Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Dirac operators). Showing records 1 – 12 of 12 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Loughborough University

1. Li, Liangpan. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.

Degree: PhD, 2016, Loughborough University

 In this dissertation we study non-negative self-adjoint Laplace type operators acting on smooth sections of a vector bundle. First, we assume base manifolds are compact,… (more)

Subjects/Keywords: 515; Local spectral asymptotics; Heat kernel; Dirac operators; Laplace operators; Pseudo-differential operators; Fourier integral operators; Wodzicki residue; Finite propagation speed; Spectral determinant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, L. (2016). Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/23004

Chicago Manual of Style (16th Edition):

Li, Liangpan. “Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.” 2016. Doctoral Dissertation, Loughborough University. Accessed December 02, 2020. http://hdl.handle.net/2134/23004.

MLA Handbook (7th Edition):

Li, Liangpan. “Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.” 2016. Web. 02 Dec 2020.

Vancouver:

Li L. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. [Internet] [Doctoral dissertation]. Loughborough University; 2016. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/2134/23004.

Council of Science Editors:

Li L. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. [Doctoral Dissertation]. Loughborough University; 2016. Available from: http://hdl.handle.net/2134/23004


University of Michigan

2. Korpas, Levente. Quantization of symplectic cobordisms.

Degree: PhD, Pure Sciences, 1999, University of Michigan

 In this work we construct a unitary operator acting between Spin c quantizations of compact integral symplectic manifolds which are symplectically cobordant. The construction is… (more)

Subjects/Keywords: Cobordisms; Dirac Operators; Quantization; Symplectic Manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Korpas, L. (1999). Quantization of symplectic cobordisms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131922

Chicago Manual of Style (16th Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Doctoral Dissertation, University of Michigan. Accessed December 02, 2020. http://hdl.handle.net/2027.42/131922.

MLA Handbook (7th Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Web. 02 Dec 2020.

Vancouver:

Korpas L. Quantization of symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/2027.42/131922.

Council of Science Editors:

Korpas L. Quantization of symplectic cobordisms. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131922


Université de Bordeaux I

3. Sambou, Diomba. Accumulation spectrale pour les Hamiltoniens quantiques magnétiques : Spectral accumulation for magnetic quantum Hamiltonians.

Degree: Docteur es, Mathématiques appliquées et calcul scientifique, 2013, Université de Bordeaux I

Dans cette thèse on s'interesse à l'étude de phénomènes d'accumultation spectrale de certains opérateurs issus de la physique quantique à savoir les opérateurs de Schrödinger,… (more)

Subjects/Keywords: Opérateurs de Schrödinger; Opérateurs de Pauli; Opérateurs de Dirac magnétiques,; Résonances; Inégalités Lieb-Thirring généralisées.; Magnetic Schrödinger; Dirac operators; Pauli operatoirs; Resonances; Generalized Lieb-Thirring inequalities

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sambou, D. (2013). Accumulation spectrale pour les Hamiltoniens quantiques magnétiques : Spectral accumulation for magnetic quantum Hamiltonians. (Doctoral Dissertation). Université de Bordeaux I. Retrieved from http://www.theses.fr/2013BOR14906

Chicago Manual of Style (16th Edition):

Sambou, Diomba. “Accumulation spectrale pour les Hamiltoniens quantiques magnétiques : Spectral accumulation for magnetic quantum Hamiltonians.” 2013. Doctoral Dissertation, Université de Bordeaux I. Accessed December 02, 2020. http://www.theses.fr/2013BOR14906.

MLA Handbook (7th Edition):

Sambou, Diomba. “Accumulation spectrale pour les Hamiltoniens quantiques magnétiques : Spectral accumulation for magnetic quantum Hamiltonians.” 2013. Web. 02 Dec 2020.

Vancouver:

Sambou D. Accumulation spectrale pour les Hamiltoniens quantiques magnétiques : Spectral accumulation for magnetic quantum Hamiltonians. [Internet] [Doctoral dissertation]. Université de Bordeaux I; 2013. [cited 2020 Dec 02]. Available from: http://www.theses.fr/2013BOR14906.

Council of Science Editors:

Sambou D. Accumulation spectrale pour les Hamiltoniens quantiques magnétiques : Spectral accumulation for magnetic quantum Hamiltonians. [Doctoral Dissertation]. Université de Bordeaux I; 2013. Available from: http://www.theses.fr/2013BOR14906


University of Michigan

4. Sandoval, Mary Ruth. Wave-trace asymptotics for operators of Dirac type.

Degree: PhD, Pure Sciences, 1997, University of Michigan

 Spectral geometry seeks to understand the relationship between the spectra of differential operators and the underlying geometry of a manifold, especially to understand which geometric… (more)

Subjects/Keywords: Asymptotics; Dirac; Operators; Spectral Geometry; Trace; Type; Wave

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sandoval, M. R. (1997). Wave-trace asymptotics for operators of Dirac type. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/130578

Chicago Manual of Style (16th Edition):

Sandoval, Mary Ruth. “Wave-trace asymptotics for operators of Dirac type.” 1997. Doctoral Dissertation, University of Michigan. Accessed December 02, 2020. http://hdl.handle.net/2027.42/130578.

MLA Handbook (7th Edition):

Sandoval, Mary Ruth. “Wave-trace asymptotics for operators of Dirac type.” 1997. Web. 02 Dec 2020.

Vancouver:

Sandoval MR. Wave-trace asymptotics for operators of Dirac type. [Internet] [Doctoral dissertation]. University of Michigan; 1997. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/2027.42/130578.

Council of Science Editors:

Sandoval MR. Wave-trace asymptotics for operators of Dirac type. [Doctoral Dissertation]. University of Michigan; 1997. Available from: http://hdl.handle.net/2027.42/130578

5. Beheshti Vadeqan, Babak. Geometry of Dirac Operators .

Degree: Mathematics and Statistics, 2016, Queens University

 Let M be a compact, oriented, even dimensional Riemannian manifold and let S be a Clifford bundle over M with Dirac operator D. Then [… (more)

Subjects/Keywords: Atiyah-Singer Index Theorem ; Dirac Operators ; Elliptic Geometry

…this thesis to show that elliptic operators and specifically Dirac operators contain certain… …Dirac operators. We shall also see that the study of Dirac operators reveals some… …a more general type of elliptic differential operators which are said to be Dirac type… …operators called Dirac operators. In this thesis we are planning to study this type of operators… …Dirac operators on manifolds. We will start by introducing Clifford algebras and their… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beheshti Vadeqan, B. (2016). Geometry of Dirac Operators . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/14633

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beheshti Vadeqan, Babak. “Geometry of Dirac Operators .” 2016. Thesis, Queens University. Accessed December 02, 2020. http://hdl.handle.net/1974/14633.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beheshti Vadeqan, Babak. “Geometry of Dirac Operators .” 2016. Web. 02 Dec 2020.

Vancouver:

Beheshti Vadeqan B. Geometry of Dirac Operators . [Internet] [Thesis]. Queens University; 2016. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/1974/14633.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beheshti Vadeqan B. Geometry of Dirac Operators . [Thesis]. Queens University; 2016. Available from: http://hdl.handle.net/1974/14633

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Takata, Doman. A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds .

Degree: 2018, Kyoto University

Subjects/Keywords: infinite-dimensional manifolds; loop groups; Dirac operators; assembly maps; KK-theory; index theory

Page 1 Page 2 Page 3 Page 4

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Takata, D. (2018). A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/232217

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Takata, Doman. “A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds .” 2018. Thesis, Kyoto University. Accessed December 02, 2020. http://hdl.handle.net/2433/232217.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Takata, Doman. “A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds .” 2018. Web. 02 Dec 2020.

Vancouver:

Takata D. A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds . [Internet] [Thesis]. Kyoto University; 2018. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/2433/232217.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Takata D. A Loop Group Equivariant Analytic Index Theory for Infinite-dimensional Manifolds . [Thesis]. Kyoto University; 2018. Available from: http://hdl.handle.net/2433/232217

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Klaasse, R.L. Seiberg-Witten theory for symplectic manifolds.

Degree: 2013, Universiteit Utrecht

 In this thesis we give an introduction to Seiberg-Witten gauge theory used to study compact oriented four-dimensional manifolds X. Seiberg-Witten theory uses a Spin c… (more)

Subjects/Keywords: Seiberg-Witten theory; four-manifolds; symplectic manifolds; Spin c structures; Dirac operators

…forms, so that we are done. 2.4 Elliptic operators In this section we discuss the notion of… …analogous notion for operators between sections of vector bundles. Definition 2.4.2. An operator D… …of Fredholm operators is that their index is invariant under perturbations. In other words… …if one were to take a family of Fredholm operators parameterized by some connected… …Fredholmness of operators and calculating their index. A key concept is that of ellipticity. Let π… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klaasse, R. L. (2013). Seiberg-Witten theory for symplectic manifolds. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/282753

Chicago Manual of Style (16th Edition):

Klaasse, R L. “Seiberg-Witten theory for symplectic manifolds.” 2013. Masters Thesis, Universiteit Utrecht. Accessed December 02, 2020. http://dspace.library.uu.nl:8080/handle/1874/282753.

MLA Handbook (7th Edition):

Klaasse, R L. “Seiberg-Witten theory for symplectic manifolds.” 2013. Web. 02 Dec 2020.

Vancouver:

Klaasse RL. Seiberg-Witten theory for symplectic manifolds. [Internet] [Masters thesis]. Universiteit Utrecht; 2013. [cited 2020 Dec 02]. Available from: http://dspace.library.uu.nl:8080/handle/1874/282753.

Council of Science Editors:

Klaasse RL. Seiberg-Witten theory for symplectic manifolds. [Masters Thesis]. Universiteit Utrecht; 2013. Available from: http://dspace.library.uu.nl:8080/handle/1874/282753

8. Reynolds, Paul. On conformal submersions and manifolds with exceptional structure groups.

Degree: PhD, 2012, University of Edinburgh

 This thesis comes in three main parts. In the first of these (comprising chapters 2 - 6), the basic theory of Riemannian and conformal submersions… (more)

Subjects/Keywords: 519; Riemannian submersions; conformal submersions; Clifford algebra; spinor bundles; Dirac operators; quaternionic-Kahler quotients

…56 6 Dirac Operators and Conformal 6.1 Dirac operator formulae . . . . 6.2 One-dimensional… …distribution V The mean curvature of the horizontal distribution H Various Dirac operators The real… …next step is to calculate expressions for the Dirac operators. This does not require us to… …on M constructed from these. The Dirac operators of the total space, base and fibres are… …Calculation of the Dirac operators and application to the characterisation of Dirac morphisms. 8… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reynolds, P. (2012). On conformal submersions and manifolds with exceptional structure groups. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/6218

Chicago Manual of Style (16th Edition):

Reynolds, Paul. “On conformal submersions and manifolds with exceptional structure groups.” 2012. Doctoral Dissertation, University of Edinburgh. Accessed December 02, 2020. http://hdl.handle.net/1842/6218.

MLA Handbook (7th Edition):

Reynolds, Paul. “On conformal submersions and manifolds with exceptional structure groups.” 2012. Web. 02 Dec 2020.

Vancouver:

Reynolds P. On conformal submersions and manifolds with exceptional structure groups. [Internet] [Doctoral dissertation]. University of Edinburgh; 2012. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/1842/6218.

Council of Science Editors:

Reynolds P. On conformal submersions and manifolds with exceptional structure groups. [Doctoral Dissertation]. University of Edinburgh; 2012. Available from: http://hdl.handle.net/1842/6218


ETH Zürich

9. Farinelli, S. Spectra of dirac operators on a family of degenerating hyperbolic three manifolds.

Degree: 1998, ETH Zürich

Subjects/Keywords: DIRAC-OPERATOREN (FUNKTIONALANALYSIS); RIEMANNSCHE MANNIGFALTIGKEITEN (TOPOLOGIE); DIRAC OPERATORS (FUNCTIONAL ANALYSIS); RIEMANNIAN MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Farinelli, S. (1998). Spectra of dirac operators on a family of degenerating hyperbolic three manifolds. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/143641

Chicago Manual of Style (16th Edition):

Farinelli, S. “Spectra of dirac operators on a family of degenerating hyperbolic three manifolds.” 1998. Doctoral Dissertation, ETH Zürich. Accessed December 02, 2020. http://hdl.handle.net/20.500.11850/143641.

MLA Handbook (7th Edition):

Farinelli, S. “Spectra of dirac operators on a family of degenerating hyperbolic three manifolds.” 1998. Web. 02 Dec 2020.

Vancouver:

Farinelli S. Spectra of dirac operators on a family of degenerating hyperbolic three manifolds. [Internet] [Doctoral dissertation]. ETH Zürich; 1998. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/20.500.11850/143641.

Council of Science Editors:

Farinelli S. Spectra of dirac operators on a family of degenerating hyperbolic three manifolds. [Doctoral Dissertation]. ETH Zürich; 1998. Available from: http://hdl.handle.net/20.500.11850/143641


Australian National University

10. Morris, Andrew Jordan. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .

Degree: 2010, Australian National University

 The connection between quadratic estimates and the existence of a bounded holomorphic functional calculus of an operator provides a framework for applying harmonic analysis to… (more)

Subjects/Keywords: holomorphic functional calculi; quadratic estimates; sectorial operators; local Hardy spaces; Riemannian manifolds; differential forms; Hodge – Dirac operators; local Riesz transforms; off-diagonal estimates; Davies – Gaffney estimates; Kato square-root problems; submanifolds; divergence form operators; first-order differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morris, A. J. (2010). Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/8864

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Morris, Andrew Jordan. “Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .” 2010. Thesis, Australian National University. Accessed December 02, 2020. http://hdl.handle.net/1885/8864.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Morris, Andrew Jordan. “Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds .” 2010. Web. 02 Dec 2020.

Vancouver:

Morris AJ. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . [Internet] [Thesis]. Australian National University; 2010. [cited 2020 Dec 02]. Available from: http://hdl.handle.net/1885/8864.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Morris AJ. Local Hardy spaces and quadratic estimates for Dirac type operators on Riemannian manifolds . [Thesis]. Australian National University; 2010. Available from: http://hdl.handle.net/1885/8864

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Lal, Nishu. Spectral Zeta Functions of Laplacians on Self-Similar Fractals.

Degree: Mathematics, 2012, University of California – Riverside

 This thesis investigates the spectral zeta function of fractal differential operators such as the Laplacian on the unbounded (i.e., infinite) Sierpinski gasket and a self-similar… (more)

Subjects/Keywords: Mathematics; Analysis on fractals; decimation method; Dirac delta hyperfunction; fractal Sturm-Liouville operators; multivariable complex dynamics; spectral zeta functions

…the spectral zeta function of fractal differential operators such as the Laplacian on the… …the spectral zeta function of such an operator, expressed in terms of the Dirac delta… …variables associated with fractal Sturm–Liouville operators. Moreover, as a corollary, in the very… …Adjoint Operators and Quadratic Forms . . . . . . 2.5 Introduction To Hyperfunctions… …3.3.1 Main Lemma Regarding the Dirac Delta Hyperfunction . . . . . 3.4 A Representation of the… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lal, N. (2012). Spectral Zeta Functions of Laplacians on Self-Similar Fractals. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/888903d2

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lal, Nishu. “Spectral Zeta Functions of Laplacians on Self-Similar Fractals.” 2012. Thesis, University of California – Riverside. Accessed December 02, 2020. http://www.escholarship.org/uc/item/888903d2.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lal, Nishu. “Spectral Zeta Functions of Laplacians on Self-Similar Fractals.” 2012. Web. 02 Dec 2020.

Vancouver:

Lal N. Spectral Zeta Functions of Laplacians on Self-Similar Fractals. [Internet] [Thesis]. University of California – Riverside; 2012. [cited 2020 Dec 02]. Available from: http://www.escholarship.org/uc/item/888903d2.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lal N. Spectral Zeta Functions of Laplacians on Self-Similar Fractals. [Thesis]. University of California – Riverside; 2012. Available from: http://www.escholarship.org/uc/item/888903d2

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

12. Rahaman, Md Aminoor. Search On A Hypercubic Lattice Using Quantum Random Walk.

Degree: MSc Engg, Faculty of Engineering, 2010, Indian Institute of Science

 Random walks describe diffusion processes, where movement at every time step is restricted only to neighbouring locations. Classical random walks are constructed using the non-relativistic… (more)

Subjects/Keywords: Lattice Theory - Data Processing; Quantum Random Walk; Grover's Algorithm; Dirac Operators; Quantum Computation; Dimensional Hypercubic Lattices; Random Walk Algorithm; Spatial Search; Quantum Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rahaman, M. A. (2010). Search On A Hypercubic Lattice Using Quantum Random Walk. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/972

Chicago Manual of Style (16th Edition):

Rahaman, Md Aminoor. “Search On A Hypercubic Lattice Using Quantum Random Walk.” 2010. Masters Thesis, Indian Institute of Science. Accessed December 02, 2020. http://etd.iisc.ac.in/handle/2005/972.

MLA Handbook (7th Edition):

Rahaman, Md Aminoor. “Search On A Hypercubic Lattice Using Quantum Random Walk.” 2010. Web. 02 Dec 2020.

Vancouver:

Rahaman MA. Search On A Hypercubic Lattice Using Quantum Random Walk. [Internet] [Masters thesis]. Indian Institute of Science; 2010. [cited 2020 Dec 02]. Available from: http://etd.iisc.ac.in/handle/2005/972.

Council of Science Editors:

Rahaman MA. Search On A Hypercubic Lattice Using Quantum Random Walk. [Masters Thesis]. Indian Institute of Science; 2010. Available from: http://etd.iisc.ac.in/handle/2005/972

.