Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Differential operators). Showing records 1 – 30 of 121 total matches.

[1] [2] [3] [4] [5]

Search Limiters

Last 2 Years | English Only

Degrees

Country

▼ Search Limiters


University of Oxford

1. Keller, R. Godfrey. Some problems in differential operators (essential self-adjointness).

Degree: PhD, 1977, University of Oxford

 We consider a formally self-adjoint elliptic differential operator in IRn, denoted by τ. T0 and T are operators given by τ with specific domains. We… (more)

Subjects/Keywords: 515; Differential operators; Selfadjoint operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Keller, R. G. (1977). Some problems in differential operators (essential self-adjointness). (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:447e052c-1776-4eb4-96f6-383c0122107d ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.461655

Chicago Manual of Style (16th Edition):

Keller, R Godfrey. “Some problems in differential operators (essential self-adjointness).” 1977. Doctoral Dissertation, University of Oxford. Accessed March 05, 2021. http://ora.ox.ac.uk/objects/uuid:447e052c-1776-4eb4-96f6-383c0122107d ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.461655.

MLA Handbook (7th Edition):

Keller, R Godfrey. “Some problems in differential operators (essential self-adjointness).” 1977. Web. 05 Mar 2021.

Vancouver:

Keller RG. Some problems in differential operators (essential self-adjointness). [Internet] [Doctoral dissertation]. University of Oxford; 1977. [cited 2021 Mar 05]. Available from: http://ora.ox.ac.uk/objects/uuid:447e052c-1776-4eb4-96f6-383c0122107d ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.461655.

Council of Science Editors:

Keller RG. Some problems in differential operators (essential self-adjointness). [Doctoral Dissertation]. University of Oxford; 1977. Available from: http://ora.ox.ac.uk/objects/uuid:447e052c-1776-4eb4-96f6-383c0122107d ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.461655

2. Ballard, Grey M. Asymptotic Behavior of the Eigenvalues of Toeplitz Integral Operators Associated with the Hankel Transform.

Degree: 2008, Wake Forest University

We are interested in formulating conditions on the kernel of the Toeplitz integral operator which allow the determination of the asymptotic behavior of the eigenvalues of the operator.

Subjects/Keywords: differential operators

…eigenvalues of a specific differential operator which we will define later. We follow closely the… …methods used in [17], which proved similar results for Toeplitz operators associated… …x29; and these eigenvectors span the range of T . Since unbounded operators will also appear… …self-adjoint operators and provides a “maximin” characterization of these eigenvalues. Since… …the literature for compact self-adjoint operators is a complementary “minimax” statement… 

Page 1 Page 2 Page 3 Page 4 Page 5

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ballard, G. M. (2008). Asymptotic Behavior of the Eigenvalues of Toeplitz Integral Operators Associated with the Hankel Transform. (Thesis). Wake Forest University. Retrieved from http://hdl.handle.net/10339/14676

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ballard, Grey M. “Asymptotic Behavior of the Eigenvalues of Toeplitz Integral Operators Associated with the Hankel Transform.” 2008. Thesis, Wake Forest University. Accessed March 05, 2021. http://hdl.handle.net/10339/14676.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ballard, Grey M. “Asymptotic Behavior of the Eigenvalues of Toeplitz Integral Operators Associated with the Hankel Transform.” 2008. Web. 05 Mar 2021.

Vancouver:

Ballard GM. Asymptotic Behavior of the Eigenvalues of Toeplitz Integral Operators Associated with the Hankel Transform. [Internet] [Thesis]. Wake Forest University; 2008. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10339/14676.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ballard GM. Asymptotic Behavior of the Eigenvalues of Toeplitz Integral Operators Associated with the Hankel Transform. [Thesis]. Wake Forest University; 2008. Available from: http://hdl.handle.net/10339/14676

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of KwaZulu-Natal

3. Leach, Peter Gavin Lawrence. Algebraic properties of ordinary differential equations.

Degree: PhD, Mathematics, 1995, University of KwaZulu-Natal

 In Chapter One the theoretical basis for infinitesimal transformations is presented with particular emphasis on the central theme of this thesis which is the invariance… (more)

Subjects/Keywords: Mathematics.; Differential operators.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leach, P. G. L. (1995). Algebraic properties of ordinary differential equations. (Doctoral Dissertation). University of KwaZulu-Natal. Retrieved from http://hdl.handle.net/10413/4897

Chicago Manual of Style (16th Edition):

Leach, Peter Gavin Lawrence. “Algebraic properties of ordinary differential equations.” 1995. Doctoral Dissertation, University of KwaZulu-Natal. Accessed March 05, 2021. http://hdl.handle.net/10413/4897.

MLA Handbook (7th Edition):

Leach, Peter Gavin Lawrence. “Algebraic properties of ordinary differential equations.” 1995. Web. 05 Mar 2021.

Vancouver:

Leach PGL. Algebraic properties of ordinary differential equations. [Internet] [Doctoral dissertation]. University of KwaZulu-Natal; 1995. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10413/4897.

Council of Science Editors:

Leach PGL. Algebraic properties of ordinary differential equations. [Doctoral Dissertation]. University of KwaZulu-Natal; 1995. Available from: http://hdl.handle.net/10413/4897

4. Sukhtaiev, Selim. Topics in spectral theory of differential operators.

Degree: 2017, University of Missouri – Columbia

 This dissertation is devoted to two eigenvalue counting problems: Determining the asymptotic behavior of large eigenvalues of self-adjoint extensions of partial differential operators, and computing… (more)

Subjects/Keywords: Differential operators

…results from the spectral theory of ordinary and partial differential operators can be placed in… …operators, Arnold’s generalization of Sturm-type theorems for systems of ordinary differential… …adjoint differential operators whose domains are contained in H 1 (Ω) and the Maslov… …2.3 Preliminaries on a Class of Partial Differential Operators In this section we set the… …x29; as duce the class of even-order partial differential operators A well as AΩ,2m (a… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sukhtaiev, S. (2017). Topics in spectral theory of differential operators. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/62261

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sukhtaiev, Selim. “Topics in spectral theory of differential operators.” 2017. Thesis, University of Missouri – Columbia. Accessed March 05, 2021. http://hdl.handle.net/10355/62261.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sukhtaiev, Selim. “Topics in spectral theory of differential operators.” 2017. Web. 05 Mar 2021.

Vancouver:

Sukhtaiev S. Topics in spectral theory of differential operators. [Internet] [Thesis]. University of Missouri – Columbia; 2017. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10355/62261.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sukhtaiev S. Topics in spectral theory of differential operators. [Thesis]. University of Missouri – Columbia; 2017. Available from: http://hdl.handle.net/10355/62261

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Sofo, Philip C. Krein's identity and trace formulas for half-line Schrodinger operators.

Degree: 2017, University of Tennessee – Chattanooga

 We consider self-adjoint extensions of the minimal operator generated by the differential expression \cL = - d2/dx2+V on the half-line [0,∞), where V is a… (more)

Subjects/Keywords: Differential operators; Schrödinger operator; Operator theory; Kreĭn spaces; Differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sofo, P. C. (2017). Krein's identity and trace formulas for half-line Schrodinger operators. (Masters Thesis). University of Tennessee – Chattanooga. Retrieved from https://scholar.utc.edu/theses/495

Chicago Manual of Style (16th Edition):

Sofo, Philip C. “Krein's identity and trace formulas for half-line Schrodinger operators.” 2017. Masters Thesis, University of Tennessee – Chattanooga. Accessed March 05, 2021. https://scholar.utc.edu/theses/495.

MLA Handbook (7th Edition):

Sofo, Philip C. “Krein's identity and trace formulas for half-line Schrodinger operators.” 2017. Web. 05 Mar 2021.

Vancouver:

Sofo PC. Krein's identity and trace formulas for half-line Schrodinger operators. [Internet] [Masters thesis]. University of Tennessee – Chattanooga; 2017. [cited 2021 Mar 05]. Available from: https://scholar.utc.edu/theses/495.

Council of Science Editors:

Sofo PC. Krein's identity and trace formulas for half-line Schrodinger operators. [Masters Thesis]. University of Tennessee – Chattanooga; 2017. Available from: https://scholar.utc.edu/theses/495


University of Waterloo

6. Suan, Caleb. Differential Operators on Manifolds with G2-Structure.

Degree: 2020, University of Waterloo

 In this thesis, we study differential operators on manifolds with torsion-free G2-structure. In particular, we use an identification of the spinor bundle S of such… (more)

Subjects/Keywords: differential geometry; G2-structures; twisted Dirac operator; differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Suan, C. (2020). Differential Operators on Manifolds with G2-Structure. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/16565

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Suan, Caleb. “Differential Operators on Manifolds with G2-Structure.” 2020. Thesis, University of Waterloo. Accessed March 05, 2021. http://hdl.handle.net/10012/16565.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Suan, Caleb. “Differential Operators on Manifolds with G2-Structure.” 2020. Web. 05 Mar 2021.

Vancouver:

Suan C. Differential Operators on Manifolds with G2-Structure. [Internet] [Thesis]. University of Waterloo; 2020. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10012/16565.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Suan C. Differential Operators on Manifolds with G2-Structure. [Thesis]. University of Waterloo; 2020. Available from: http://hdl.handle.net/10012/16565

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Johannes Gutenberg Universität Mainz

7. Hussein, Amru. Spectral theory of differential operators on finite metric graphs and on bounded domains.

Degree: 2013, Johannes Gutenberg Universität Mainz

Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im… (more)

Subjects/Keywords: Spekraltheorie, Differentialoperatoren, Quantengraphen, Indefinite Operatoren; Spectral theory, differential operators, quantum graphs, indefinite operators; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hussein, A. (2013). Spectral theory of differential operators on finite metric graphs and on bounded domains. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2013/3511/

Chicago Manual of Style (16th Edition):

Hussein, Amru. “Spectral theory of differential operators on finite metric graphs and on bounded domains.” 2013. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed March 05, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2013/3511/.

MLA Handbook (7th Edition):

Hussein, Amru. “Spectral theory of differential operators on finite metric graphs and on bounded domains.” 2013. Web. 05 Mar 2021.

Vancouver:

Hussein A. Spectral theory of differential operators on finite metric graphs and on bounded domains. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2013. [cited 2021 Mar 05]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3511/.

Council of Science Editors:

Hussein A. Spectral theory of differential operators on finite metric graphs and on bounded domains. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2013. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3511/


University of Gothenburg / Göteborgs Universitet

8. Goffeng, Magnus. Index theory in geometry and physics.

Degree: 2011, University of Gothenburg / Göteborgs Universitet

 This thesis contains three papers in the area of index theory and its applications in geometry and mathematical physics. These papers deal with the problems… (more)

Subjects/Keywords: Index theory; Cyclic cohomology; Regularized index formulas; Toeplitz operators; Pseudo-differential operators; Quantum Hall effect

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Goffeng, M. (2011). Index theory in geometry and physics. (Thesis). University of Gothenburg / Göteborgs Universitet. Retrieved from http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Thesis, University of Gothenburg / Göteborgs Universitet. Accessed March 05, 2021. http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Goffeng, Magnus. “Index theory in geometry and physics.” 2011. Web. 05 Mar 2021.

Vancouver:

Goffeng M. Index theory in geometry and physics. [Internet] [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2077/24979.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Goffeng M. Index theory in geometry and physics. [Thesis]. University of Gothenburg / Göteborgs Universitet; 2011. Available from: http://hdl.handle.net/2077/24979

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Southern Mississippi

9. Wright, Sarah. Diagonalization of 1-D Schrodinger Operators with Piecewise Constant Potentials.

Degree: MS, 2020, University of Southern Mississippi

  In today's world our lives are very layered. My research is meant to adapt current inefficient numerical methods to more accurately model the complex… (more)

Subjects/Keywords: Partial Differential Equations; Schrodinger Operators; Numerical Analysis and Computation; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wright, S. (2020). Diagonalization of 1-D Schrodinger Operators with Piecewise Constant Potentials. (Masters Thesis). University of Southern Mississippi. Retrieved from https://aquila.usm.edu/masters_theses/785

Chicago Manual of Style (16th Edition):

Wright, Sarah. “Diagonalization of 1-D Schrodinger Operators with Piecewise Constant Potentials.” 2020. Masters Thesis, University of Southern Mississippi. Accessed March 05, 2021. https://aquila.usm.edu/masters_theses/785.

MLA Handbook (7th Edition):

Wright, Sarah. “Diagonalization of 1-D Schrodinger Operators with Piecewise Constant Potentials.” 2020. Web. 05 Mar 2021.

Vancouver:

Wright S. Diagonalization of 1-D Schrodinger Operators with Piecewise Constant Potentials. [Internet] [Masters thesis]. University of Southern Mississippi; 2020. [cited 2021 Mar 05]. Available from: https://aquila.usm.edu/masters_theses/785.

Council of Science Editors:

Wright S. Diagonalization of 1-D Schrodinger Operators with Piecewise Constant Potentials. [Masters Thesis]. University of Southern Mississippi; 2020. Available from: https://aquila.usm.edu/masters_theses/785


Loughborough University

10. Li, Liangpan. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.

Degree: PhD, 2016, Loughborough University

 In this dissertation we study non-negative self-adjoint Laplace type operators acting on smooth sections of a vector bundle. First, we assume base manifolds are compact,… (more)

Subjects/Keywords: 515; Local spectral asymptotics; Heat kernel; Dirac operators; Laplace operators; Pseudo-differential operators; Fourier integral operators; Wodzicki residue; Finite propagation speed; Spectral determinant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, L. (2016). Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/23004

Chicago Manual of Style (16th Edition):

Li, Liangpan. “Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.” 2016. Doctoral Dissertation, Loughborough University. Accessed March 05, 2021. http://hdl.handle.net/2134/23004.

MLA Handbook (7th Edition):

Li, Liangpan. “Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators.” 2016. Web. 05 Mar 2021.

Vancouver:

Li L. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. [Internet] [Doctoral dissertation]. Loughborough University; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2134/23004.

Council of Science Editors:

Li L. Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators. [Doctoral Dissertation]. Loughborough University; 2016. Available from: http://hdl.handle.net/2134/23004


Hong Kong University of Science and Technology

11. Ma, Shuk-Chuen. Conformal and Lie superalgebras related to the differential operators on the circle.

Degree: 2003, Hong Kong University of Science and Technology

 In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermionic fields with derivatives and prove their simplicity.… (more)

Subjects/Keywords: Lie superalgebras ; Superalgebras ; Differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ma, S. (2003). Conformal and Lie superalgebras related to the differential operators on the circle. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-588 ; https://doi.org/10.14711/thesis-b796145 ; http://repository.ust.hk/ir/bitstream/1783.1-588/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ma, Shuk-Chuen. “Conformal and Lie superalgebras related to the differential operators on the circle.” 2003. Thesis, Hong Kong University of Science and Technology. Accessed March 05, 2021. http://repository.ust.hk/ir/Record/1783.1-588 ; https://doi.org/10.14711/thesis-b796145 ; http://repository.ust.hk/ir/bitstream/1783.1-588/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ma, Shuk-Chuen. “Conformal and Lie superalgebras related to the differential operators on the circle.” 2003. Web. 05 Mar 2021.

Vancouver:

Ma S. Conformal and Lie superalgebras related to the differential operators on the circle. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2003. [cited 2021 Mar 05]. Available from: http://repository.ust.hk/ir/Record/1783.1-588 ; https://doi.org/10.14711/thesis-b796145 ; http://repository.ust.hk/ir/bitstream/1783.1-588/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ma S. Conformal and Lie superalgebras related to the differential operators on the circle. [Thesis]. Hong Kong University of Science and Technology; 2003. Available from: http://repository.ust.hk/ir/Record/1783.1-588 ; https://doi.org/10.14711/thesis-b796145 ; http://repository.ust.hk/ir/bitstream/1783.1-588/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

12. Tian, Hongfei. On the center of the ring of invariant differential operators on semisimple groups over fields of positive characteristic.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 In this thesis we prove the existence of Jordan Decomposition in DG/k, the ring of invariant differential operators on a semisimple algebraic group over a… (more)

Subjects/Keywords: Representation theory; Positive characteristic; Invariant differential operators; Semisimple center

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tian, H. (2017). On the center of the ring of invariant differential operators on semisimple groups over fields of positive characteristic. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/99314

Chicago Manual of Style (16th Edition):

Tian, Hongfei. “On the center of the ring of invariant differential operators on semisimple groups over fields of positive characteristic.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed March 05, 2021. http://hdl.handle.net/2142/99314.

MLA Handbook (7th Edition):

Tian, Hongfei. “On the center of the ring of invariant differential operators on semisimple groups over fields of positive characteristic.” 2017. Web. 05 Mar 2021.

Vancouver:

Tian H. On the center of the ring of invariant differential operators on semisimple groups over fields of positive characteristic. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2142/99314.

Council of Science Editors:

Tian H. On the center of the ring of invariant differential operators on semisimple groups over fields of positive characteristic. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/99314


Georgia Tech

13. Christian, William Greer. Linear operators and the equations of motion of infinite linear chains.

Degree: PhD, Mathematics, 1972, Georgia Tech

Subjects/Keywords: Linear operators; Differential equations, Linear

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Christian, W. G. (1972). Linear operators and the equations of motion of infinite linear chains. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/28654

Chicago Manual of Style (16th Edition):

Christian, William Greer. “Linear operators and the equations of motion of infinite linear chains.” 1972. Doctoral Dissertation, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/28654.

MLA Handbook (7th Edition):

Christian, William Greer. “Linear operators and the equations of motion of infinite linear chains.” 1972. Web. 05 Mar 2021.

Vancouver:

Christian WG. Linear operators and the equations of motion of infinite linear chains. [Internet] [Doctoral dissertation]. Georgia Tech; 1972. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/28654.

Council of Science Editors:

Christian WG. Linear operators and the equations of motion of infinite linear chains. [Doctoral Dissertation]. Georgia Tech; 1972. Available from: http://hdl.handle.net/1853/28654


Georgia Tech

14. Rollins, Laddie Wayne. The spectrum of certain singular selfadjoint differential operators.

Degree: PhD, Mathematics, 1972, Georgia Tech

Subjects/Keywords: Differential operators; Boundary value problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rollins, L. W. (1972). The spectrum of certain singular selfadjoint differential operators. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/27910

Chicago Manual of Style (16th Edition):

Rollins, Laddie Wayne. “The spectrum of certain singular selfadjoint differential operators.” 1972. Doctoral Dissertation, Georgia Tech. Accessed March 05, 2021. http://hdl.handle.net/1853/27910.

MLA Handbook (7th Edition):

Rollins, Laddie Wayne. “The spectrum of certain singular selfadjoint differential operators.” 1972. Web. 05 Mar 2021.

Vancouver:

Rollins LW. The spectrum of certain singular selfadjoint differential operators. [Internet] [Doctoral dissertation]. Georgia Tech; 1972. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1853/27910.

Council of Science Editors:

Rollins LW. The spectrum of certain singular selfadjoint differential operators. [Doctoral Dissertation]. Georgia Tech; 1972. Available from: http://hdl.handle.net/1853/27910


University of Texas – Austin

15. Ganev, Iordan Venelinov. The wonderful compactification for quantum groups.

Degree: PhD, Mathematics, 2016, University of Texas – Austin

 This thesis studies the asymptotics of quantum groups using an approach centered on the wonderful compactification. The wonderful compactification of a semisimple group was introduced… (more)

Subjects/Keywords: Quantum groups; Noncommutative geometry; Compactification; Wonderful variety; Matrix coefficients; Differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ganev, I. V. (2016). The wonderful compactification for quantum groups. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/43716

Chicago Manual of Style (16th Edition):

Ganev, Iordan Venelinov. “The wonderful compactification for quantum groups.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed March 05, 2021. http://hdl.handle.net/2152/43716.

MLA Handbook (7th Edition):

Ganev, Iordan Venelinov. “The wonderful compactification for quantum groups.” 2016. Web. 05 Mar 2021.

Vancouver:

Ganev IV. The wonderful compactification for quantum groups. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2152/43716.

Council of Science Editors:

Ganev IV. The wonderful compactification for quantum groups. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/43716


Oklahoma State University

16. Kubo, Toshihisa. Conformally Invariant Systems of Differential Operators Associated to Two-step Nilpotent Maximal Parabolics of Non-heisenberg Type.

Degree: Department of Mathematics, 2012, Oklahoma State University

 The main work of this thesis concerns systems of differential operators that are equivariant under an action of a Lie algebra. We call such systems… (more)

Subjects/Keywords: generalized verma modules; invariant differential operators; prehomogeneous vector spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kubo, T. (2012). Conformally Invariant Systems of Differential Operators Associated to Two-step Nilpotent Maximal Parabolics of Non-heisenberg Type. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/6828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kubo, Toshihisa. “Conformally Invariant Systems of Differential Operators Associated to Two-step Nilpotent Maximal Parabolics of Non-heisenberg Type.” 2012. Thesis, Oklahoma State University. Accessed March 05, 2021. http://hdl.handle.net/11244/6828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kubo, Toshihisa. “Conformally Invariant Systems of Differential Operators Associated to Two-step Nilpotent Maximal Parabolics of Non-heisenberg Type.” 2012. Web. 05 Mar 2021.

Vancouver:

Kubo T. Conformally Invariant Systems of Differential Operators Associated to Two-step Nilpotent Maximal Parabolics of Non-heisenberg Type. [Internet] [Thesis]. Oklahoma State University; 2012. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11244/6828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kubo T. Conformally Invariant Systems of Differential Operators Associated to Two-step Nilpotent Maximal Parabolics of Non-heisenberg Type. [Thesis]. Oklahoma State University; 2012. Available from: http://hdl.handle.net/11244/6828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

17. Maridakis, Manousos. The concentration principle for Dirac operators.

Degree: 2014, Michigan State University

Thesis Ph. D. Michigan State University. Mathematics 2014.

The symbol map σ of an elliptic operator carries essential topological and geometrical information about the underlying… (more)

Subjects/Keywords: Dirac equation; Manifolds (Mathematics); Differential operators; Theoretical mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maridakis, M. (2014). The concentration principle for Dirac operators. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:2604

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Maridakis, Manousos. “The concentration principle for Dirac operators.” 2014. Thesis, Michigan State University. Accessed March 05, 2021. http://etd.lib.msu.edu/islandora/object/etd:2604.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Maridakis, Manousos. “The concentration principle for Dirac operators.” 2014. Web. 05 Mar 2021.

Vancouver:

Maridakis M. The concentration principle for Dirac operators. [Internet] [Thesis]. Michigan State University; 2014. [cited 2021 Mar 05]. Available from: http://etd.lib.msu.edu/islandora/object/etd:2604.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Maridakis M. The concentration principle for Dirac operators. [Thesis]. Michigan State University; 2014. Available from: http://etd.lib.msu.edu/islandora/object/etd:2604

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Johannes Gutenberg Universität Mainz

18. Bogner, Michael. On differential operators of Calabi-Yau type.

Degree: 2012, Johannes Gutenberg Universität Mainz

This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of n-dimensional Calabi-Yau manifolds whose solutions are integrals of (n,0)-forms over… (more)

Subjects/Keywords: Differenzialoperatoren; Calabi-Yau Mannigfaltigkeiten, Picard-Fuchs Operatoren, starre Monodromietupel; differential operators; Calabi-Yau manifolds; Picard-Fuchs operators; rigid monodromy tuples; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bogner, M. (2012). On differential operators of Calabi-Yau type. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/

Chicago Manual of Style (16th Edition):

Bogner, Michael. “On differential operators of Calabi-Yau type.” 2012. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed March 05, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/.

MLA Handbook (7th Edition):

Bogner, Michael. “On differential operators of Calabi-Yau type.” 2012. Web. 05 Mar 2021.

Vancouver:

Bogner M. On differential operators of Calabi-Yau type. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2012. [cited 2021 Mar 05]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/.

Council of Science Editors:

Bogner M. On differential operators of Calabi-Yau type. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2012. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2012/3191/


Indian Institute of Science

19. Sanjay, P K. Riesz Transforms Associated With Heisenberg Groups And Grushin Operators.

Degree: PhD, Faculty of Science, 2015, Indian Institute of Science

 We characterise the higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers.… (more)

Subjects/Keywords: Riesz Transforms; Heisenberg Groups; Grushin Operators; Differential Operators; Heisenberg Group; Hermite Polynomials; Hermite Functions; Laguerre Functions; Hermite Expansion; Laguerre Expansion; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sanjay, P. K. (2015). Riesz Transforms Associated With Heisenberg Groups And Grushin Operators. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2496

Chicago Manual of Style (16th Edition):

Sanjay, P K. “Riesz Transforms Associated With Heisenberg Groups And Grushin Operators.” 2015. Doctoral Dissertation, Indian Institute of Science. Accessed March 05, 2021. http://etd.iisc.ac.in/handle/2005/2496.

MLA Handbook (7th Edition):

Sanjay, P K. “Riesz Transforms Associated With Heisenberg Groups And Grushin Operators.” 2015. Web. 05 Mar 2021.

Vancouver:

Sanjay PK. Riesz Transforms Associated With Heisenberg Groups And Grushin Operators. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2015. [cited 2021 Mar 05]. Available from: http://etd.iisc.ac.in/handle/2005/2496.

Council of Science Editors:

Sanjay PK. Riesz Transforms Associated With Heisenberg Groups And Grushin Operators. [Doctoral Dissertation]. Indian Institute of Science; 2015. Available from: http://etd.iisc.ac.in/handle/2005/2496

20. Bal, Kaushik. Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers.

Degree: Docteur es, Mathématiques, 2011, Pau

Les travaux réalisés dans cette thèse concernent l’étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. Par singularité, nous signifions que le problème fait intervenir une… (more)

Subjects/Keywords: Mathématiques; Equations aux dérivées partielles; Opérateur elliptique; Opérateur parabolique; Mathematics; Partial differential equation; Elliptic operators; Parabolic operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bal, K. (2011). Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2011PAUU3032

Chicago Manual of Style (16th Edition):

Bal, Kaushik. “Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers.” 2011. Doctoral Dissertation, Pau. Accessed March 05, 2021. http://www.theses.fr/2011PAUU3032.

MLA Handbook (7th Edition):

Bal, Kaushik. “Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers.” 2011. Web. 05 Mar 2021.

Vancouver:

Bal K. Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. [Internet] [Doctoral dissertation]. Pau; 2011. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2011PAUU3032.

Council of Science Editors:

Bal K. Some Contribution to the study of Quasilinear Singular Parabolic and Elliptic Equations : Contribution à l'étude de problèmes quasi-linéaires paraboliques et elliptiques singuliers. [Doctoral Dissertation]. Pau; 2011. Available from: http://www.theses.fr/2011PAUU3032


Western Kentucky University

21. Albasrawi, Fatimah Hassan. Floquet Theory on Banach Space.

Degree: MS, Department of Mathematics, 2013, Western Kentucky University

  In this thesis we study Floquet theory on a Banach space. We are concerned about the linear differential equation of the form: y'(t) =… (more)

Subjects/Keywords: Floquet Theory; Banach Spaces; Linear Operators; Differential Equations; Applied Mathematics; Mathematics; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Albasrawi, F. H. (2013). Floquet Theory on Banach Space. (Masters Thesis). Western Kentucky University. Retrieved from https://digitalcommons.wku.edu/theses/1234

Chicago Manual of Style (16th Edition):

Albasrawi, Fatimah Hassan. “Floquet Theory on Banach Space.” 2013. Masters Thesis, Western Kentucky University. Accessed March 05, 2021. https://digitalcommons.wku.edu/theses/1234.

MLA Handbook (7th Edition):

Albasrawi, Fatimah Hassan. “Floquet Theory on Banach Space.” 2013. Web. 05 Mar 2021.

Vancouver:

Albasrawi FH. Floquet Theory on Banach Space. [Internet] [Masters thesis]. Western Kentucky University; 2013. [cited 2021 Mar 05]. Available from: https://digitalcommons.wku.edu/theses/1234.

Council of Science Editors:

Albasrawi FH. Floquet Theory on Banach Space. [Masters Thesis]. Western Kentucky University; 2013. Available from: https://digitalcommons.wku.edu/theses/1234


University of Washington

22. Casper, William Riley. Bispectral Operator Algebras.

Degree: PhD, 2017, University of Washington

 This dissertation is an amalgamation of various results on the structure of bispectral differential operator algebras, ie. algebras of differential operators with possibly noncommutative coefficients… (more)

Subjects/Keywords: Bispectral problem; Differential operators; Noncommutative algebra; Operator algebras; Orthogonal Polynomials; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Casper, W. R. (2017). Bispectral Operator Algebras. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/40239

Chicago Manual of Style (16th Edition):

Casper, William Riley. “Bispectral Operator Algebras.” 2017. Doctoral Dissertation, University of Washington. Accessed March 05, 2021. http://hdl.handle.net/1773/40239.

MLA Handbook (7th Edition):

Casper, William Riley. “Bispectral Operator Algebras.” 2017. Web. 05 Mar 2021.

Vancouver:

Casper WR. Bispectral Operator Algebras. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1773/40239.

Council of Science Editors:

Casper WR. Bispectral Operator Algebras. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/40239

23. TAN MENG CHWAN. Two-dimensional twisted sigma models and chiral differential operators.

Degree: 2007, National University of Singapore

Subjects/Keywords: twisted sigma models; chiral differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

CHWAN, T. M. (2007). Two-dimensional twisted sigma models and chiral differential operators. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/13332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

CHWAN, TAN MENG. “Two-dimensional twisted sigma models and chiral differential operators.” 2007. Thesis, National University of Singapore. Accessed March 05, 2021. http://scholarbank.nus.edu.sg/handle/10635/13332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

CHWAN, TAN MENG. “Two-dimensional twisted sigma models and chiral differential operators.” 2007. Web. 05 Mar 2021.

Vancouver:

CHWAN TM. Two-dimensional twisted sigma models and chiral differential operators. [Internet] [Thesis]. National University of Singapore; 2007. [cited 2021 Mar 05]. Available from: http://scholarbank.nus.edu.sg/handle/10635/13332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

CHWAN TM. Two-dimensional twisted sigma models and chiral differential operators. [Thesis]. National University of Singapore; 2007. Available from: http://scholarbank.nus.edu.sg/handle/10635/13332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

24. Scapellato, Andrea. Integral operators and partial differential equations in Morrey type spaces.

Degree: 2018, Università degli Studi di Catania

Lo scopo di questa tesi è lo studio della limitatezza di alcuni operatori integrali in spazi funzionali di tipo Morrey. Inoltre si studia la regolarità di soluzioni di equazioni differenziali alle derivate parziali.

Subjects/Keywords: Area 01 - Scienze matematiche e informatiche; Morrey spaces,integral operators,partial differential equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scapellato, A. (2018). Integral operators and partial differential equations in Morrey type spaces. (Thesis). Università degli Studi di Catania. Retrieved from http://hdl.handle.net/10761/4043

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Scapellato, Andrea. “Integral operators and partial differential equations in Morrey type spaces.” 2018. Thesis, Università degli Studi di Catania. Accessed March 05, 2021. http://hdl.handle.net/10761/4043.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Scapellato, Andrea. “Integral operators and partial differential equations in Morrey type spaces.” 2018. Web. 05 Mar 2021.

Vancouver:

Scapellato A. Integral operators and partial differential equations in Morrey type spaces. [Internet] [Thesis]. Università degli Studi di Catania; 2018. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10761/4043.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Scapellato A. Integral operators and partial differential equations in Morrey type spaces. [Thesis]. Università degli Studi di Catania; 2018. Available from: http://hdl.handle.net/10761/4043

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of North Texas

25. Martin, James D. (James Dudley). Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms.

Degree: 2016, University of North Texas

 In this thesis, we define differential operators for Hermitian Jacobi forms and Hermitian modular forms over the Gaussian number field Q(i). In particular, we construct… (more)

Subjects/Keywords: Rankin-Cohen bracket; Hermitian modular forms; Rankin's method; Hermitian forms.; Jacobi forms.; Differential operators.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, J. D. (. D. (2016). Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc955117/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Martin, James D (James Dudley). “Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms.” 2016. Thesis, University of North Texas. Accessed March 05, 2021. https://digital.library.unt.edu/ark:/67531/metadc955117/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Martin, James D (James Dudley). “Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms.” 2016. Web. 05 Mar 2021.

Vancouver:

Martin JD(D. Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms. [Internet] [Thesis]. University of North Texas; 2016. [cited 2021 Mar 05]. Available from: https://digital.library.unt.edu/ark:/67531/metadc955117/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Martin JD(D. Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms. [Thesis]. University of North Texas; 2016. Available from: https://digital.library.unt.edu/ark:/67531/metadc955117/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

26. Fanney, Thomas R. Closability of differential operators and subjordan operators.

Degree: PhD, Mathematics, 1989, Virginia Tech

 A (bounded linear) operator J on a Hilbert space is said to be jordan if J = S + N where S = S* and… (more)

Subjects/Keywords: LD5655.V856 1989.F366; Differential operators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fanney, T. R. (1989). Closability of differential operators and subjordan operators. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/54356

Chicago Manual of Style (16th Edition):

Fanney, Thomas R. “Closability of differential operators and subjordan operators.” 1989. Doctoral Dissertation, Virginia Tech. Accessed March 05, 2021. http://hdl.handle.net/10919/54356.

MLA Handbook (7th Edition):

Fanney, Thomas R. “Closability of differential operators and subjordan operators.” 1989. Web. 05 Mar 2021.

Vancouver:

Fanney TR. Closability of differential operators and subjordan operators. [Internet] [Doctoral dissertation]. Virginia Tech; 1989. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10919/54356.

Council of Science Editors:

Fanney TR. Closability of differential operators and subjordan operators. [Doctoral Dissertation]. Virginia Tech; 1989. Available from: http://hdl.handle.net/10919/54356


Rutgers University

27. Weingart, Michael. Spectral functions of invariant operators on skew multiplicity free spaces.

Degree: PhD, Mathematics, 2007, Rutgers University

This thesis extends results on spectral functions of invariant differential operators on multiplicity free spaces to the setting of skew multiplicity free spaces, which are… (more)

Subjects/Keywords: Differential operators; Skew fields; Combinatorial analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weingart, M. (2007). Spectral functions of invariant operators on skew multiplicity free spaces. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000054799

Chicago Manual of Style (16th Edition):

Weingart, Michael. “Spectral functions of invariant operators on skew multiplicity free spaces.” 2007. Doctoral Dissertation, Rutgers University. Accessed March 05, 2021. http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000054799.

MLA Handbook (7th Edition):

Weingart, Michael. “Spectral functions of invariant operators on skew multiplicity free spaces.” 2007. Web. 05 Mar 2021.

Vancouver:

Weingart M. Spectral functions of invariant operators on skew multiplicity free spaces. [Internet] [Doctoral dissertation]. Rutgers University; 2007. [cited 2021 Mar 05]. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000054799.

Council of Science Editors:

Weingart M. Spectral functions of invariant operators on skew multiplicity free spaces. [Doctoral Dissertation]. Rutgers University; 2007. Available from: http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000054799

28. Jonatan Floriano da Silva. Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado.

Degree: Master, 2007, Universidade Federal do Ceará

 Estudaremos, de acordo com Alias e Colares em [11], o problema de unicidade para hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em um… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; transformaÃÃes de Newton; operadores diferenciais; fÃrmulas de Minkowski; operadores elÃpticos; hipersuperfÃcies; Newton transformations; differential operators; Minkowski formula; elliptic operators; hypersurfaces; Geometria riemaniana

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, J. F. d. (2007). Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. (Masters Thesis). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4119 ; http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4121 ;

Chicago Manual of Style (16th Edition):

Silva, Jonatan Floriano da. “Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado.” 2007. Masters Thesis, Universidade Federal do Ceará. Accessed March 05, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4119 ; http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4121 ;.

MLA Handbook (7th Edition):

Silva, Jonatan Floriano da. “Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado.” 2007. Web. 05 Mar 2021.

Vancouver:

Silva JFd. Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. [Internet] [Masters thesis]. Universidade Federal do Ceará 2007. [cited 2021 Mar 05]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4119 ; http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4121 ;.

Council of Science Editors:

Silva JFd. Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. [Masters Thesis]. Universidade Federal do Ceará 2007. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4119 ; http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4121 ;

29. Vogel, Martin. Propriétés spectrales des opérateurs non-auto-adjoints aléatoires : Spectral properties of random non-self-adjoint operators.

Degree: Docteur es, Mathématiques, 2015, Université de Bourgogne

Dans cette thèse, nous nous intéressons aux propriétés spectrales des opérateurs non-auto-adjoints aléatoires. Nous allons considérer principalement les cas des petites perturbations aléatoires de deux… (more)

Subjects/Keywords: Théorie spectrale; Opérateurs non-auto-adjoints; Opérateurs différentiels semiclassique; Perturbations aléatoires; Spectral theory; Non-self-adjoint operators; Semiclassical differential operators; Random perturbations; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vogel, M. (2015). Propriétés spectrales des opérateurs non-auto-adjoints aléatoires : Spectral properties of random non-self-adjoint operators. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2015DIJOS018

Chicago Manual of Style (16th Edition):

Vogel, Martin. “Propriétés spectrales des opérateurs non-auto-adjoints aléatoires : Spectral properties of random non-self-adjoint operators.” 2015. Doctoral Dissertation, Université de Bourgogne. Accessed March 05, 2021. http://www.theses.fr/2015DIJOS018.

MLA Handbook (7th Edition):

Vogel, Martin. “Propriétés spectrales des opérateurs non-auto-adjoints aléatoires : Spectral properties of random non-self-adjoint operators.” 2015. Web. 05 Mar 2021.

Vancouver:

Vogel M. Propriétés spectrales des opérateurs non-auto-adjoints aléatoires : Spectral properties of random non-self-adjoint operators. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2015. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2015DIJOS018.

Council of Science Editors:

Vogel M. Propriétés spectrales des opérateurs non-auto-adjoints aléatoires : Spectral properties of random non-self-adjoint operators. [Doctoral Dissertation]. Université de Bourgogne; 2015. Available from: http://www.theses.fr/2015DIJOS018


University of Alberta

30. Evans, Charles H. V. Dichotomies without bounded angular separation.

Degree: MS, Department of Mathematics, 1988, University of Alberta

Subjects/Keywords: Linear operators.; Stability.; Differential equations – Asymptotic theory.; Green's functions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Evans, C. H. V. (1988). Dichotomies without bounded angular separation. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/9w032515h

Chicago Manual of Style (16th Edition):

Evans, Charles H V. “Dichotomies without bounded angular separation.” 1988. Masters Thesis, University of Alberta. Accessed March 05, 2021. https://era.library.ualberta.ca/files/9w032515h.

MLA Handbook (7th Edition):

Evans, Charles H V. “Dichotomies without bounded angular separation.” 1988. Web. 05 Mar 2021.

Vancouver:

Evans CHV. Dichotomies without bounded angular separation. [Internet] [Masters thesis]. University of Alberta; 1988. [cited 2021 Mar 05]. Available from: https://era.library.ualberta.ca/files/9w032515h.

Council of Science Editors:

Evans CHV. Dichotomies without bounded angular separation. [Masters Thesis]. University of Alberta; 1988. Available from: https://era.library.ualberta.ca/files/9w032515h

[1] [2] [3] [4] [5]

.