Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Differential graded algebras). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Kansas State University

1. Shklyarov, Dmytro. Hirzebruch-Riemann-Roch theorem for differential graded algebras.

Degree: PhD, Department of Mathematics, 2009, Kansas State University

 Recall the classical Riemann-Roch theorem for curves: Given a smooth projective complex curve and two holomorphic vector bundles E, F on it, the Euler can… (more)

Subjects/Keywords: Differential graded algebras; Differential graded categories; Mathematics (0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shklyarov, D. (2009). Hirzebruch-Riemann-Roch theorem for differential graded algebras. (Doctoral Dissertation). Kansas State University. Retrieved from http://hdl.handle.net/2097/1381

Chicago Manual of Style (16th Edition):

Shklyarov, Dmytro. “Hirzebruch-Riemann-Roch theorem for differential graded algebras.” 2009. Doctoral Dissertation, Kansas State University. Accessed July 13, 2020. http://hdl.handle.net/2097/1381.

MLA Handbook (7th Edition):

Shklyarov, Dmytro. “Hirzebruch-Riemann-Roch theorem for differential graded algebras.” 2009. Web. 13 Jul 2020.

Vancouver:

Shklyarov D. Hirzebruch-Riemann-Roch theorem for differential graded algebras. [Internet] [Doctoral dissertation]. Kansas State University; 2009. [cited 2020 Jul 13]. Available from: http://hdl.handle.net/2097/1381.

Council of Science Editors:

Shklyarov D. Hirzebruch-Riemann-Roch theorem for differential graded algebras. [Doctoral Dissertation]. Kansas State University; 2009. Available from: http://hdl.handle.net/2097/1381


University of Illinois – Chicago

2. Bayindir, Haldun Ozgur. Topological Equivalences of E-infinity Differential Graded Algebras.

Degree: 2018, University of Illinois – Chicago

 Two DGAs are said to be topologically equivalent when the corresponding Eilenberg–Mac Lane ring spectra are weakly equivalent as ring spectra. Quasi-isomorphic DGAs are topologically… (more)

Subjects/Keywords: Dyer-Lashof operations; Differential graded algebras; Commutative ring spectra; Obstruction theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bayindir, H. O. (2018). Topological Equivalences of E-infinity Differential Graded Algebras. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23145

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bayindir, Haldun Ozgur. “Topological Equivalences of E-infinity Differential Graded Algebras.” 2018. Thesis, University of Illinois – Chicago. Accessed July 13, 2020. http://hdl.handle.net/10027/23145.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bayindir, Haldun Ozgur. “Topological Equivalences of E-infinity Differential Graded Algebras.” 2018. Web. 13 Jul 2020.

Vancouver:

Bayindir HO. Topological Equivalences of E-infinity Differential Graded Algebras. [Internet] [Thesis]. University of Illinois – Chicago; 2018. [cited 2020 Jul 13]. Available from: http://hdl.handle.net/10027/23145.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bayindir HO. Topological Equivalences of E-infinity Differential Graded Algebras. [Thesis]. University of Illinois – Chicago; 2018. Available from: http://hdl.handle.net/10027/23145

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Sánchez, Jesús. About E-infinity-structures in L-algebras : Sur les E-infini-structures dans les L-algèbres.

Degree: Docteur es, Mathématiques. Topologie algébrique, 2016, Sorbonne Paris Cité

Dans cette thèse nous rappelons la notion de L-algèbre, qui a pour objet d'être un modèle algébrique des types d'homotopie. L'objectif principal de cette thèse… (more)

Subjects/Keywords: Modules différentiels gradués; L-algèbres; Opérades symétriques; E-infini-coalgèbres; L-algèbre; Differential graded modules; L-algebras; Symmetric operads; E-infinity coalgebras; L-algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sánchez, J. (2016). About E-infinity-structures in L-algebras : Sur les E-infini-structures dans les L-algèbres. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCC204

Chicago Manual of Style (16th Edition):

Sánchez, Jesús. “About E-infinity-structures in L-algebras : Sur les E-infini-structures dans les L-algèbres.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed July 13, 2020. http://www.theses.fr/2016USPCC204.

MLA Handbook (7th Edition):

Sánchez, Jesús. “About E-infinity-structures in L-algebras : Sur les E-infini-structures dans les L-algèbres.” 2016. Web. 13 Jul 2020.

Vancouver:

Sánchez J. About E-infinity-structures in L-algebras : Sur les E-infini-structures dans les L-algèbres. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2020 Jul 13]. Available from: http://www.theses.fr/2016USPCC204.

Council of Science Editors:

Sánchez J. About E-infinity-structures in L-algebras : Sur les E-infini-structures dans les L-algèbres. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCC204


Georgia Southern University

4. Nelson, Michael S. Homological Constructions over a Ring of Characteristic 2.

Degree: MSin Mathematics (M.S.), Department of Mathematical Sciences, 2019, Georgia Southern University

  We study various homological constructions over a ring R of characteristic 2. We construct chain complexes over a field K of characteristic 2 using… (more)

Subjects/Keywords: Classification of differential graded algebras; Characteristic 2; Homological algebra; Chain complexes; Simplicial complexes; Gröbner basis; Algebra; Jack N. Averitt College of Graduate Studies, Electronic Theses & Dissertations, ETDs, Student Research

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nelson, M. S. (2019). Homological Constructions over a Ring of Characteristic 2. (Masters Thesis). Georgia Southern University. Retrieved from https://digitalcommons.georgiasouthern.edu/etd/1960

Chicago Manual of Style (16th Edition):

Nelson, Michael S. “Homological Constructions over a Ring of Characteristic 2.” 2019. Masters Thesis, Georgia Southern University. Accessed July 13, 2020. https://digitalcommons.georgiasouthern.edu/etd/1960.

MLA Handbook (7th Edition):

Nelson, Michael S. “Homological Constructions over a Ring of Characteristic 2.” 2019. Web. 13 Jul 2020.

Vancouver:

Nelson MS. Homological Constructions over a Ring of Characteristic 2. [Internet] [Masters thesis]. Georgia Southern University; 2019. [cited 2020 Jul 13]. Available from: https://digitalcommons.georgiasouthern.edu/etd/1960.

Council of Science Editors:

Nelson MS. Homological Constructions over a Ring of Characteristic 2. [Masters Thesis]. Georgia Southern University; 2019. Available from: https://digitalcommons.georgiasouthern.edu/etd/1960

5. Wilson, Kevin Hayes. Three perspectives on n points in P^{n-2} .

Degree: PhD, 2013, Princeton University

 This thesis is divided into three parts, each focused on extending the work of Bhargava's Higher Composition Laws and his asymptotics of the density of… (more)

Subjects/Keywords: density theorems; differential graded algebras; number fields; random euler products; symmetric group

…space is Gorenstein. 1.3.7 Differential Graded Algebras Suppose then that F• is a complex… …x28;−1)i d(fi )fj , then we say that F• is a differential graded algebra… …fi ∈ Fi and fj ∈ Fj . We will often call associative, commutative, differential graded… …commutative, differential graded algebra structure. Here F0 = A and F1 = R(−d). The map R… …reader. 1.2.1 (Graded) Rings Unless otherwise specified, all rings are associative… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilson, K. H. (2013). Three perspectives on n points in P^{n-2} . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp018k71nh131

Chicago Manual of Style (16th Edition):

Wilson, Kevin Hayes. “Three perspectives on n points in P^{n-2} .” 2013. Doctoral Dissertation, Princeton University. Accessed July 13, 2020. http://arks.princeton.edu/ark:/88435/dsp018k71nh131.

MLA Handbook (7th Edition):

Wilson, Kevin Hayes. “Three perspectives on n points in P^{n-2} .” 2013. Web. 13 Jul 2020.

Vancouver:

Wilson KH. Three perspectives on n points in P^{n-2} . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2020 Jul 13]. Available from: http://arks.princeton.edu/ark:/88435/dsp018k71nh131.

Council of Science Editors:

Wilson KH. Three perspectives on n points in P^{n-2} . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp018k71nh131


ETH Zürich

6. Willwacher, Thomas. Cyclic formality.

Degree: 2009, ETH Zürich

Subjects/Keywords: ZYKLISCHE KOHOMOLOGIE (ALGEBRAISCHE GEOMETRIE); GRADUIERTE ALGEBREN (ALGEBRA); LIE-RINGE UND LIE-ALGEBREN (ALGEBRA); DIFFERENTIALOPERATOREN + INTEGRALOPERATOREN AUF MANNIGFALTIGKEITEN (TOPOLOGIE); CYCLIC COHOMOLOGY (ALGEBRAIC GEOMETRY); GRADED ALGEBRAS (ALGEBRA); LIE RINGS AND LIE ALGEBRAS (ALGEBRA); DIFFERENTIAL + INTEGRAL OPERATORS ON MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Willwacher, T. (2009). Cyclic formality. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151769

Chicago Manual of Style (16th Edition):

Willwacher, Thomas. “Cyclic formality.” 2009. Doctoral Dissertation, ETH Zürich. Accessed July 13, 2020. http://hdl.handle.net/20.500.11850/151769.

MLA Handbook (7th Edition):

Willwacher, Thomas. “Cyclic formality.” 2009. Web. 13 Jul 2020.

Vancouver:

Willwacher T. Cyclic formality. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2020 Jul 13]. Available from: http://hdl.handle.net/20.500.11850/151769.

Council of Science Editors:

Willwacher T. Cyclic formality. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151769

.