Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Differential geometry). Showing records 1 – 30 of 481 total matches.

[1] [2] [3] [4] [5] … [17]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


McMaster University

1. Chiu, Vincent. A numerical study of cohomogeneity one manifolds.

Degree: MSc, 2016, McMaster University

This dissertation explores numerical solutions for the cohomogeneity one Einstein and Ricci soliton equations when the principal orbits are SU(3)/T2 and Sp(3)/Sp(1)3. We present new… (more)

Subjects/Keywords: Differential Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chiu, V. (2016). A numerical study of cohomogeneity one manifolds. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/20601

Chicago Manual of Style (16th Edition):

Chiu, Vincent. “A numerical study of cohomogeneity one manifolds.” 2016. Masters Thesis, McMaster University. Accessed October 25, 2020. http://hdl.handle.net/11375/20601.

MLA Handbook (7th Edition):

Chiu, Vincent. “A numerical study of cohomogeneity one manifolds.” 2016. Web. 25 Oct 2020.

Vancouver:

Chiu V. A numerical study of cohomogeneity one manifolds. [Internet] [Masters thesis]. McMaster University; 2016. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/11375/20601.

Council of Science Editors:

Chiu V. A numerical study of cohomogeneity one manifolds. [Masters Thesis]. McMaster University; 2016. Available from: http://hdl.handle.net/11375/20601

2. Jain, Vishal. Motion Segmentation Using Differential Geometry of Curves and Edges.

Degree: PhD, Division of Engineering. Electrical Sciences and Computer Engineering, 2009, Brown University

 This thesis proposes to solve the problem is of segmenting independently moving objects which is specifically useful in applications for compression, initialization for tracking, input… (more)

Subjects/Keywords: Differential Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jain, V. (2009). Motion Segmentation Using Differential Geometry of Curves and Edges. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:91/

Chicago Manual of Style (16th Edition):

Jain, Vishal. “Motion Segmentation Using Differential Geometry of Curves and Edges.” 2009. Doctoral Dissertation, Brown University. Accessed October 25, 2020. https://repository.library.brown.edu/studio/item/bdr:91/.

MLA Handbook (7th Edition):

Jain, Vishal. “Motion Segmentation Using Differential Geometry of Curves and Edges.” 2009. Web. 25 Oct 2020.

Vancouver:

Jain V. Motion Segmentation Using Differential Geometry of Curves and Edges. [Internet] [Doctoral dissertation]. Brown University; 2009. [cited 2020 Oct 25]. Available from: https://repository.library.brown.edu/studio/item/bdr:91/.

Council of Science Editors:

Jain V. Motion Segmentation Using Differential Geometry of Curves and Edges. [Doctoral Dissertation]. Brown University; 2009. Available from: https://repository.library.brown.edu/studio/item/bdr:91/

3. Wiygul, David J. Doubling Constructions with Asymmetric Sides.

Degree: PhD, Mathematics, 2014, Brown University

 Extending work of Kapouleas and Yang, we construct sequences of closed minimal surfaces embedded in the round unit 3-sphere and converging to a Clifford torus… (more)

Subjects/Keywords: differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wiygul, D. J. (2014). Doubling Constructions with Asymmetric Sides. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:386256/

Chicago Manual of Style (16th Edition):

Wiygul, David J. “Doubling Constructions with Asymmetric Sides.” 2014. Doctoral Dissertation, Brown University. Accessed October 25, 2020. https://repository.library.brown.edu/studio/item/bdr:386256/.

MLA Handbook (7th Edition):

Wiygul, David J. “Doubling Constructions with Asymmetric Sides.” 2014. Web. 25 Oct 2020.

Vancouver:

Wiygul DJ. Doubling Constructions with Asymmetric Sides. [Internet] [Doctoral dissertation]. Brown University; 2014. [cited 2020 Oct 25]. Available from: https://repository.library.brown.edu/studio/item/bdr:386256/.

Council of Science Editors:

Wiygul DJ. Doubling Constructions with Asymmetric Sides. [Doctoral Dissertation]. Brown University; 2014. Available from: https://repository.library.brown.edu/studio/item/bdr:386256/


University of Rochester

4. Cho, Hyunjoo. Existence of almost contact structures on manifolds with G2-structures and generalizations.

Degree: PhD, 2012, University of Rochester

 This dissertation consists of two main results. First, we investigate the relationship between almost contact structures and G2-structures on seven-dimensional Riemannian manifolds: we show that… (more)

Subjects/Keywords: Differential geometry; Symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cho, H. (2012). Existence of almost contact structures on manifolds with G2-structures and generalizations. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/21273

Chicago Manual of Style (16th Edition):

Cho, Hyunjoo. “Existence of almost contact structures on manifolds with G2-structures and generalizations.” 2012. Doctoral Dissertation, University of Rochester. Accessed October 25, 2020. http://hdl.handle.net/1802/21273.

MLA Handbook (7th Edition):

Cho, Hyunjoo. “Existence of almost contact structures on manifolds with G2-structures and generalizations.” 2012. Web. 25 Oct 2020.

Vancouver:

Cho H. Existence of almost contact structures on manifolds with G2-structures and generalizations. [Internet] [Doctoral dissertation]. University of Rochester; 2012. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/1802/21273.

Council of Science Editors:

Cho H. Existence of almost contact structures on manifolds with G2-structures and generalizations. [Doctoral Dissertation]. University of Rochester; 2012. Available from: http://hdl.handle.net/1802/21273


University of Oklahoma

5. BYUN, TAECHANG. HOLONOMY DISPLACEMENT OF CURVES IN BUNDLE SO(N)->SO_0(1,N)->H^n.

Degree: PhD, 2011, University of Oklahoma

 The Riemannian submersion π : SO0(1,n) ->Hn is a principal bundle and its fiber at π (e) is the imbedding of SO(n) into SO0(1,n) ,… (more)

Subjects/Keywords: Conformal geometry; Geometry, Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

BYUN, T. (2011). HOLONOMY DISPLACEMENT OF CURVES IN BUNDLE SO(N)->SO_0(1,N)->H^n. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/318678

Chicago Manual of Style (16th Edition):

BYUN, TAECHANG. “HOLONOMY DISPLACEMENT OF CURVES IN BUNDLE SO(N)->SO_0(1,N)->H^n.” 2011. Doctoral Dissertation, University of Oklahoma. Accessed October 25, 2020. http://hdl.handle.net/11244/318678.

MLA Handbook (7th Edition):

BYUN, TAECHANG. “HOLONOMY DISPLACEMENT OF CURVES IN BUNDLE SO(N)->SO_0(1,N)->H^n.” 2011. Web. 25 Oct 2020.

Vancouver:

BYUN T. HOLONOMY DISPLACEMENT OF CURVES IN BUNDLE SO(N)->SO_0(1,N)->H^n. [Internet] [Doctoral dissertation]. University of Oklahoma; 2011. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/11244/318678.

Council of Science Editors:

BYUN T. HOLONOMY DISPLACEMENT OF CURVES IN BUNDLE SO(N)->SO_0(1,N)->H^n. [Doctoral Dissertation]. University of Oklahoma; 2011. Available from: http://hdl.handle.net/11244/318678


University of California – Irvine

6. Seto, Shoo. On the Asymptotic Expansion of the Bergman Kernel.

Degree: Mathematics, 2015, University of California – Irvine

 Let (L,h)  →  (M,ω) be a polarized Kähler manifold. We define the Bergman kernel for H0(M,Lk), holomorphic sections of the high tensor powers of the… (more)

Subjects/Keywords: Mathematics; Bergman kernel; Complex Geometry; Differential Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Seto, S. (2015). On the Asymptotic Expansion of the Bergman Kernel. (Thesis). University of California – Irvine. Retrieved from http://www.escholarship.org/uc/item/1tt9p4fx

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Seto, Shoo. “On the Asymptotic Expansion of the Bergman Kernel.” 2015. Thesis, University of California – Irvine. Accessed October 25, 2020. http://www.escholarship.org/uc/item/1tt9p4fx.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Seto, Shoo. “On the Asymptotic Expansion of the Bergman Kernel.” 2015. Web. 25 Oct 2020.

Vancouver:

Seto S. On the Asymptotic Expansion of the Bergman Kernel. [Internet] [Thesis]. University of California – Irvine; 2015. [cited 2020 Oct 25]. Available from: http://www.escholarship.org/uc/item/1tt9p4fx.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Seto S. On the Asymptotic Expansion of the Bergman Kernel. [Thesis]. University of California – Irvine; 2015. Available from: http://www.escholarship.org/uc/item/1tt9p4fx

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

7. Pena, Moises. Geodesics on Generalized Plane Wave Manifolds.

Degree: MAin Mathematics, Mathematics, 2019, California State University – San Bernardino

  A manifold is a Hausdorff topological space that is locally Euclidean. We will define the difference between a Riemannian manifold and a pseudo-Riemannian manifold.… (more)

Subjects/Keywords: differential geometry manifolds geodesics; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pena, M. (2019). Geodesics on Generalized Plane Wave Manifolds. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/866

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pena, Moises. “Geodesics on Generalized Plane Wave Manifolds.” 2019. Thesis, California State University – San Bernardino. Accessed October 25, 2020. https://scholarworks.lib.csusb.edu/etd/866.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pena, Moises. “Geodesics on Generalized Plane Wave Manifolds.” 2019. Web. 25 Oct 2020.

Vancouver:

Pena M. Geodesics on Generalized Plane Wave Manifolds. [Internet] [Thesis]. California State University – San Bernardino; 2019. [cited 2020 Oct 25]. Available from: https://scholarworks.lib.csusb.edu/etd/866.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pena M. Geodesics on Generalized Plane Wave Manifolds. [Thesis]. California State University – San Bernardino; 2019. Available from: https://scholarworks.lib.csusb.edu/etd/866

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kent State University

8. Havens, Paul C, Havens. The Rigidity of the Sphere.

Degree: MS, College of Arts and Sciences / Department of Mathematical Science, 2016, Kent State University

Here, we prove the theorem due to Hopf that a surface with constant mean curvature that is homeomorphic to a sphere must be a sphere. Advisors/Committee Members: Ryabogin, Dmitry (Advisor).

Subjects/Keywords: Mathematics; differential geometry, geometry, constant mean curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Havens, Paul C, H. (2016). The Rigidity of the Sphere. (Masters Thesis). Kent State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=kent1461595829

Chicago Manual of Style (16th Edition):

Havens, Paul C, Havens. “The Rigidity of the Sphere.” 2016. Masters Thesis, Kent State University. Accessed October 25, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1461595829.

MLA Handbook (7th Edition):

Havens, Paul C, Havens. “The Rigidity of the Sphere.” 2016. Web. 25 Oct 2020.

Vancouver:

Havens, Paul C H. The Rigidity of the Sphere. [Internet] [Masters thesis]. Kent State University; 2016. [cited 2020 Oct 25]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1461595829.

Council of Science Editors:

Havens, Paul C H. The Rigidity of the Sphere. [Masters Thesis]. Kent State University; 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1461595829


Princeton University

9. Zhang, Siyi. Some Problems in Four-dimensional Conformal Geometry .

Degree: PhD, 2019, Princeton University

 In this thesis, we study some problems in four-dimensional conformal geometry. This thesis consists of two main parts: conformally invariant characterization of ℂP}2 and conformally… (more)

Subjects/Keywords: Analysis of PDEs; Conformal geometry; Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, S. (2019). Some Problems in Four-dimensional Conformal Geometry . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp018g84mq13p

Chicago Manual of Style (16th Edition):

Zhang, Siyi. “Some Problems in Four-dimensional Conformal Geometry .” 2019. Doctoral Dissertation, Princeton University. Accessed October 25, 2020. http://arks.princeton.edu/ark:/88435/dsp018g84mq13p.

MLA Handbook (7th Edition):

Zhang, Siyi. “Some Problems in Four-dimensional Conformal Geometry .” 2019. Web. 25 Oct 2020.

Vancouver:

Zhang S. Some Problems in Four-dimensional Conformal Geometry . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2020 Oct 25]. Available from: http://arks.princeton.edu/ark:/88435/dsp018g84mq13p.

Council of Science Editors:

Zhang S. Some Problems in Four-dimensional Conformal Geometry . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp018g84mq13p


Princeton University

10. Zhang, Siyi. Some Problems in Four-dimensional Conformal Geometry .

Degree: PhD, 2019, Princeton University

 In this thesis, we study some problems in four-dimensional conformal geometry. This thesis consists of two main parts: conformally invariant characterization of ℂP}2 and conformally… (more)

Subjects/Keywords: Analysis of PDEs; Conformal geometry; Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, S. (2019). Some Problems in Four-dimensional Conformal Geometry . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01tt44pq74b

Chicago Manual of Style (16th Edition):

Zhang, Siyi. “Some Problems in Four-dimensional Conformal Geometry .” 2019. Doctoral Dissertation, Princeton University. Accessed October 25, 2020. http://arks.princeton.edu/ark:/88435/dsp01tt44pq74b.

MLA Handbook (7th Edition):

Zhang, Siyi. “Some Problems in Four-dimensional Conformal Geometry .” 2019. Web. 25 Oct 2020.

Vancouver:

Zhang S. Some Problems in Four-dimensional Conformal Geometry . [Internet] [Doctoral dissertation]. Princeton University; 2019. [cited 2020 Oct 25]. Available from: http://arks.princeton.edu/ark:/88435/dsp01tt44pq74b.

Council of Science Editors:

Zhang S. Some Problems in Four-dimensional Conformal Geometry . [Doctoral Dissertation]. Princeton University; 2019. Available from: http://arks.princeton.edu/ark:/88435/dsp01tt44pq74b


University of Cambridge

11. Kirchhoff-Lukat, Charlotte Sophie. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.

Degree: PhD, 2018, University of Cambridge

 This thesis explores aspects of generalized geometry, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce… (more)

Subjects/Keywords: differential geometry; generalized complex geometry; Poisson geometry; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kirchhoff-Lukat, C. S. (2018). Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

Chicago Manual of Style (16th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Doctoral Dissertation, University of Cambridge. Accessed October 25, 2020. https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

MLA Handbook (7th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Web. 25 Oct 2020.

Vancouver:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2020 Oct 25]. Available from: https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

Council of Science Editors:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570


University of Colorado

12. Sato, Masaya. A Classical Technique to Prove the h-Cobordism Theorem.

Degree: MA, Mathematics, 2011, University of Colorado

  Let W be a compact and smooth manifold, whose dimension greater than 5, with boundary components V and V'. Suppose that W, V, and… (more)

Subjects/Keywords: Corbordisms; Differential Geometry; Differential Topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sato, M. (2011). A Classical Technique to Prove the h-Cobordism Theorem. (Masters Thesis). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/4

Chicago Manual of Style (16th Edition):

Sato, Masaya. “A Classical Technique to Prove the h-Cobordism Theorem.” 2011. Masters Thesis, University of Colorado. Accessed October 25, 2020. https://scholar.colorado.edu/math_gradetds/4.

MLA Handbook (7th Edition):

Sato, Masaya. “A Classical Technique to Prove the h-Cobordism Theorem.” 2011. Web. 25 Oct 2020.

Vancouver:

Sato M. A Classical Technique to Prove the h-Cobordism Theorem. [Internet] [Masters thesis]. University of Colorado; 2011. [cited 2020 Oct 25]. Available from: https://scholar.colorado.edu/math_gradetds/4.

Council of Science Editors:

Sato M. A Classical Technique to Prove the h-Cobordism Theorem. [Masters Thesis]. University of Colorado; 2011. Available from: https://scholar.colorado.edu/math_gradetds/4


University of Oxford

13. Lee, Hwasung. Strominger's system on non-Kähler hermitian manifolds.

Degree: PhD, 2011, University of Oxford

 In this thesis, we investigate the Strominger system on non-Kähler manifolds. We will present a natural generalization of the Strominger system for non-Kähler hermitian manifolds… (more)

Subjects/Keywords: 516.07; Partial differential equations; Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, H. (2011). Strominger's system on non-Kähler hermitian manifolds. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572657

Chicago Manual of Style (16th Edition):

Lee, Hwasung. “Strominger's system on non-Kähler hermitian manifolds.” 2011. Doctoral Dissertation, University of Oxford. Accessed October 25, 2020. http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572657.

MLA Handbook (7th Edition):

Lee, Hwasung. “Strominger's system on non-Kähler hermitian manifolds.” 2011. Web. 25 Oct 2020.

Vancouver:

Lee H. Strominger's system on non-Kähler hermitian manifolds. [Internet] [Doctoral dissertation]. University of Oxford; 2011. [cited 2020 Oct 25]. Available from: http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572657.

Council of Science Editors:

Lee H. Strominger's system on non-Kähler hermitian manifolds. [Doctoral Dissertation]. University of Oxford; 2011. Available from: http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572657


Oregon State University

14. Cook, Samuel A. Killing spinors and affine symmetry tensors in Godel's Universe.

Degree: PhD, Mathematics, 2009, Oregon State University

 The existence of generalized symmetries of Maxwell's equations in G¨odel's Universe is investigated. It is shown that their existence is in turn tied to the… (more)

Subjects/Keywords: Differential geometry; Symmetry (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cook, S. A. (2009). Killing spinors and affine symmetry tensors in Godel's Universe. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/11927

Chicago Manual of Style (16th Edition):

Cook, Samuel A. “Killing spinors and affine symmetry tensors in Godel's Universe.” 2009. Doctoral Dissertation, Oregon State University. Accessed October 25, 2020. http://hdl.handle.net/1957/11927.

MLA Handbook (7th Edition):

Cook, Samuel A. “Killing spinors and affine symmetry tensors in Godel's Universe.” 2009. Web. 25 Oct 2020.

Vancouver:

Cook SA. Killing spinors and affine symmetry tensors in Godel's Universe. [Internet] [Doctoral dissertation]. Oregon State University; 2009. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/1957/11927.

Council of Science Editors:

Cook SA. Killing spinors and affine symmetry tensors in Godel's Universe. [Doctoral Dissertation]. Oregon State University; 2009. Available from: http://hdl.handle.net/1957/11927


Oregon State University

15. Wirshup, Arthur D. Geometrical aspects of certain first order differential equations.

Degree: MS, Mathematics, 1951, Oregon State University

Subjects/Keywords: Geometry; Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wirshup, A. D. (1951). Geometrical aspects of certain first order differential equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/52861

Chicago Manual of Style (16th Edition):

Wirshup, Arthur D. “Geometrical aspects of certain first order differential equations.” 1951. Masters Thesis, Oregon State University. Accessed October 25, 2020. http://hdl.handle.net/1957/52861.

MLA Handbook (7th Edition):

Wirshup, Arthur D. “Geometrical aspects of certain first order differential equations.” 1951. Web. 25 Oct 2020.

Vancouver:

Wirshup AD. Geometrical aspects of certain first order differential equations. [Internet] [Masters thesis]. Oregon State University; 1951. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/1957/52861.

Council of Science Editors:

Wirshup AD. Geometrical aspects of certain first order differential equations. [Masters Thesis]. Oregon State University; 1951. Available from: http://hdl.handle.net/1957/52861

16. Micheli, Mario. The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature.

Degree: PhD, Applied Mathematics, 2008, Brown University

 The study of shapes and their similarities is central in computer vision, in that it allows to recognize and classify objects from their representation. One… (more)

Subjects/Keywords: Differential Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Micheli, M. (2008). The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature. (Doctoral Dissertation). Brown University. Retrieved from https://repository.library.brown.edu/studio/item/bdr:4/

Chicago Manual of Style (16th Edition):

Micheli, Mario. “The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature.” 2008. Doctoral Dissertation, Brown University. Accessed October 25, 2020. https://repository.library.brown.edu/studio/item/bdr:4/.

MLA Handbook (7th Edition):

Micheli, Mario. “The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature.” 2008. Web. 25 Oct 2020.

Vancouver:

Micheli M. The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature. [Internet] [Doctoral dissertation]. Brown University; 2008. [cited 2020 Oct 25]. Available from: https://repository.library.brown.edu/studio/item/bdr:4/.

Council of Science Editors:

Micheli M. The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature. [Doctoral Dissertation]. Brown University; 2008. Available from: https://repository.library.brown.edu/studio/item/bdr:4/


Oregon State University

17. Zelver, Jack Solomon. The integro-geometric tangent measures of euclidean n-space.

Degree: PhD, Mathematics, 1969, Oregon State University

 A technique of differentiation with respect to the distance to the boundary of an outer parallel-body is applied to known measures of sets of p-dimensional… (more)

Subjects/Keywords: Geometry; Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zelver, J. S. (1969). The integro-geometric tangent measures of euclidean n-space. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17117

Chicago Manual of Style (16th Edition):

Zelver, Jack Solomon. “The integro-geometric tangent measures of euclidean n-space.” 1969. Doctoral Dissertation, Oregon State University. Accessed October 25, 2020. http://hdl.handle.net/1957/17117.

MLA Handbook (7th Edition):

Zelver, Jack Solomon. “The integro-geometric tangent measures of euclidean n-space.” 1969. Web. 25 Oct 2020.

Vancouver:

Zelver JS. The integro-geometric tangent measures of euclidean n-space. [Internet] [Doctoral dissertation]. Oregon State University; 1969. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/1957/17117.

Council of Science Editors:

Zelver JS. The integro-geometric tangent measures of euclidean n-space. [Doctoral Dissertation]. Oregon State University; 1969. Available from: http://hdl.handle.net/1957/17117


Columbia University

18. Choi, Beomjun. Non-compact geometric flows: long time existence and type II singularities.

Degree: 2019, Columbia University

 In this work, we study how solutions of certain non-compact geometric flows of fast-diffusion type interact with their asymptotic geometries at infinity. In the first… (more)

Subjects/Keywords: Mathematics; Geometry, Differential; Singularities (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choi, B. (2019). Non-compact geometric flows: long time existence and type II singularities. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/d8-3h99-ey23

Chicago Manual of Style (16th Edition):

Choi, Beomjun. “Non-compact geometric flows: long time existence and type II singularities.” 2019. Doctoral Dissertation, Columbia University. Accessed October 25, 2020. https://doi.org/10.7916/d8-3h99-ey23.

MLA Handbook (7th Edition):

Choi, Beomjun. “Non-compact geometric flows: long time existence and type II singularities.” 2019. Web. 25 Oct 2020.

Vancouver:

Choi B. Non-compact geometric flows: long time existence and type II singularities. [Internet] [Doctoral dissertation]. Columbia University; 2019. [cited 2020 Oct 25]. Available from: https://doi.org/10.7916/d8-3h99-ey23.

Council of Science Editors:

Choi B. Non-compact geometric flows: long time existence and type II singularities. [Doctoral Dissertation]. Columbia University; 2019. Available from: https://doi.org/10.7916/d8-3h99-ey23

19. Sarfaraz, Wakil. The geometric influence of domain-size on the dynamics of reaction-diffusion systems with applications in pattern formation.

Degree: PhD, 2018, University of Sussex

 This thesis presents through a number of applications a self-contained and robust methodology for exploring mathematical models of pattern formation from the perspective of a… (more)

Subjects/Keywords: 510; QA0641 Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sarfaraz, W. (2018). The geometric influence of domain-size on the dynamics of reaction-diffusion systems with applications in pattern formation. (Doctoral Dissertation). University of Sussex. Retrieved from http://sro.sussex.ac.uk/id/eprint/79452/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759577

Chicago Manual of Style (16th Edition):

Sarfaraz, Wakil. “The geometric influence of domain-size on the dynamics of reaction-diffusion systems with applications in pattern formation.” 2018. Doctoral Dissertation, University of Sussex. Accessed October 25, 2020. http://sro.sussex.ac.uk/id/eprint/79452/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759577.

MLA Handbook (7th Edition):

Sarfaraz, Wakil. “The geometric influence of domain-size on the dynamics of reaction-diffusion systems with applications in pattern formation.” 2018. Web. 25 Oct 2020.

Vancouver:

Sarfaraz W. The geometric influence of domain-size on the dynamics of reaction-diffusion systems with applications in pattern formation. [Internet] [Doctoral dissertation]. University of Sussex; 2018. [cited 2020 Oct 25]. Available from: http://sro.sussex.ac.uk/id/eprint/79452/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759577.

Council of Science Editors:

Sarfaraz W. The geometric influence of domain-size on the dynamics of reaction-diffusion systems with applications in pattern formation. [Doctoral Dissertation]. University of Sussex; 2018. Available from: http://sro.sussex.ac.uk/id/eprint/79452/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.759577


Michigan State University

20. Randolph, David F. Metric differential geometry on a conoid.

Degree: MA, 1933, Michigan State University

Subjects/Keywords: Geometry; Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Randolph, D. F. (1933). Metric differential geometry on a conoid. (Masters Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:13376

Chicago Manual of Style (16th Edition):

Randolph, David F. “Metric differential geometry on a conoid.” 1933. Masters Thesis, Michigan State University. Accessed October 25, 2020. http://etd.lib.msu.edu/islandora/object/etd:13376.

MLA Handbook (7th Edition):

Randolph, David F. “Metric differential geometry on a conoid.” 1933. Web. 25 Oct 2020.

Vancouver:

Randolph DF. Metric differential geometry on a conoid. [Internet] [Masters thesis]. Michigan State University; 1933. [cited 2020 Oct 25]. Available from: http://etd.lib.msu.edu/islandora/object/etd:13376.

Council of Science Editors:

Randolph DF. Metric differential geometry on a conoid. [Masters Thesis]. Michigan State University; 1933. Available from: http://etd.lib.msu.edu/islandora/object/etd:13376


Michigan State University

21. Heyda, James Francis. The differential geometry of general surface in S₄.

Degree: MA, 1937, Michigan State University

Subjects/Keywords: Geometry; Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heyda, J. F. (1937). The differential geometry of general surface in S₄. (Masters Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:11239

Chicago Manual of Style (16th Edition):

Heyda, James Francis. “The differential geometry of general surface in S₄.” 1937. Masters Thesis, Michigan State University. Accessed October 25, 2020. http://etd.lib.msu.edu/islandora/object/etd:11239.

MLA Handbook (7th Edition):

Heyda, James Francis. “The differential geometry of general surface in S₄.” 1937. Web. 25 Oct 2020.

Vancouver:

Heyda JF. The differential geometry of general surface in S₄. [Internet] [Masters thesis]. Michigan State University; 1937. [cited 2020 Oct 25]. Available from: http://etd.lib.msu.edu/islandora/object/etd:11239.

Council of Science Editors:

Heyda JF. The differential geometry of general surface in S₄. [Masters Thesis]. Michigan State University; 1937. Available from: http://etd.lib.msu.edu/islandora/object/etd:11239


Montana State University

22. Perry, Daniel George. Homotopy groups of contact 3-manifolds.

Degree: PhD, College of Letters & Science, 2019, Montana State University

 A contact 3-manifold (M, xi) is an three-dimensional manifold endowed with a completely nonintegrable distribution. In studying such a space, standard homotopy groups, which are… (more)

Subjects/Keywords: Topology.; Geometry, Differential.; Group theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perry, D. G. (2019). Homotopy groups of contact 3-manifolds. (Doctoral Dissertation). Montana State University. Retrieved from https://scholarworks.montana.edu/xmlui/handle/1/15621

Chicago Manual of Style (16th Edition):

Perry, Daniel George. “Homotopy groups of contact 3-manifolds.” 2019. Doctoral Dissertation, Montana State University. Accessed October 25, 2020. https://scholarworks.montana.edu/xmlui/handle/1/15621.

MLA Handbook (7th Edition):

Perry, Daniel George. “Homotopy groups of contact 3-manifolds.” 2019. Web. 25 Oct 2020.

Vancouver:

Perry DG. Homotopy groups of contact 3-manifolds. [Internet] [Doctoral dissertation]. Montana State University; 2019. [cited 2020 Oct 25]. Available from: https://scholarworks.montana.edu/xmlui/handle/1/15621.

Council of Science Editors:

Perry DG. Homotopy groups of contact 3-manifolds. [Doctoral Dissertation]. Montana State University; 2019. Available from: https://scholarworks.montana.edu/xmlui/handle/1/15621


Rice University

23. Huang, Andy C. Handle crushing harmonic maps between surfaces.

Degree: PhD, Natural Sciences, 2016, Rice University

 In this thesis, we construct polynomial growth harmonic maps from once-punctured Riemann surfaces of any finite genus to any even-sided, regular, ideal polygon in the… (more)

Subjects/Keywords: Harmonic maps; Differential geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huang, A. C. (2016). Handle crushing harmonic maps between surfaces. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/96251

Chicago Manual of Style (16th Edition):

Huang, Andy C. “Handle crushing harmonic maps between surfaces.” 2016. Doctoral Dissertation, Rice University. Accessed October 25, 2020. http://hdl.handle.net/1911/96251.

MLA Handbook (7th Edition):

Huang, Andy C. “Handle crushing harmonic maps between surfaces.” 2016. Web. 25 Oct 2020.

Vancouver:

Huang AC. Handle crushing harmonic maps between surfaces. [Internet] [Doctoral dissertation]. Rice University; 2016. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/1911/96251.

Council of Science Editors:

Huang AC. Handle crushing harmonic maps between surfaces. [Doctoral Dissertation]. Rice University; 2016. Available from: http://hdl.handle.net/1911/96251


University of Arizona

24. Shearman, Toby. Geometry and Mechanics of Leaves and the Role of Weakly-Irregular Isometric Immersions .

Degree: 2017, University of Arizona

 Thin elastic objects, including leaves, flowers, plastic sheets and sails, are ubiquitous in nature and their technological applications are growing with the introduction of hydrogel… (more)

Subjects/Keywords: Differential Geometry; Materials; Nonlinear Elasticity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shearman, T. (2017). Geometry and Mechanics of Leaves and the Role of Weakly-Irregular Isometric Immersions . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/625653

Chicago Manual of Style (16th Edition):

Shearman, Toby. “Geometry and Mechanics of Leaves and the Role of Weakly-Irregular Isometric Immersions .” 2017. Doctoral Dissertation, University of Arizona. Accessed October 25, 2020. http://hdl.handle.net/10150/625653.

MLA Handbook (7th Edition):

Shearman, Toby. “Geometry and Mechanics of Leaves and the Role of Weakly-Irregular Isometric Immersions .” 2017. Web. 25 Oct 2020.

Vancouver:

Shearman T. Geometry and Mechanics of Leaves and the Role of Weakly-Irregular Isometric Immersions . [Internet] [Doctoral dissertation]. University of Arizona; 2017. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10150/625653.

Council of Science Editors:

Shearman T. Geometry and Mechanics of Leaves and the Role of Weakly-Irregular Isometric Immersions . [Doctoral Dissertation]. University of Arizona; 2017. Available from: http://hdl.handle.net/10150/625653


Duke University

25. Cox, Graham. Scalar curvature rigidity theorems for the upper hemisphere .

Degree: 2011, Duke University

  In this dissertation we study scalar curvature rigidity phenomena for the upper hemisphere, and subsets thereof. In particular, we are interested in Min-Oo's conjecture… (more)

Subjects/Keywords: Mathematics; differential geometry; geometric analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cox, G. (2011). Scalar curvature rigidity theorems for the upper hemisphere . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/5699

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cox, Graham. “Scalar curvature rigidity theorems for the upper hemisphere .” 2011. Thesis, Duke University. Accessed October 25, 2020. http://hdl.handle.net/10161/5699.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cox, Graham. “Scalar curvature rigidity theorems for the upper hemisphere .” 2011. Web. 25 Oct 2020.

Vancouver:

Cox G. Scalar curvature rigidity theorems for the upper hemisphere . [Internet] [Thesis]. Duke University; 2011. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10161/5699.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cox G. Scalar curvature rigidity theorems for the upper hemisphere . [Thesis]. Duke University; 2011. Available from: http://hdl.handle.net/10161/5699

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Duke University

26. Gunderson, Ryan. Riemannian 3-Manifolds with a Flatness Condition .

Degree: 2019, Duke University

  The fundamental point-wise invariant of a Riemannian manifold (M, g) is the Riemann curvature tensor. Many special types of Riemannian manifolds can be characterized… (more)

Subjects/Keywords: Mathematics; Differential Deometry; Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gunderson, R. (2019). Riemannian 3-Manifolds with a Flatness Condition . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/18828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gunderson, Ryan. “Riemannian 3-Manifolds with a Flatness Condition .” 2019. Thesis, Duke University. Accessed October 25, 2020. http://hdl.handle.net/10161/18828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gunderson, Ryan. “Riemannian 3-Manifolds with a Flatness Condition .” 2019. Web. 25 Oct 2020.

Vancouver:

Gunderson R. Riemannian 3-Manifolds with a Flatness Condition . [Internet] [Thesis]. Duke University; 2019. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10161/18828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gunderson R. Riemannian 3-Manifolds with a Flatness Condition . [Thesis]. Duke University; 2019. Available from: http://hdl.handle.net/10161/18828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

27. Pitucco, Anthony Peter. Differential-geometric aspects of adapted contact structures.

Degree: 1991, University of Arizona

 Let M denote a 2n-dimensional globally defined orientable manifold from which is constructed the product space N = M x R. It is assumed that… (more)

Subjects/Keywords: Geometry; Differential.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pitucco, A. P. (1991). Differential-geometric aspects of adapted contact structures. (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/185532

Chicago Manual of Style (16th Edition):

Pitucco, Anthony Peter. “Differential-geometric aspects of adapted contact structures. ” 1991. Doctoral Dissertation, University of Arizona. Accessed October 25, 2020. http://hdl.handle.net/10150/185532.

MLA Handbook (7th Edition):

Pitucco, Anthony Peter. “Differential-geometric aspects of adapted contact structures. ” 1991. Web. 25 Oct 2020.

Vancouver:

Pitucco AP. Differential-geometric aspects of adapted contact structures. [Internet] [Doctoral dissertation]. University of Arizona; 1991. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10150/185532.

Council of Science Editors:

Pitucco AP. Differential-geometric aspects of adapted contact structures. [Doctoral Dissertation]. University of Arizona; 1991. Available from: http://hdl.handle.net/10150/185532


University of Hong Kong

28. 黃炎明. Extension theorem and its application to the Frenet formulas ofcurves.

Degree: 1966, University of Hong Kong

Subjects/Keywords: Geometry; Differential.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

黃炎明. (1966). Extension theorem and its application to the Frenet formulas ofcurves. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/37331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

黃炎明. “Extension theorem and its application to the Frenet formulas ofcurves.” 1966. Thesis, University of Hong Kong. Accessed October 25, 2020. http://hdl.handle.net/10722/37331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

黃炎明. “Extension theorem and its application to the Frenet formulas ofcurves.” 1966. Web. 25 Oct 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

黃炎明. Extension theorem and its application to the Frenet formulas ofcurves. [Internet] [Thesis]. University of Hong Kong; 1966. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10722/37331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

黃炎明. Extension theorem and its application to the Frenet formulas ofcurves. [Thesis]. University of Hong Kong; 1966. Available from: http://hdl.handle.net/10722/37331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


Rutgers University

29. Mau, Sikimeti Luisa. The multiplihedra in Lagrangian Floer theory.

Degree: PhD, Mathematics, 2008, Rutgers University

We apply the quilted Floer theory of Wehrheim and Woodward to families of quilted surfaces parametrized by the Stasheff multiplihedra. Our approach is modeled on… (more)

Subjects/Keywords: Geometry; Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mau, S. L. (2008). The multiplihedra in Lagrangian Floer theory. (Doctoral Dissertation). Rutgers University. Retrieved from http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17526

Chicago Manual of Style (16th Edition):

Mau, Sikimeti Luisa. “The multiplihedra in Lagrangian Floer theory.” 2008. Doctoral Dissertation, Rutgers University. Accessed October 25, 2020. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17526.

MLA Handbook (7th Edition):

Mau, Sikimeti Luisa. “The multiplihedra in Lagrangian Floer theory.” 2008. Web. 25 Oct 2020.

Vancouver:

Mau SL. The multiplihedra in Lagrangian Floer theory. [Internet] [Doctoral dissertation]. Rutgers University; 2008. [cited 2020 Oct 25]. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17526.

Council of Science Editors:

Mau SL. The multiplihedra in Lagrangian Floer theory. [Doctoral Dissertation]. Rutgers University; 2008. Available from: http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17526


University of British Columbia

30. Foster, David Merriall. A general Cartan theory.

Degree: PhD, Mathematics, 1969, University of British Columbia

 Recent results of Jacobson and Barnes indicate that Lie, Jordan and alternative algebras may have a common Cartan theory. In this thesis, we show this… (more)

Subjects/Keywords: Geometry; Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Foster, D. M. (1969). A general Cartan theory. (Doctoral Dissertation). University of British Columbia. Retrieved from http://hdl.handle.net/2429/35956

Chicago Manual of Style (16th Edition):

Foster, David Merriall. “A general Cartan theory.” 1969. Doctoral Dissertation, University of British Columbia. Accessed October 25, 2020. http://hdl.handle.net/2429/35956.

MLA Handbook (7th Edition):

Foster, David Merriall. “A general Cartan theory.” 1969. Web. 25 Oct 2020.

Vancouver:

Foster DM. A general Cartan theory. [Internet] [Doctoral dissertation]. University of British Columbia; 1969. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/2429/35956.

Council of Science Editors:

Foster DM. A general Cartan theory. [Doctoral Dissertation]. University of British Columbia; 1969. Available from: http://hdl.handle.net/2429/35956

[1] [2] [3] [4] [5] … [17]

.