation-free

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, T. D. (2008). Discontinious Galerkin formulations for thin bending problems. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8

Chicago Manual of Style (16^{th} Edition):

Nguyen, T D. “Discontinious Galerkin formulations for thin bending problems.” 2008. Doctoral Dissertation, Delft University of Technology. Accessed December 01, 2020. http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8.

MLA Handbook (7^{th} Edition):

Nguyen, T D. “Discontinious Galerkin formulations for thin bending problems.” 2008. Web. 01 Dec 2020.

Vancouver:

Nguyen TD. Discontinious Galerkin formulations for thin bending problems. [Internet] [Doctoral dissertation]. Delft University of Technology; 2008. [cited 2020 Dec 01]. Available from: http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8.

Council of Science Editors:

Nguyen TD. Discontinious Galerkin formulations for thin bending problems. [Doctoral Dissertation]. Delft University of Technology; 2008. Available from: http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8

University of Texas – Austin

28.
Arabshahi, Hamidreza.
Space-time hybridized *discontinuous* *Galerkin* *methods* for shallow water equations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

URL: http://hdl.handle.net/2152/47014

► The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of…
(more)

Subjects/Keywords: Shallow water equations; Space-time methods; Hybridized discontinuous Galerkin; Well-balanced formulation; A priori error estimate

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arabshahi, H. (2016). Space-time hybridized discontinuous Galerkin methods for shallow water equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47014

Chicago Manual of Style (16^{th} Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/47014.

MLA Handbook (7^{th} Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Web. 01 Dec 2020.

Vancouver:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/47014.

Council of Science Editors:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47014

University of Texas – Austin

29.
-6650-9510.
*Discontinuous**Galerkin* *methods* for Boltzmann - Poisson models of electron transport in semiconductors.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

URL: http://hdl.handle.net/2152/47093

► The work presented in this dissertation is related to several lines of research in the area of *Discontinuous* *Galerkin* (DG) *Methods* for computational electronic transport…
(more)

Subjects/Keywords: DG; Boltzmann; Poisson; Boltzmann-Poisson models; BP; Semiconductors; Discontinuous Galerkin Methods; Electronic transport; Computational electronic transport

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-6650-9510. (2016). Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47093

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-6650-9510. “Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/47093.

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-6650-9510. “Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.” 2016. Web. 01 Dec 2020.

Author name may be incomplete

Vancouver:

-6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/47093.

Author name may be incomplete

Council of Science Editors:

-6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47093

Author name may be incomplete

University of Cincinnati

30.
Wukie, Nathan A.
A *Discontinuous* *Galerkin* Method for Turbomachinery and
Acoustics Applications.

Degree: PhD, Engineering and Applied Science: Aerospace Engineering, 2018, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045

► Numerical *methods* for computational physics have been applied for many years in the fields of turbomachinery and acoustics. The computational approach to addressing problems in…
(more)

Subjects/Keywords: Aerospace Materials; High-order methods; Computational Fluid Dynamics; discontinuous Galerkin; Nonreflecting boundary conditions; Turbomachinery; Finite-elements

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wukie, N. A. (2018). A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045

Chicago Manual of Style (16^{th} Edition):

Wukie, Nathan A. “A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications.” 2018. Doctoral Dissertation, University of Cincinnati. Accessed December 01, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045.

MLA Handbook (7^{th} Edition):

Wukie, Nathan A. “A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications.” 2018. Web. 01 Dec 2020.

Vancouver:

Wukie NA. A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications. [Internet] [Doctoral dissertation]. University of Cincinnati; 2018. [cited 2020 Dec 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045.

Council of Science Editors:

Wukie NA. A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications. [Doctoral Dissertation]. University of Cincinnati; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045