Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Diophantine geometry). Showing records 1 – 17 of 17 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Waterloo

1. Castañeda Santos, Diana Carolina. Rational approximations on smooth rational surfaces.

Degree: 2019, University of Waterloo

 In this thesis, we study a conjecture made by D. McKinnon about rational approximations to rational points in algebraic varieties. The conjecture states that if… (more)

Subjects/Keywords: Diophantine approximations; Algebraic geometry; Birational geometry; Arithmetic geometry; Complex algebraic surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castañeda Santos, D. C. (2019). Rational approximations on smooth rational surfaces. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14859

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Castañeda Santos, Diana Carolina. “Rational approximations on smooth rational surfaces.” 2019. Thesis, University of Waterloo. Accessed October 13, 2019. http://hdl.handle.net/10012/14859.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Castañeda Santos, Diana Carolina. “Rational approximations on smooth rational surfaces.” 2019. Web. 13 Oct 2019.

Vancouver:

Castañeda Santos DC. Rational approximations on smooth rational surfaces. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/10012/14859.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Castañeda Santos DC. Rational approximations on smooth rational surfaces. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14859

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Exeter

2. Tyler, Michael Peter. On the birational section conjecture over function fields.

Degree: PhD, 2017, University of Exeter

 The birational variant of Grothendieck's section conjecture proposes a characterisation of the rational points of a curve over a finitely generated field over Q in… (more)

Subjects/Keywords: 510; birational section conjecture; section conjecture; algebraic geometry; arithmetic geometry; diophantine geometry; number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tyler, M. P. (2017). On the birational section conjecture over function fields. (Doctoral Dissertation). University of Exeter. Retrieved from http://hdl.handle.net/10871/31600

Chicago Manual of Style (16th Edition):

Tyler, Michael Peter. “On the birational section conjecture over function fields.” 2017. Doctoral Dissertation, University of Exeter. Accessed October 13, 2019. http://hdl.handle.net/10871/31600.

MLA Handbook (7th Edition):

Tyler, Michael Peter. “On the birational section conjecture over function fields.” 2017. Web. 13 Oct 2019.

Vancouver:

Tyler MP. On the birational section conjecture over function fields. [Internet] [Doctoral dissertation]. University of Exeter; 2017. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/10871/31600.

Council of Science Editors:

Tyler MP. On the birational section conjecture over function fields. [Doctoral Dissertation]. University of Exeter; 2017. Available from: http://hdl.handle.net/10871/31600


University of Ottawa

3. Rivard-Cooke, Martin. Parametric Geometry of Numbers .

Degree: 2019, University of Ottawa

 This thesis is primarily concerned in studying the relationship between different exponents of Diophantine approximation, which are quantities arising naturally in the study of rational… (more)

Subjects/Keywords: parametric geometry of numbers; Diophantine approximation; transcendence theory; geometry of numbers; exponents of Diophantine approximation; spectrum; semialgebraic set

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rivard-Cooke, M. (2019). Parametric Geometry of Numbers . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/38871

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rivard-Cooke, Martin. “Parametric Geometry of Numbers .” 2019. Thesis, University of Ottawa. Accessed October 13, 2019. http://hdl.handle.net/10393/38871.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rivard-Cooke, Martin. “Parametric Geometry of Numbers .” 2019. Web. 13 Oct 2019.

Vancouver:

Rivard-Cooke M. Parametric Geometry of Numbers . [Internet] [Thesis]. University of Ottawa; 2019. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/10393/38871.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rivard-Cooke M. Parametric Geometry of Numbers . [Thesis]. University of Ottawa; 2019. Available from: http://hdl.handle.net/10393/38871

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Wesleyan University

4. Ryan, Max. Continued Fractions: A Geometric Perspective.

Degree: Mathematics, 2016, Wesleyan University

  In this paper we explore the relationship between continued fractions and Diophantine approximation using an alternative geometric view developed by Caroline Series in her… (more)

Subjects/Keywords: continued fractions; Diophantine approximation; hyperbolic geometry; number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ryan, M. (2016). Continued Fractions: A Geometric Perspective. (Masters Thesis). Wesleyan University. Retrieved from https://wesscholar.wesleyan.edu/etd_mas_theses/121

Chicago Manual of Style (16th Edition):

Ryan, Max. “Continued Fractions: A Geometric Perspective.” 2016. Masters Thesis, Wesleyan University. Accessed October 13, 2019. https://wesscholar.wesleyan.edu/etd_mas_theses/121.

MLA Handbook (7th Edition):

Ryan, Max. “Continued Fractions: A Geometric Perspective.” 2016. Web. 13 Oct 2019.

Vancouver:

Ryan M. Continued Fractions: A Geometric Perspective. [Internet] [Masters thesis]. Wesleyan University; 2016. [cited 2019 Oct 13]. Available from: https://wesscholar.wesleyan.edu/etd_mas_theses/121.

Council of Science Editors:

Ryan M. Continued Fractions: A Geometric Perspective. [Masters Thesis]. Wesleyan University; 2016. Available from: https://wesscholar.wesleyan.edu/etd_mas_theses/121


Queens University

5. Garcia, Natalia. Curves of low genus on surfaces and applications to Diophantine problems .

Degree: Mathematics and Statistics, 2015, Queens University

 We describe in detail a technique due to Vojta for finding the explicit set of curves of low genus on certain algebraic surfaces of general… (more)

Subjects/Keywords: Arithmetic geometry; Diophantine equations; Bombieri-Lang conjecture; Low genus curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garcia, N. (2015). Curves of low genus on surfaces and applications to Diophantine problems . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/13545

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Garcia, Natalia. “Curves of low genus on surfaces and applications to Diophantine problems .” 2015. Thesis, Queens University. Accessed October 13, 2019. http://hdl.handle.net/1974/13545.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Garcia, Natalia. “Curves of low genus on surfaces and applications to Diophantine problems .” 2015. Web. 13 Oct 2019.

Vancouver:

Garcia N. Curves of low genus on surfaces and applications to Diophantine problems . [Internet] [Thesis]. Queens University; 2015. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/1974/13545.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Garcia N. Curves of low genus on surfaces and applications to Diophantine problems . [Thesis]. Queens University; 2015. Available from: http://hdl.handle.net/1974/13545

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Huang, Zhizhong. Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties.

Degree: Docteur es, Mathématiques, 2017, Grenoble Alpes

L'étude de la distribution des points rationnels sur les variétés algébriques est un sujet classique de la géométrie diophantienne. Le programme proposé par V. Batyrev… (more)

Subjects/Keywords: Approximation diophantienne; Points rationnels; Géométrie arithmétique; Diophantine approximation; Rational points; Arithmetic geometry; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, Z. (2017). Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2017GREAM036

Chicago Manual of Style (16th Edition):

Huang, Zhizhong. “Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties.” 2017. Doctoral Dissertation, Grenoble Alpes. Accessed October 13, 2019. http://www.theses.fr/2017GREAM036.

MLA Handbook (7th Edition):

Huang, Zhizhong. “Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties.” 2017. Web. 13 Oct 2019.

Vancouver:

Huang Z. Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2017. [cited 2019 Oct 13]. Available from: http://www.theses.fr/2017GREAM036.

Council of Science Editors:

Huang Z. Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques : Fine asymptotic distribution of rational points on algebraic varieties. [Doctoral Dissertation]. Grenoble Alpes; 2017. Available from: http://www.theses.fr/2017GREAM036


George Mason University

7. Dunham, Jill Bigley. On Extremal Coin Graphs, Flowers, and Their Rational Representations .

Degree: 2009, George Mason University

 We study extremal coin graphs in the Euclidean plane on n vertices with the maximum number of edges. This is related to the unit coin… (more)

Subjects/Keywords: coin graph; Galois theory; diophantine equations; plane graphs; symmetric polynomials; discrete geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dunham, J. B. (2009). On Extremal Coin Graphs, Flowers, and Their Rational Representations . (Thesis). George Mason University. Retrieved from http://hdl.handle.net/1920/4560

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dunham, Jill Bigley. “On Extremal Coin Graphs, Flowers, and Their Rational Representations .” 2009. Thesis, George Mason University. Accessed October 13, 2019. http://hdl.handle.net/1920/4560.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dunham, Jill Bigley. “On Extremal Coin Graphs, Flowers, and Their Rational Representations .” 2009. Web. 13 Oct 2019.

Vancouver:

Dunham JB. On Extremal Coin Graphs, Flowers, and Their Rational Representations . [Internet] [Thesis]. George Mason University; 2009. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/1920/4560.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dunham JB. On Extremal Coin Graphs, Flowers, and Their Rational Representations . [Thesis]. George Mason University; 2009. Available from: http://hdl.handle.net/1920/4560

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Colorado

8. Hines, Robert. Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation.

Degree: PhD, 2019, University of Colorado

  This dissertation explores relations between hyperbolic geometry and Diophantine approximation, with an emphasis on continued fractions over the Euclidean imaginary quadratic fields, Q(√−d), d… (more)

Subjects/Keywords: hyperbolic geometry; Diophantine approximation; continued fractions; Euclidean imaginary quadrtic fields; geometric interpretation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hines, R. (2019). Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/74

Chicago Manual of Style (16th Edition):

Hines, Robert. “Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation.” 2019. Doctoral Dissertation, University of Colorado. Accessed October 13, 2019. https://scholar.colorado.edu/math_gradetds/74.

MLA Handbook (7th Edition):

Hines, Robert. “Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation.” 2019. Web. 13 Oct 2019.

Vancouver:

Hines R. Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2019 Oct 13]. Available from: https://scholar.colorado.edu/math_gradetds/74.

Council of Science Editors:

Hines R. Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/74


University of Rochester

9. Sookdeo, Vijay A. (1979 - ). Arithmetic properties of orbits of rational functions.

Degree: PhD, 2009, University of Rochester

[Abstract would not render] – Submitter.

Subjects/Keywords: Dynamics; Arithmetic; Number theory; Algebraic geometry; Diophantine geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sookdeo, V. A. (. -. ). (2009). Arithmetic properties of orbits of rational functions. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/7834

Chicago Manual of Style (16th Edition):

Sookdeo, Vijay A (1979 - ). “Arithmetic properties of orbits of rational functions.” 2009. Doctoral Dissertation, University of Rochester. Accessed October 13, 2019. http://hdl.handle.net/1802/7834.

MLA Handbook (7th Edition):

Sookdeo, Vijay A (1979 - ). “Arithmetic properties of orbits of rational functions.” 2009. Web. 13 Oct 2019.

Vancouver:

Sookdeo VA(-). Arithmetic properties of orbits of rational functions. [Internet] [Doctoral dissertation]. University of Rochester; 2009. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/1802/7834.

Council of Science Editors:

Sookdeo VA(-). Arithmetic properties of orbits of rational functions. [Doctoral Dissertation]. University of Rochester; 2009. Available from: http://hdl.handle.net/1802/7834

10. Marnat, Antoine. Sur le spectre des exposants d'approximation diophantienne classiques et pondérés : On the spectrum of classical and twisted exponents of diophantine approximation.

Degree: Docteur es, Mathématiques, 2015, Université de Strasbourg

Pour un n-uplet de nombres réels, vu comme un point de l'espace projectif, on définit pour chaqueindice d entre 0 et n-1 deux exposants d'approximation… (more)

Subjects/Keywords: Spectre des exposants d’approximation diophantienne; Géométrie paramétrique des nombres; Approximations diophantiennes; Diophantine approximations; Parametric geometry of numbers; Spectrum of diophantine exponents; 512.7; 516

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marnat, A. (2015). Sur le spectre des exposants d'approximation diophantienne classiques et pondérés : On the spectrum of classical and twisted exponents of diophantine approximation. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2015STRAD042

Chicago Manual of Style (16th Edition):

Marnat, Antoine. “Sur le spectre des exposants d'approximation diophantienne classiques et pondérés : On the spectrum of classical and twisted exponents of diophantine approximation.” 2015. Doctoral Dissertation, Université de Strasbourg. Accessed October 13, 2019. http://www.theses.fr/2015STRAD042.

MLA Handbook (7th Edition):

Marnat, Antoine. “Sur le spectre des exposants d'approximation diophantienne classiques et pondérés : On the spectrum of classical and twisted exponents of diophantine approximation.” 2015. Web. 13 Oct 2019.

Vancouver:

Marnat A. Sur le spectre des exposants d'approximation diophantienne classiques et pondérés : On the spectrum of classical and twisted exponents of diophantine approximation. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2015. [cited 2019 Oct 13]. Available from: http://www.theses.fr/2015STRAD042.

Council of Science Editors:

Marnat A. Sur le spectre des exposants d'approximation diophantienne classiques et pondérés : On the spectrum of classical and twisted exponents of diophantine approximation. [Doctoral Dissertation]. Université de Strasbourg; 2015. Available from: http://www.theses.fr/2015STRAD042


EPFL

11. Rothvoss, Thomas. On the computational complexity of periodic scheduling.

Degree: 2009, EPFL

 In periodic scheduling jobs arrive regularly and have to be executed on one or several machines or processors. An enormous amount of literature has been… (more)

Subjects/Keywords: scheduling; combinatorial optimization; geometry of numbers; approximation algorithms; complexity theory; inapproximability; periodic tasks; simultaneous Diophantine approximation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rothvoss, T. (2009). On the computational complexity of periodic scheduling. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/140628

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rothvoss, Thomas. “On the computational complexity of periodic scheduling.” 2009. Thesis, EPFL. Accessed October 13, 2019. http://infoscience.epfl.ch/record/140628.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rothvoss, Thomas. “On the computational complexity of periodic scheduling.” 2009. Web. 13 Oct 2019.

Vancouver:

Rothvoss T. On the computational complexity of periodic scheduling. [Internet] [Thesis]. EPFL; 2009. [cited 2019 Oct 13]. Available from: http://infoscience.epfl.ch/record/140628.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rothvoss T. On the computational complexity of periodic scheduling. [Thesis]. EPFL; 2009. Available from: http://infoscience.epfl.ch/record/140628

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. Poëls, Anthony. Applications de la géométrie paramétrique des nombres à l'approximation diophantienne : Applications of parametric geometry in diophantine approximation.

Degree: Docteur es, Mathématiques fondamentales, 2018, Paris Saclay

Pour un réel ξ qui n’est pas algébrique de degré ≤ 2, on peut définir plusieurs exposants diophantiens qui mesurent la qualité d’approximation du vecteur… (more)

Subjects/Keywords: Théorie des nombres; Géométrie paramétrique des nombres; Approximation diophantienne; Approximation simultanée; Exposants diophantiens; Spectre des exposants; Theory of numbers; Diophantine approximation; Parametric geometry of numbers; Simultaneous approximation; Diophantine exponents; Spectrum of Diophantine exponents

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Poëls, A. (2018). Applications de la géométrie paramétrique des nombres à l'approximation diophantienne : Applications of parametric geometry in diophantine approximation. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2018SACLS115

Chicago Manual of Style (16th Edition):

Poëls, Anthony. “Applications de la géométrie paramétrique des nombres à l'approximation diophantienne : Applications of parametric geometry in diophantine approximation.” 2018. Doctoral Dissertation, Paris Saclay. Accessed October 13, 2019. http://www.theses.fr/2018SACLS115.

MLA Handbook (7th Edition):

Poëls, Anthony. “Applications de la géométrie paramétrique des nombres à l'approximation diophantienne : Applications of parametric geometry in diophantine approximation.” 2018. Web. 13 Oct 2019.

Vancouver:

Poëls A. Applications de la géométrie paramétrique des nombres à l'approximation diophantienne : Applications of parametric geometry in diophantine approximation. [Internet] [Doctoral dissertation]. Paris Saclay; 2018. [cited 2019 Oct 13]. Available from: http://www.theses.fr/2018SACLS115.

Council of Science Editors:

Poëls A. Applications de la géométrie paramétrique des nombres à l'approximation diophantienne : Applications of parametric geometry in diophantine approximation. [Doctoral Dissertation]. Paris Saclay; 2018. Available from: http://www.theses.fr/2018SACLS115

13. Ballaÿ, François. Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups.

Degree: Docteur es, Mathématiques, 2017, Clermont Auvergne

Dans cette thèse, nous appliquons des outils issus de la théorie d’Arakelov à l’étude de problèmes de géométrie diophantienne. Une notion centrale dans notre étude… (more)

Subjects/Keywords: Géométrie diophantienne; Approximation diophantienne; Géométrie d’Arakelov; Théorie des pentes; Points rationnels; Formes linéaires de logarithmes; Hauteurs; Diophantine geometry; Diophantine approximation; Arakelov geometry; Slope theory; Rational points; Linear forms in logarithms; Heights

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ballaÿ, F. (2017). Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups. (Doctoral Dissertation). Clermont Auvergne. Retrieved from http://www.theses.fr/2017CLFAC034

Chicago Manual of Style (16th Edition):

Ballaÿ, François. “Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups.” 2017. Doctoral Dissertation, Clermont Auvergne. Accessed October 13, 2019. http://www.theses.fr/2017CLFAC034.

MLA Handbook (7th Edition):

Ballaÿ, François. “Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups.” 2017. Web. 13 Oct 2019.

Vancouver:

Ballaÿ F. Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups. [Internet] [Doctoral dissertation]. Clermont Auvergne; 2017. [cited 2019 Oct 13]. Available from: http://www.theses.fr/2017CLFAC034.

Council of Science Editors:

Ballaÿ F. Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs : Diophantine approximation on projective varieties and on commutative algebraic groups. [Doctoral Dissertation]. Clermont Auvergne; 2017. Available from: http://www.theses.fr/2017CLFAC034


Université Paris-Sud – Paris XI

14. Maculan, Marco. Applications de la théorie géométrique des invariants à la géométrie diophantienne : Applications of geometric invariant theory to diophantine geometry.

Degree: Docteur es, Mathématiques, 2012, Université Paris-Sud – Paris XI

: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle… (more)

Subjects/Keywords: Théorie géométrique des invariants; Géométrie d'Arakelov; Approximation diophantienne; Théorie de Kempf-Ness; Geometric invariant theory; Arakelov geometry; Diophantine approximation; Kempf-Ness theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maculan, M. (2012). Applications de la théorie géométrique des invariants à la géométrie diophantienne : Applications of geometric invariant theory to diophantine geometry. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112331

Chicago Manual of Style (16th Edition):

Maculan, Marco. “Applications de la théorie géométrique des invariants à la géométrie diophantienne : Applications of geometric invariant theory to diophantine geometry.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 13, 2019. http://www.theses.fr/2012PA112331.

MLA Handbook (7th Edition):

Maculan, Marco. “Applications de la théorie géométrique des invariants à la géométrie diophantienne : Applications of geometric invariant theory to diophantine geometry.” 2012. Web. 13 Oct 2019.

Vancouver:

Maculan M. Applications de la théorie géométrique des invariants à la géométrie diophantienne : Applications of geometric invariant theory to diophantine geometry. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2019 Oct 13]. Available from: http://www.theses.fr/2012PA112331.

Council of Science Editors:

Maculan M. Applications de la théorie géométrique des invariants à la géométrie diophantienne : Applications of geometric invariant theory to diophantine geometry. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112331

15. Ren, Jinbo. Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura : Around the Zilber-Pink Conjecture for Shimura Varieties.

Degree: Docteur es, Mathématiques fondamentales, 2018, Paris Saclay

Dans cette thèse, nous nous intéressons à l'étude de l'arithmétique et de la géométrie des variétés de Shimura. Cette thèse s'est essentiellement organisée autour de… (more)

Subjects/Keywords: Variété de Shimura; O-Minimalité; Géométrie diophantienne; Cohomologie galoisienne; Groupe dual; Application de Kottwitz; Shimura variety; O-Minimality; Diophantine geometry; Galois cohomology; Dual group; Kottwitz map

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren, J. (2018). Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura : Around the Zilber-Pink Conjecture for Shimura Varieties. (Doctoral Dissertation). Paris Saclay. Retrieved from http://www.theses.fr/2018SACLS208

Chicago Manual of Style (16th Edition):

Ren, Jinbo. “Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura : Around the Zilber-Pink Conjecture for Shimura Varieties.” 2018. Doctoral Dissertation, Paris Saclay. Accessed October 13, 2019. http://www.theses.fr/2018SACLS208.

MLA Handbook (7th Edition):

Ren, Jinbo. “Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura : Around the Zilber-Pink Conjecture for Shimura Varieties.” 2018. Web. 13 Oct 2019.

Vancouver:

Ren J. Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura : Around the Zilber-Pink Conjecture for Shimura Varieties. [Internet] [Doctoral dissertation]. Paris Saclay; 2018. [cited 2019 Oct 13]. Available from: http://www.theses.fr/2018SACLS208.

Council of Science Editors:

Ren J. Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura : Around the Zilber-Pink Conjecture for Shimura Varieties. [Doctoral Dissertation]. Paris Saclay; 2018. Available from: http://www.theses.fr/2018SACLS208


Universitat de Barcelona

16. Barroso de Freitas, Nuno Ricardo. Some Generalized Fermat-type Equations via Q-Curves and Modularity.

Degree: Departament d'Algebra i Geometria, 2012, Universitat de Barcelona

 En esta tesis, utilizaremos el método modular para profundizar en el estudio de las ecuaciones de tipo (r; r; p) para r un primo fijado.… (more)

Subjects/Keywords: Equacions; Ecuaciones; Equations; Anàlisi diofàntica; Diophantine analysis; Análisis diofántico; Corbes el·líptiques; Curvas elípticas; Elliptic curves; Geometria algebraica aritmètica; Geometría algebraica aritmética; Arithmetical algebraic geometry; Formes de Hilbert; Formas de Hilbert; Hilbert modular forms; Number Theory; Teoria de nombres; Teoría de números; Geometria algebraica aritmètica; Arithmetical algebraic geometry; Geometría algebraica aritmética; Ciències Experimentals i Matemàtiques; 514

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barroso de Freitas, N. R. (2012). Some Generalized Fermat-type Equations via Q-Curves and Modularity. (Thesis). Universitat de Barcelona. Retrieved from http://hdl.handle.net/10803/91288

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Barroso de Freitas, Nuno Ricardo. “Some Generalized Fermat-type Equations via Q-Curves and Modularity.” 2012. Thesis, Universitat de Barcelona. Accessed October 13, 2019. http://hdl.handle.net/10803/91288.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Barroso de Freitas, Nuno Ricardo. “Some Generalized Fermat-type Equations via Q-Curves and Modularity.” 2012. Web. 13 Oct 2019.

Vancouver:

Barroso de Freitas NR. Some Generalized Fermat-type Equations via Q-Curves and Modularity. [Internet] [Thesis]. Universitat de Barcelona; 2012. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/10803/91288.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Barroso de Freitas NR. Some Generalized Fermat-type Equations via Q-Curves and Modularity. [Thesis]. Universitat de Barcelona; 2012. Available from: http://hdl.handle.net/10803/91288

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

17. Gubler, Walter Bruno. Höhentheorie.

Degree: 1992, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); CHOW-VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); DIOPHANTISCHE APPROXIMATIONEN (ZAHLENTHEORIE); METRISCHE THEORIE DER FUNKTIONEN (ANALYSIS); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); CHOW VARIETIES (ALGEBRAIC GEOMETRY); DIOPHANTINE APPROXIMATIONS (NUMBER THEORY); METRIC THEORY OF FUNCTIONS (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gubler, W. B. (1992). Höhentheorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/140666

Chicago Manual of Style (16th Edition):

Gubler, Walter Bruno. “Höhentheorie.” 1992. Doctoral Dissertation, ETH Zürich. Accessed October 13, 2019. http://hdl.handle.net/20.500.11850/140666.

MLA Handbook (7th Edition):

Gubler, Walter Bruno. “Höhentheorie.” 1992. Web. 13 Oct 2019.

Vancouver:

Gubler WB. Höhentheorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1992. [cited 2019 Oct 13]. Available from: http://hdl.handle.net/20.500.11850/140666.

Council of Science Editors:

Gubler WB. Höhentheorie. [Doctoral Dissertation]. ETH Zürich; 1992. Available from: http://hdl.handle.net/20.500.11850/140666

.