Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Discontinuous Galerkin methods). Showing records 1 – 30 of 75 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters

1. Shi, Cengke. Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials.

Degree: Department of Applied Mathematics, 2018, Brown University

 This dissertation presents two topics on numerical solutions solving hyperbolic equations from both theoretical and practical points of view. In the first part, we introduce… (more)

Subjects/Keywords: Discontinuous Galerkin Methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, C. (2018). Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials. (Thesis). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:792729/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shi, Cengke. “Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials.” 2018. Thesis, Brown University. Accessed December 01, 2020. https://repository.library.brown.edu/studio/item/bdr:792729/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shi, Cengke. “Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials.” 2018. Web. 01 Dec 2020.

Vancouver:

Shi C. Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials. [Internet] [Thesis]. Brown University; 2018. [cited 2020 Dec 01]. Available from: https://repository.library.brown.edu/studio/item/bdr:792729/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shi C. Numerical Methods for Hyperbolic Equations: Generalized Definition of Local Conservation and Discontinuous Galerkin Methods for Maxwell's equations in Drude Metamaterials. [Thesis]. Brown University; 2018. Available from: https://repository.library.brown.edu/studio/item/bdr:792729/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Minnesota

2. Fu, Guosheng. Devising superconvergent HDG methods by M-decompositions.

Degree: PhD, Mathematics, 2016, University of Minnesota

 In this thesis, we develop the concept of an M-decomposition as an effective tool for devising high-order accurate hybridizable discontinuous Galerkin methods and hybridized mixed… (more)

Subjects/Keywords: discontinuous Galerkin; hybridization; M-decomposition; mixed methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fu, G. (2016). Devising superconvergent HDG methods by M-decompositions. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/182270

Chicago Manual of Style (16th Edition):

Fu, Guosheng. “Devising superconvergent HDG methods by M-decompositions.” 2016. Doctoral Dissertation, University of Minnesota. Accessed December 01, 2020. http://hdl.handle.net/11299/182270.

MLA Handbook (7th Edition):

Fu, Guosheng. “Devising superconvergent HDG methods by M-decompositions.” 2016. Web. 01 Dec 2020.

Vancouver:

Fu G. Devising superconvergent HDG methods by M-decompositions. [Internet] [Doctoral dissertation]. University of Minnesota; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/11299/182270.

Council of Science Editors:

Fu G. Devising superconvergent HDG methods by M-decompositions. [Doctoral Dissertation]. University of Minnesota; 2016. Available from: http://hdl.handle.net/11299/182270


University of Texas – Austin

3. -3203-266X. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 Large-scale utilization of photovoltaic (PV) devices, or solar cells, has been hampered for years due to high costs and lack of energy storage mechanisms. Photoelectrochemical… (more)

Subjects/Keywords: Discontinuous Galerkin methods; Mixed methods; Domain decomposition methods; Solar cells

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-3203-266X. (2016). Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/46973

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-3203-266X. “Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/46973.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-3203-266X. “Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells.” 2016. Web. 01 Dec 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-3203-266X. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/46973.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-3203-266X. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical solar cells. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/46973

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

4. -6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

Discontinuous Galerkin (DG) methods combine the advantages of classical finite element and finite volume methods. Like finite volume methods, through the use of discontinuous spaces… (more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin methods; Hybridized discontinuous Galerkin methods; Stokes equations; Oseen equations; Magnetohydrodynamics; Resistive magnetohydrodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6327-2527. (2018). Hybridized discontinuous Galerkin methods for magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2865

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://dx.doi.org/10.26153/tsw/2865.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Web. 01 Dec 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2020 Dec 01]. Available from: http://dx.doi.org/10.26153/tsw/2865.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://dx.doi.org/10.26153/tsw/2865

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Waterloo

5. Sosa Jones, Giselle. Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems.

Degree: 2020, University of Waterloo

 Free-surface problems arise in many real-world applications such as in the design of ships and offshore structures, modeling of tsunamis, and dam breaking. Mathematically, free-surface… (more)

Subjects/Keywords: free-surface waves; space-time methods; hybridizable discontinuous Galerkin methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sosa Jones, G. (2020). Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/16192

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sosa Jones, Giselle. “Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems.” 2020. Thesis, University of Waterloo. Accessed December 01, 2020. http://hdl.handle.net/10012/16192.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sosa Jones, Giselle. “Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems.” 2020. Web. 01 Dec 2020.

Vancouver:

Sosa Jones G. Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems. [Internet] [Thesis]. University of Waterloo; 2020. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10012/16192.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sosa Jones G. Space-time hybridizable discontinuous Galerkin methods for free-surface wave problems. [Thesis]. University of Waterloo; 2020. Available from: http://hdl.handle.net/10012/16192

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rice University

6. Tan, Jun. Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations.

Degree: MA, Engineering, 2013, Rice University

 This thesis analyzes a numerical method for solving the poroelasticity equations. The model incorporating the poroelasticity equations in this thesis can be applied in intestinal… (more)

Subjects/Keywords: Discontinuous Galerkin methods; Poroelasticity equations; Error estimate; Intestinal edema; Numerical PDE

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tan, J. (2013). Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations. (Masters Thesis). Rice University. Retrieved from http://hdl.handle.net/1911/77564

Chicago Manual of Style (16th Edition):

Tan, Jun. “Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations.” 2013. Masters Thesis, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/77564.

MLA Handbook (7th Edition):

Tan, Jun. “Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations.” 2013. Web. 01 Dec 2020.

Vancouver:

Tan J. Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations. [Internet] [Masters thesis]. Rice University; 2013. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/77564.

Council of Science Editors:

Tan J. Convergence Analysis of Discontinuous Galerkin Methods for Poroelasticity Equations. [Masters Thesis]. Rice University; 2013. Available from: http://hdl.handle.net/1911/77564


University of Texas – Austin

7. Zhang, Chenglong. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations.

Degree: PhD, Computational and applied mathematics, 2014, University of Texas – Austin

 The Boltzmann Transport Equation (BTE) has been the keystone of the kinetic theory, which is at the center of Statistical Mechanics bridging the gap between… (more)

Subjects/Keywords: Boltzmann transport equation; Landau transport equation; Conservative methods; Discontinuous galerkin methods; Spectral methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, C. (2014). On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/26887

Chicago Manual of Style (16th Edition):

Zhang, Chenglong. “On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations.” 2014. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/26887.

MLA Handbook (7th Edition):

Zhang, Chenglong. “On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations.” 2014. Web. 01 Dec 2020.

Vancouver:

Zhang C. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2014. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/26887.

Council of Science Editors:

Zhang C. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations. [Doctoral Dissertation]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/26887


University of California – San Diego

8. Nelson, Daniel Alan Wendell. High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods.

Degree: Engineering Sciences (Mech and Aerospace Eng-Jt Doc SDSU), 2015, University of California – San Diego

 High-fidelity numerical tools based on high-order Discontinuous-Galerkin (DG) methods and Lagrangian Coherent Structure (LCS) theory are developed and validated for the study of separated, vortex-dominated… (more)

Subjects/Keywords: Aerospace engineering; Direct Numerical Simulation; Discontinuous-Galerkin Methods; Lagrangian Coherent Structures; Spectral Methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nelson, D. A. W. (2015). High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/2cv4f732

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Nelson, Daniel Alan Wendell. “High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods.” 2015. Thesis, University of California – San Diego. Accessed December 01, 2020. http://www.escholarship.org/uc/item/2cv4f732.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Nelson, Daniel Alan Wendell. “High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods.” 2015. Web. 01 Dec 2020.

Vancouver:

Nelson DAW. High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. [Internet] [Thesis]. University of California – San Diego; 2015. [cited 2020 Dec 01]. Available from: http://www.escholarship.org/uc/item/2cv4f732.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nelson DAW. High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods. [Thesis]. University of California – San Diego; 2015. Available from: http://www.escholarship.org/uc/item/2cv4f732

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

9. Moe, Scott. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.

Degree: PhD, 2017, University of Washington

 This thesis focuses on several developments toward creating a high order shock capturing method that can be used on mapped grids with block-structured adaptive mesh… (more)

Subjects/Keywords: Conservation Laws; Discontinuous Galerkin Methods; Finite Element Methods; Hyperbolic PDEs; Applied mathematics; Applied mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moe, S. (2017). High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/39932

Chicago Manual of Style (16th Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Doctoral Dissertation, University of Washington. Accessed December 01, 2020. http://hdl.handle.net/1773/39932.

MLA Handbook (7th Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Web. 01 Dec 2020.

Vancouver:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1773/39932.

Council of Science Editors:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/39932

10. Chan, Jesse L. A DPG method for convection-diffusion problems.

Degree: PhD, Computational and Applied Mathematics, 2013, University of Texas – Austin

 Over the last three decades, CFD simulations have become commonplace as a tool in the engineering and design of high-speed aircraft. Experiments are often complemented… (more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin; Petrov-Galerkin; Optimal test functions; Minimum residual methods; Convection-diffusion; Compressible flow

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, J. L. (2013). A DPG method for convection-diffusion problems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/21417

Chicago Manual of Style (16th Edition):

Chan, Jesse L. “A DPG method for convection-diffusion problems.” 2013. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/21417.

MLA Handbook (7th Edition):

Chan, Jesse L. “A DPG method for convection-diffusion problems.” 2013. Web. 01 Dec 2020.

Vancouver:

Chan JL. A DPG method for convection-diffusion problems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2013. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/21417.

Council of Science Editors:

Chan JL. A DPG method for convection-diffusion problems. [Doctoral Dissertation]. University of Texas – Austin; 2013. Available from: http://hdl.handle.net/2152/21417


University of Oxford

11. Smears, Iain Robert Nicholas. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

Degree: PhD, 2015, University of Oxford

 We propose a discontinuous Galerkin finite element method (DGFEM) for fully nonlinear elliptic Hamilton – Jacobi – Bellman (HJB) partial differential equations (PDE) of second order with… (more)

Subjects/Keywords: 515; Mathematics; Numerical analysis; Finite element methods; discontinuous Galerkin; Hamilton-Jacobi-Bellman equations; Cordes coefficients

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smears, I. R. N. (2015). Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

Chicago Manual of Style (16th Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Doctoral Dissertation, University of Oxford. Accessed December 01, 2020. http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

MLA Handbook (7th Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Web. 01 Dec 2020.

Vancouver:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Internet] [Doctoral dissertation]. University of Oxford; 2015. [cited 2020 Dec 01]. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

Council of Science Editors:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Doctoral Dissertation]. University of Oxford; 2015. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822


Iowa State University

12. Gao, Haiyang. Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations.

Degree: 2011, Iowa State University

 A new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by the current work is… (more)

Subjects/Keywords: curved boundary; differential formulation; discontinuous Galerkin; high-order methods; h/p adaptation; Aerospace Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gao, H. (2011). Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/12248

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gao, Haiyang. “Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations.” 2011. Thesis, Iowa State University. Accessed December 01, 2020. https://lib.dr.iastate.edu/etd/12248.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gao, Haiyang. “Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations.” 2011. Web. 01 Dec 2020.

Vancouver:

Gao H. Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations. [Internet] [Thesis]. Iowa State University; 2011. [cited 2020 Dec 01]. Available from: https://lib.dr.iastate.edu/etd/12248.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gao H. Differential formulation of discontinuous Galerkin and related methods for compressible Euler and Navier-Stokes equations. [Thesis]. Iowa State University; 2011. Available from: https://lib.dr.iastate.edu/etd/12248

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Miri, Seyedalireza. Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method .

Degree: 2019, University of Ottawa

 Moment methods from the kinetic theory of gases exist as an alternative to the Navier-Stokes model. Models in this family are described by first-order hyperbolic… (more)

Subjects/Keywords: Moment Methods; Discontinuous Galerkin Scheme

methods with the discontinuous-Galerkin Hancock discretization leads to a very efficient… …discontinuous-Galerkin (DG) methods seem like good candidates for their numerical solution… …reconstruction, which requires 5 extended stencils. Another class of methods, the Discontinuous… …Galerkin (DG) methods, are very well suited for distributed parallel solution of first… …Chapter 3 introduces the discontinuous-Galerkin-Hancock method. Following this, the exact form… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miri, S. (2019). Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/38678

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Miri, Seyedalireza. “Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method .” 2019. Thesis, University of Ottawa. Accessed December 01, 2020. http://hdl.handle.net/10393/38678.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Miri, Seyedalireza. “Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method .” 2019. Web. 01 Dec 2020.

Vancouver:

Miri S. Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method . [Internet] [Thesis]. University of Ottawa; 2019. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10393/38678.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Miri S. Numerical Solution of Moment Equations Using the Discontinuous-Galerkin Hancock Method . [Thesis]. University of Ottawa; 2019. Available from: http://hdl.handle.net/10393/38678

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rice University

14. Wang, Zheng. GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging.

Degree: PhD, Engineering, 2017, Rice University

 Seismic imaging is a geophysical technique assisting in the understanding of subsurface structure on a regional and global scale. With the development of computer technology,… (more)

Subjects/Keywords: discontinuous Galerkin methods; high performance computing; reverse time migration; full waveform inversion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Z. (2017). GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/96151

Chicago Manual of Style (16th Edition):

Wang, Zheng. “GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging.” 2017. Doctoral Dissertation, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/96151.

MLA Handbook (7th Edition):

Wang, Zheng. “GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging.” 2017. Web. 01 Dec 2020.

Vancouver:

Wang Z. GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging. [Internet] [Doctoral dissertation]. Rice University; 2017. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/96151.

Council of Science Editors:

Wang Z. GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in seismic imaging. [Doctoral Dissertation]. Rice University; 2017. Available from: http://hdl.handle.net/1911/96151


University of Minnesota

15. Ichikawa, Ryuhei. Adjoint recovery of superconvergent linear functionals from Galerkin approximations.

Degree: PhD, Mathematics, 2010, University of Minnesota

 The thesis is concerned with superconvergent approximations of linear functionals. We extend the adjoint error correction technique of Pierce and Giles [SIAM Review, 42 (2000),… (more)

Subjects/Keywords: Discontinuous galerkin methods; Functional approximation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ichikawa, R. (2010). Adjoint recovery of superconvergent linear functionals from Galerkin approximations. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/59569

Chicago Manual of Style (16th Edition):

Ichikawa, Ryuhei. “Adjoint recovery of superconvergent linear functionals from Galerkin approximations.” 2010. Doctoral Dissertation, University of Minnesota. Accessed December 01, 2020. http://purl.umn.edu/59569.

MLA Handbook (7th Edition):

Ichikawa, Ryuhei. “Adjoint recovery of superconvergent linear functionals from Galerkin approximations.” 2010. Web. 01 Dec 2020.

Vancouver:

Ichikawa R. Adjoint recovery of superconvergent linear functionals from Galerkin approximations. [Internet] [Doctoral dissertation]. University of Minnesota; 2010. [cited 2020 Dec 01]. Available from: http://purl.umn.edu/59569.

Council of Science Editors:

Ichikawa R. Adjoint recovery of superconvergent linear functionals from Galerkin approximations. [Doctoral Dissertation]. University of Minnesota; 2010. Available from: http://purl.umn.edu/59569


California State University – Northridge

16. Nguyen, Truong. Development of fast deterministic solvers for the Boltzmann equation.

Degree: MS, Department of Mathematics, 2015, California State University – Northridge

 Gas flows in hyper-sonic air breathing engines and rocket thrusters and flows of particles into vacuum contain regions where the distribution of particle velocities deviates… (more)

Subjects/Keywords: Boltzmann kinetic equation Discontinuous Galerkin methods Dynamics of non-continuum gas; Dissertations, Academic  – CSUN  – Mathematics.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, T. (2015). Development of fast deterministic solvers for the Boltzmann equation. (Masters Thesis). California State University – Northridge. Retrieved from http://hdl.handle.net/10211.3/150432

Chicago Manual of Style (16th Edition):

Nguyen, Truong. “Development of fast deterministic solvers for the Boltzmann equation.” 2015. Masters Thesis, California State University – Northridge. Accessed December 01, 2020. http://hdl.handle.net/10211.3/150432.

MLA Handbook (7th Edition):

Nguyen, Truong. “Development of fast deterministic solvers for the Boltzmann equation.” 2015. Web. 01 Dec 2020.

Vancouver:

Nguyen T. Development of fast deterministic solvers for the Boltzmann equation. [Internet] [Masters thesis]. California State University – Northridge; 2015. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10211.3/150432.

Council of Science Editors:

Nguyen T. Development of fast deterministic solvers for the Boltzmann equation. [Masters Thesis]. California State University – Northridge; 2015. Available from: http://hdl.handle.net/10211.3/150432


The Ohio State University

17. Conroy, Colton J. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.

Degree: PhD, Civil Engineering, 2014, The Ohio State University

 In this dissertation, we present the development and implementation of a high-order, discontinuous Galerkin (DG), three-dimensional coastal ocean circulation and transport model. The model solves… (more)

Subjects/Keywords: Applied Mathematics; Civil Engineering; discontinuous Galerkin, coastal ocean circulation, finite element methods, superconvergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Conroy, C. J. (2014). hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743

Chicago Manual of Style (16th Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Doctoral Dissertation, The Ohio State University. Accessed December 01, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

MLA Handbook (7th Edition):

Conroy, Colton J. “hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport.” 2014. Web. 01 Dec 2020.

Vancouver:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Internet] [Doctoral dissertation]. The Ohio State University; 2014. [cited 2020 Dec 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743.

Council of Science Editors:

Conroy CJ. hp discontinuous Galerkin (DG) methods for coastal oceancirculation and transport. [Doctoral Dissertation]. The Ohio State University; 2014. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1417707743


Université Catholique de Louvain

18. Hillewaert, Koen. Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries.

Degree: 2013, Université Catholique de Louvain

The recent advent of unstructured high order methods holds the promise of transforming industrial computational fluid dynamics practices. These novel methods combine high precision to… (more)

Subjects/Keywords: Computational fluid dynamics; Discontinuous Galerkin; Finite element methods; Fast assembly; Iterative methods; Computational acoustics; Stability analysis; Interior penalty methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hillewaert, K. (2013). Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/128254

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hillewaert, Koen. “Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries.” 2013. Thesis, Université Catholique de Louvain. Accessed December 01, 2020. http://hdl.handle.net/2078.1/128254.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hillewaert, Koen. “Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries.” 2013. Web. 01 Dec 2020.

Vancouver:

Hillewaert K. Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. [Internet] [Thesis]. Université Catholique de Louvain; 2013. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2078.1/128254.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hillewaert K. Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. [Thesis]. Université Catholique de Louvain; 2013. Available from: http://hdl.handle.net/2078.1/128254

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Bonnasse-Gahot, Marie. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.

Degree: Docteur es, Mathématiques appliquées, 2015, Nice

Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage… (more)

Subjects/Keywords: Méthodes Galerkine discontinues; Méthode Galerkine discontinue hybride; Ondes élastiques; Domaine fréquentiel; Imagerie sismique; Discontinuous Galerkin methods; Hybridizable discontinuous Galerkin method; Elastic waves; Harmonic domain; Seismic imaging

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bonnasse-Gahot, M. (2015). Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2015NICE4125

Chicago Manual of Style (16th Edition):

Bonnasse-Gahot, Marie. “Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.” 2015. Doctoral Dissertation, Nice. Accessed December 01, 2020. http://www.theses.fr/2015NICE4125.

MLA Handbook (7th Edition):

Bonnasse-Gahot, Marie. “Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.” 2015. Web. 01 Dec 2020.

Vancouver:

Bonnasse-Gahot M. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. [Internet] [Doctoral dissertation]. Nice; 2015. [cited 2020 Dec 01]. Available from: http://www.theses.fr/2015NICE4125.

Council of Science Editors:

Bonnasse-Gahot M. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. [Doctoral Dissertation]. Nice; 2015. Available from: http://www.theses.fr/2015NICE4125

20. Li, Jizhou. High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity.

Degree: PhD, Engineering, 2015, Rice University

 In my thesis, I formulate, analyze and implement high order discontinuous Galerkin methods for simulating miscible displacement in porous media. The analysis concerning the stability… (more)

Subjects/Keywords: discontinuous Galerkin methods; miscible displacement; reservoir simulations; high performance computing; high order methods; viscous fingering; algebraic multigrid; domain decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, J. (2015). High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/88087

Chicago Manual of Style (16th Edition):

Li, Jizhou. “High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity.” 2015. Doctoral Dissertation, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/88087.

MLA Handbook (7th Edition):

Li, Jizhou. “High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity.” 2015. Web. 01 Dec 2020.

Vancouver:

Li J. High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity. [Internet] [Doctoral dissertation]. Rice University; 2015. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/88087.

Council of Science Editors:

Li J. High order discontinuous Galerkin methods for simulating miscible displacement process in porous media with a focus on minimal regularity. [Doctoral Dissertation]. Rice University; 2015. Available from: http://hdl.handle.net/1911/88087


INP Toulouse

21. Murphy, Steven. Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique.

Degree: Docteur es, Signal, Image, Acoustique et Optimisation, 2015, INP Toulouse

Cette thèse traite des méthodes d’éléments finis Galerkin discontinus d’ordre élevé pour la résolution d’équations aux dérivées partielles, avec un intérêt particulier pour l’équation de… (more)

Subjects/Keywords: Méthodes a posteriori; Algorithmes HP-adaptatif; Méthodes Galerkin discontinus; Neutronique; Matrices creuses; Solveurs linéaires; A-posteriori methods; Hp-refinement; Discontinuous-Galerkin methods; Neutron Transport; Sparse matrices; Linear Solvers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Murphy, S. (2015). Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2015INPT0072

Chicago Manual of Style (16th Edition):

Murphy, Steven. “Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique.” 2015. Doctoral Dissertation, INP Toulouse. Accessed December 01, 2020. http://www.theses.fr/2015INPT0072.

MLA Handbook (7th Edition):

Murphy, Steven. “Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique.” 2015. Web. 01 Dec 2020.

Vancouver:

Murphy S. Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique. [Internet] [Doctoral dissertation]. INP Toulouse; 2015. [cited 2020 Dec 01]. Available from: http://www.theses.fr/2015INPT0072.

Council of Science Editors:

Murphy S. Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport : Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutronique. [Doctoral Dissertation]. INP Toulouse; 2015. Available from: http://www.theses.fr/2015INPT0072


Penn State University

22. Kauffman, Justin A. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.

Degree: 2018, Penn State University

 Computational simulations contain discretizations of both a physical domain and a mathematical model. In this dissertation, an overset mesh framework is used to discretize the… (more)

Subjects/Keywords: Overset Mesh Methods; Hybridizable discontinuous Galerkin; HDG; Finite Element Method; Pseudo-compressibility; Arbitrary Lagrangian-Eulerian; Navier-Stokes; Elasticity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kauffman, J. A. (2018). An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/15005jak5378

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kauffman, Justin A. “An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.” 2018. Thesis, Penn State University. Accessed December 01, 2020. https://submit-etda.libraries.psu.edu/catalog/15005jak5378.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kauffman, Justin A. “An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.” 2018. Web. 01 Dec 2020.

Vancouver:

Kauffman JA. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. [Internet] [Thesis]. Penn State University; 2018. [cited 2020 Dec 01]. Available from: https://submit-etda.libraries.psu.edu/catalog/15005jak5378.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kauffman JA. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. [Thesis]. Penn State University; 2018. Available from: https://submit-etda.libraries.psu.edu/catalog/15005jak5378

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

23. P. Zanotti. QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS.

Degree: 2018, Università degli Studi di Milano

 In this PhD thesis we characterize quasi-optimal nonconforming methods for symmetric elliptic linear variational problems and investigate their structure. The abstract analysis is complemented by… (more)

Subjects/Keywords: quasi-optimality; nonconforming methods; stability; consistency; finite element method; Crouzeix-Raviart; Morley; Discontinuous Galerkin; Settore MAT/08 - Analisi Numerica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zanotti, P. (2018). QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/549113

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zanotti, P.. “QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS.” 2018. Thesis, Università degli Studi di Milano. Accessed December 01, 2020. http://hdl.handle.net/2434/549113.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zanotti, P.. “QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS.” 2018. Web. 01 Dec 2020.

Vancouver:

Zanotti P. QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2434/549113.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zanotti P. QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/549113

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan Technological University

24. Chuenjarern, Nattaporn. Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering.

Degree: PhD, Department of Mathematical Sciences, 2019, Michigan Technological University

  This dissertation contains research in discontinuous Galerkin (DG) methods applying to convection-diffusion equations. It contains both theoretical analysis and applications. Initially, we develop a… (more)

Subjects/Keywords: Discontinuous Galerkin methods; Convection-diffusion equations; Bound-preserving; Overlapping meshes; Computational Engineering; Numerical Analysis and Computation; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chuenjarern, N. (2019). Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering. (Doctoral Dissertation). Michigan Technological University. Retrieved from https://digitalcommons.mtu.edu/etdr/786

Chicago Manual of Style (16th Edition):

Chuenjarern, Nattaporn. “Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering.” 2019. Doctoral Dissertation, Michigan Technological University. Accessed December 01, 2020. https://digitalcommons.mtu.edu/etdr/786.

MLA Handbook (7th Edition):

Chuenjarern, Nattaporn. “Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering.” 2019. Web. 01 Dec 2020.

Vancouver:

Chuenjarern N. Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering. [Internet] [Doctoral dissertation]. Michigan Technological University; 2019. [cited 2020 Dec 01]. Available from: https://digitalcommons.mtu.edu/etdr/786.

Council of Science Editors:

Chuenjarern N. Discontinuous Galerkin methods for convection-diffusion equations and applications in petroleum engineering. [Doctoral Dissertation]. Michigan Technological University; 2019. Available from: https://digitalcommons.mtu.edu/etdr/786


Rice University

25. Gandham, Rajesh. High performance high-order numerical methods: applications in ocean modeling.

Degree: PhD, Engineering, 2015, Rice University

 This thesis presents high-order numerical methods for time-dependent simulations of oceanic wave propagation on modern many-core hardware architecture. Simulation of the waves such as tsunami,… (more)

Subjects/Keywords: Tsunami modeling; ocean modeling; shallow water equations; discontinuous Galerkin methods; GPU computing; CUDA; OpenCL; OpenMP; faster than realtime simulation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gandham, R. (2015). High performance high-order numerical methods: applications in ocean modeling. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/88347

Chicago Manual of Style (16th Edition):

Gandham, Rajesh. “High performance high-order numerical methods: applications in ocean modeling.” 2015. Doctoral Dissertation, Rice University. Accessed December 01, 2020. http://hdl.handle.net/1911/88347.

MLA Handbook (7th Edition):

Gandham, Rajesh. “High performance high-order numerical methods: applications in ocean modeling.” 2015. Web. 01 Dec 2020.

Vancouver:

Gandham R. High performance high-order numerical methods: applications in ocean modeling. [Internet] [Doctoral dissertation]. Rice University; 2015. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/1911/88347.

Council of Science Editors:

Gandham R. High performance high-order numerical methods: applications in ocean modeling. [Doctoral Dissertation]. Rice University; 2015. Available from: http://hdl.handle.net/1911/88347


University of Tennessee – Knoxville

26. Lorton, Cody Samuel. Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media.

Degree: 2014, University of Tennessee – Knoxville

 This dissertation consists of four integral parts with a unified objective of developing efficient numerical methods for high frequency time-harmonic wave equations defined on both… (more)

Subjects/Keywords: Wave Propagation; Numerical Analysis; PDE; Discontinuous Galerkin; Monte Carlo Method; Schwarz Methods; Numerical Analysis and Computation; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lorton, C. S. (2014). Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/2840

Chicago Manual of Style (16th Edition):

Lorton, Cody Samuel. “Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media.” 2014. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed December 01, 2020. https://trace.tennessee.edu/utk_graddiss/2840.

MLA Handbook (7th Edition):

Lorton, Cody Samuel. “Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media.” 2014. Web. 01 Dec 2020.

Vancouver:

Lorton CS. Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2014. [cited 2020 Dec 01]. Available from: https://trace.tennessee.edu/utk_graddiss/2840.

Council of Science Editors:

Lorton CS. Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2014. Available from: https://trace.tennessee.edu/utk_graddiss/2840


Delft University of Technology

27. Nguyen, T.D. Discontinious Galerkin formulations for thin bending problems.

Degree: 2008, Delft University of Technology

 A structural thin bending problem is essentially associated with a fourth-order partial differential equation. Within the finite element framework, the numerical solution of thin bending… (more)

Subjects/Keywords: thin bending; geometrically nonlinear; discontinuous galerkin methods; rotation-free

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, T. D. (2008). Discontinious Galerkin formulations for thin bending problems. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8

Chicago Manual of Style (16th Edition):

Nguyen, T D. “Discontinious Galerkin formulations for thin bending problems.” 2008. Doctoral Dissertation, Delft University of Technology. Accessed December 01, 2020. http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8.

MLA Handbook (7th Edition):

Nguyen, T D. “Discontinious Galerkin formulations for thin bending problems.” 2008. Web. 01 Dec 2020.

Vancouver:

Nguyen TD. Discontinious Galerkin formulations for thin bending problems. [Internet] [Doctoral dissertation]. Delft University of Technology; 2008. [cited 2020 Dec 01]. Available from: http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8.

Council of Science Editors:

Nguyen TD. Discontinious Galerkin formulations for thin bending problems. [Doctoral Dissertation]. Delft University of Technology; 2008. Available from: http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; urn:NBN:nl:ui:24-uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8 ; http://resolver.tudelft.nl/uuid:bfea5356-2721-4960-9cf6-bc0282aefaa8


University of Texas – Austin

28. Arabshahi, Hamidreza. Space-time hybridized discontinuous Galerkin methods for shallow water equations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of… (more)

Subjects/Keywords: Shallow water equations; Space-time methods; Hybridized discontinuous Galerkin; Well-balanced formulation; A priori error estimate

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arabshahi, H. (2016). Space-time hybridized discontinuous Galerkin methods for shallow water equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47014

Chicago Manual of Style (16th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/47014.

MLA Handbook (7th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Web. 01 Dec 2020.

Vancouver:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/47014.

Council of Science Editors:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47014


University of Texas – Austin

29. -6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The work presented in this dissertation is related to several lines of research in the area of Discontinuous Galerkin (DG) Methods for computational electronic transport… (more)

Subjects/Keywords: DG; Boltzmann; Poisson; Boltzmann-Poisson models; BP; Semiconductors; Discontinuous Galerkin Methods; Electronic transport; Computational electronic transport

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6650-9510. (2016). Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47093

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6650-9510. “Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed December 01, 2020. http://hdl.handle.net/2152/47093.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6650-9510. “Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors.” 2016. Web. 01 Dec 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2152/47093.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6650-9510. Discontinuous Galerkin methods for Boltzmann - Poisson models of electron transport in semiconductors. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47093

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Cincinnati

30. Wukie, Nathan A. A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications.

Degree: PhD, Engineering and Applied Science: Aerospace Engineering, 2018, University of Cincinnati

 Numerical methods for computational physics have been applied for many years in the fields of turbomachinery and acoustics. The computational approach to addressing problems in… (more)

Subjects/Keywords: Aerospace Materials; High-order methods; Computational Fluid Dynamics; discontinuous Galerkin; Nonreflecting boundary conditions; Turbomachinery; Finite-elements

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wukie, N. A. (2018). A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045

Chicago Manual of Style (16th Edition):

Wukie, Nathan A. “A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications.” 2018. Doctoral Dissertation, University of Cincinnati. Accessed December 01, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045.

MLA Handbook (7th Edition):

Wukie, Nathan A. “A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications.” 2018. Web. 01 Dec 2020.

Vancouver:

Wukie NA. A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications. [Internet] [Doctoral dissertation]. University of Cincinnati; 2018. [cited 2020 Dec 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045.

Council of Science Editors:

Wukie NA. A Discontinuous Galerkin Method for Turbomachinery and Acoustics Applications. [Doctoral Dissertation]. University of Cincinnati; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543840344167045

[1] [2] [3]

.