Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Derived algebraic geometry). Showing records 1 – 27 of 27 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of California – Berkeley

1. Halpern-Leistner, Daniel Scott. Geometric invariant theory and derived categories of coherent sheaves.

Degree: Mathematics, 2013, University of California – Berkeley

 Given a quasiprojective algebraic variety with a reductive group action, we describe a relationship between its equivariant derived category and the derived category of its… (more)

Subjects/Keywords: Mathematics; algebraic geometry; algebraic stacks; derived categories

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Halpern-Leistner, D. S. (2013). Geometric invariant theory and derived categories of coherent sheaves. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/3z0991wj

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Halpern-Leistner, Daniel Scott. “Geometric invariant theory and derived categories of coherent sheaves.” 2013. Thesis, University of California – Berkeley. Accessed April 13, 2021. http://www.escholarship.org/uc/item/3z0991wj.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Halpern-Leistner, Daniel Scott. “Geometric invariant theory and derived categories of coherent sheaves.” 2013. Web. 13 Apr 2021.

Vancouver:

Halpern-Leistner DS. Geometric invariant theory and derived categories of coherent sheaves. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2021 Apr 13]. Available from: http://www.escholarship.org/uc/item/3z0991wj.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Halpern-Leistner DS. Geometric invariant theory and derived categories of coherent sheaves. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/3z0991wj

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

2. Pandit, Pranav. Moduli Problems in Derived Noncommutative Geometry.

Degree: 2011, University of Pennsylvania

 We study moduli spaces of boundary conditions in 2D topological field theories. To a compactly generated linear infinity-category X, we associate a moduli functor M_X… (more)

Subjects/Keywords: Derived Algebraic Geometry; Higher Categories; Derived Stacks; Topological Field Theories; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pandit, P. (2011). Moduli Problems in Derived Noncommutative Geometry. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/310

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pandit, Pranav. “Moduli Problems in Derived Noncommutative Geometry.” 2011. Thesis, University of Pennsylvania. Accessed April 13, 2021. https://repository.upenn.edu/edissertations/310.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pandit, Pranav. “Moduli Problems in Derived Noncommutative Geometry.” 2011. Web. 13 Apr 2021.

Vancouver:

Pandit P. Moduli Problems in Derived Noncommutative Geometry. [Internet] [Thesis]. University of Pennsylvania; 2011. [cited 2021 Apr 13]. Available from: https://repository.upenn.edu/edissertations/310.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pandit P. Moduli Problems in Derived Noncommutative Geometry. [Thesis]. University of Pennsylvania; 2011. Available from: https://repository.upenn.edu/edissertations/310

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

3. Riedel, Rustam Darius. Free loop spaces, Koszul duality, and shifted Poisson geometry.

Degree: PhD, Mathematics, 2020, University of Texas – Austin

 This thesis describes [the] action on the Koszul dual ∞-category in terms of the shifted Poisson structure on T [superscript *] X[2]: The main result… (more)

Subjects/Keywords: Derived algebraic geometry; Algebraic geometry; Poisson geometry; Free loop spaces; Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Riedel, R. D. (2020). Free loop spaces, Koszul duality, and shifted Poisson geometry. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/10023

Chicago Manual of Style (16th Edition):

Riedel, Rustam Darius. “Free loop spaces, Koszul duality, and shifted Poisson geometry.” 2020. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://dx.doi.org/10.26153/tsw/10023.

MLA Handbook (7th Edition):

Riedel, Rustam Darius. “Free loop spaces, Koszul duality, and shifted Poisson geometry.” 2020. Web. 13 Apr 2021.

Vancouver:

Riedel RD. Free loop spaces, Koszul duality, and shifted Poisson geometry. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2020. [cited 2021 Apr 13]. Available from: http://dx.doi.org/10.26153/tsw/10023.

Council of Science Editors:

Riedel RD. Free loop spaces, Koszul duality, and shifted Poisson geometry. [Doctoral Dissertation]. University of Texas – Austin; 2020. Available from: http://dx.doi.org/10.26153/tsw/10023


University of Utah

4. Martinez, Cristian. Some birational geometric aspects of moduli spaces of sheaves on surfaces via bridgeland wall-crossing.

Degree: PhD, Mathematics, 2015, University of Utah

 We study some birational geometric aspects of moduli spaces of semistable sheaves on surfaces. We observe that moduli spaces of semistable sheaves on a Del… (more)

Subjects/Keywords: Algebraic geometry; Birational geometry; Derived categories; Stability conditions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martinez, C. (2015). Some birational geometric aspects of moduli spaces of sheaves on surfaces via bridgeland wall-crossing. (Doctoral Dissertation). University of Utah. Retrieved from http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3761/rec/2217

Chicago Manual of Style (16th Edition):

Martinez, Cristian. “Some birational geometric aspects of moduli spaces of sheaves on surfaces via bridgeland wall-crossing.” 2015. Doctoral Dissertation, University of Utah. Accessed April 13, 2021. http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3761/rec/2217.

MLA Handbook (7th Edition):

Martinez, Cristian. “Some birational geometric aspects of moduli spaces of sheaves on surfaces via bridgeland wall-crossing.” 2015. Web. 13 Apr 2021.

Vancouver:

Martinez C. Some birational geometric aspects of moduli spaces of sheaves on surfaces via bridgeland wall-crossing. [Internet] [Doctoral dissertation]. University of Utah; 2015. [cited 2021 Apr 13]. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3761/rec/2217.

Council of Science Editors:

Martinez C. Some birational geometric aspects of moduli spaces of sheaves on surfaces via bridgeland wall-crossing. [Doctoral Dissertation]. University of Utah; 2015. Available from: http://content.lib.utah.edu/cdm/singleitem/collection/etd3/id/3761/rec/2217


University of California – Berkeley

5. Chen, Harrison I-Yuan. A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology.

Degree: Mathematics, 2018, University of California – Berkeley

 Motivated by a theorem in the K-theoretic setting relating the localization of K0(X/T) over a closed point z ∈ Spec(K0(BT)) to the Borel-Moore homology of… (more)

Subjects/Keywords: Mathematics; cyclic homology; derived algebraic geometry; equivariant localization; loop spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, H. I. (2018). A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/05m960s2

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Harrison I-Yuan. “A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology.” 2018. Thesis, University of California – Berkeley. Accessed April 13, 2021. http://www.escholarship.org/uc/item/05m960s2.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Harrison I-Yuan. “A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology.” 2018. Web. 13 Apr 2021.

Vancouver:

Chen HI. A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology. [Internet] [Thesis]. University of California – Berkeley; 2018. [cited 2021 Apr 13]. Available from: http://www.escholarship.org/uc/item/05m960s2.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen HI. A Localization Theorem for Derived Loop Spaces and Periodic Cyclic Homology. [Thesis]. University of California – Berkeley; 2018. Available from: http://www.escholarship.org/uc/item/05m960s2

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Columbia University

6. Potashnik, Natasha. Derived Categories of Moduli Spaces of Semistable Pairs over Curves.

Degree: 2016, Columbia University

 The context of this thesis is derived categories in algebraic geometry and geo- metric quotients. Specifically, we prove the embedding of the derived category of… (more)

Subjects/Keywords: Moduli theory; Mathematics; Derived categories (Mathematics); Geometry, Algebraic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Potashnik, N. (2016). Derived Categories of Moduli Spaces of Semistable Pairs over Curves. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8H99542

Chicago Manual of Style (16th Edition):

Potashnik, Natasha. “Derived Categories of Moduli Spaces of Semistable Pairs over Curves.” 2016. Doctoral Dissertation, Columbia University. Accessed April 13, 2021. https://doi.org/10.7916/D8H99542.

MLA Handbook (7th Edition):

Potashnik, Natasha. “Derived Categories of Moduli Spaces of Semistable Pairs over Curves.” 2016. Web. 13 Apr 2021.

Vancouver:

Potashnik N. Derived Categories of Moduli Spaces of Semistable Pairs over Curves. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2021 Apr 13]. Available from: https://doi.org/10.7916/D8H99542.

Council of Science Editors:

Potashnik N. Derived Categories of Moduli Spaces of Semistable Pairs over Curves. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8H99542


University of Oxford

7. Calabrese, John. In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants.

Degree: PhD, 2012, University of Oxford

 This thesis contains two main results. The first is a comparison formula for the Donaldson-Thomas invariants of two (complex, smooth and projective) Calabi-Yau threefolds related… (more)

Subjects/Keywords: 514.224; Algebraic geometry; Mathematics; derived categories; Donaldson-Thomas invariants; curve counting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Calabrese, J. (2012). In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:b96b2bdd-8c79-4910-8795-f147bc8b2d16 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580996

Chicago Manual of Style (16th Edition):

Calabrese, John. “In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants.” 2012. Doctoral Dissertation, University of Oxford. Accessed April 13, 2021. http://ora.ox.ac.uk/objects/uuid:b96b2bdd-8c79-4910-8795-f147bc8b2d16 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580996.

MLA Handbook (7th Edition):

Calabrese, John. “In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants.” 2012. Web. 13 Apr 2021.

Vancouver:

Calabrese J. In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2021 Apr 13]. Available from: http://ora.ox.ac.uk/objects/uuid:b96b2bdd-8c79-4910-8795-f147bc8b2d16 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580996.

Council of Science Editors:

Calabrese J. In the hall of the flop king : two applications of perverse coherent sheaves to Donaldson-Thomas invariants. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:b96b2bdd-8c79-4910-8795-f147bc8b2d16 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580996


University of Washington

8. Zsamboki, Pal. Toward the compactification of the stack of Lie(G)-forms using perfect complexes.

Degree: PhD, 2015, University of Washington

 To establish geometric properties of an algebraic stack, one can find a compactification. This method has been successfully employed to find irreducible components for example… (more)

Subjects/Keywords: derived algebraic geometry; moduli spaces; torsors; Mathematics; mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zsamboki, P. (2015). Toward the compactification of the stack of Lie(G)-forms using perfect complexes. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/34022

Chicago Manual of Style (16th Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Doctoral Dissertation, University of Washington. Accessed April 13, 2021. http://hdl.handle.net/1773/34022.

MLA Handbook (7th Edition):

Zsamboki, Pal. “Toward the compactification of the stack of Lie(G)-forms using perfect complexes.” 2015. Web. 13 Apr 2021.

Vancouver:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Internet] [Doctoral dissertation]. University of Washington; 2015. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1773/34022.

Council of Science Editors:

Zsamboki P. Toward the compactification of the stack of Lie(G)-forms using perfect complexes. [Doctoral Dissertation]. University of Washington; 2015. Available from: http://hdl.handle.net/1773/34022

9. Lim, Bronson. Equivariant Derived Categories Associated to a Sum of Potentials.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

 We construct a semi-orthogonal decomposition for the equivariant derived category of a hypersurface associated to the sum of two potentials. More specifically, if f,g are… (more)

Subjects/Keywords: Algebraic geometry; Derived categories

…CHAPTER I INTRODUCTION 1.1 Semi-orthogonal decompositions in algebraic geometry To a space X… …algebra and algebraic geometry and has proved to be a useful tool when applied to algebro… …field of characteristic zero. For an overview of triangulated categories in algebraic geometry… …Chapter Page 3.2. Equivariant geometry of X… …stack, we can associate the bounded derived category of coherent sheaves on the space, denoted… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lim, B. (2017). Equivariant Derived Categories Associated to a Sum of Potentials. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22628

Chicago Manual of Style (16th Edition):

Lim, Bronson. “Equivariant Derived Categories Associated to a Sum of Potentials.” 2017. Doctoral Dissertation, University of Oregon. Accessed April 13, 2021. http://hdl.handle.net/1794/22628.

MLA Handbook (7th Edition):

Lim, Bronson. “Equivariant Derived Categories Associated to a Sum of Potentials.” 2017. Web. 13 Apr 2021.

Vancouver:

Lim B. Equivariant Derived Categories Associated to a Sum of Potentials. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1794/22628.

Council of Science Editors:

Lim B. Equivariant Derived Categories Associated to a Sum of Potentials. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22628


Queens University

10. Brav, Christopher. Tilting objects in derived categories of equivariant sheaves .

Degree: Mathematics and Statistics, 2008, Queens University

 We construct classical tilting objects in derived categories of equivariant sheaves on quasi-projective varieties, which give equivalences with derived categories of modules over algebras. Our… (more)

Subjects/Keywords: Algebraic geometry ; derived categories

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brav, C. (2008). Tilting objects in derived categories of equivariant sheaves . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/1408

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brav, Christopher. “Tilting objects in derived categories of equivariant sheaves .” 2008. Thesis, Queens University. Accessed April 13, 2021. http://hdl.handle.net/1974/1408.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brav, Christopher. “Tilting objects in derived categories of equivariant sheaves .” 2008. Web. 13 Apr 2021.

Vancouver:

Brav C. Tilting objects in derived categories of equivariant sheaves . [Internet] [Thesis]. Queens University; 2008. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1974/1408.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brav C. Tilting objects in derived categories of equivariant sheaves . [Thesis]. Queens University; 2008. Available from: http://hdl.handle.net/1974/1408

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Bach, Samuel. Formes quadratiques décalées et déformations : Shifted quadratic forms and deformations.

Degree: Docteur es, Mathématiques et modélisation, 2017, Montpellier

La L-théorie classique d'un anneau commutatif est construite à partir des formes quadratiques sur cet anneau modulo une relation d'équivalence lagrangienne. Nous construisons la L-théorie… (more)

Subjects/Keywords: Géométrie algébrique dérivée; Quadratique; Clifford; Derived algebraic geometry; Quadratic; Clifford

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bach, S. (2017). Formes quadratiques décalées et déformations : Shifted quadratic forms and deformations. (Doctoral Dissertation). Montpellier. Retrieved from http://www.theses.fr/2017MONTS013

Chicago Manual of Style (16th Edition):

Bach, Samuel. “Formes quadratiques décalées et déformations : Shifted quadratic forms and deformations.” 2017. Doctoral Dissertation, Montpellier. Accessed April 13, 2021. http://www.theses.fr/2017MONTS013.

MLA Handbook (7th Edition):

Bach, Samuel. “Formes quadratiques décalées et déformations : Shifted quadratic forms and deformations.” 2017. Web. 13 Apr 2021.

Vancouver:

Bach S. Formes quadratiques décalées et déformations : Shifted quadratic forms and deformations. [Internet] [Doctoral dissertation]. Montpellier; 2017. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2017MONTS013.

Council of Science Editors:

Bach S. Formes quadratiques décalées et déformations : Shifted quadratic forms and deformations. [Doctoral Dissertation]. Montpellier; 2017. Available from: http://www.theses.fr/2017MONTS013


University of Bath

12. Prabhu-Naik, Nathan. Tilting bundles and toric Fano varieties.

Degree: PhD, 2015, University of Bath

 This thesis constructs tilting bundles obtained from full strong exceptional collections of line bundles on all smooth toric Fano fourfolds. The tilting bundles lead to… (more)

Subjects/Keywords: 516.3; algebraic geometry; derived categories; Calabi-Yau algebras; toric varieties; quiver representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prabhu-Naik, N. (2015). Tilting bundles and toric Fano varieties. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721

Chicago Manual of Style (16th Edition):

Prabhu-Naik, Nathan. “Tilting bundles and toric Fano varieties.” 2015. Doctoral Dissertation, University of Bath. Accessed April 13, 2021. https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721.

MLA Handbook (7th Edition):

Prabhu-Naik, Nathan. “Tilting bundles and toric Fano varieties.” 2015. Web. 13 Apr 2021.

Vancouver:

Prabhu-Naik N. Tilting bundles and toric Fano varieties. [Internet] [Doctoral dissertation]. University of Bath; 2015. [cited 2021 Apr 13]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721.

Council of Science Editors:

Prabhu-Naik N. Tilting bundles and toric Fano varieties. [Doctoral Dissertation]. University of Bath; 2015. Available from: https://researchportal.bath.ac.uk/en/studentthesis/tilting-bundles-and-toric-fano-varieties(4952e5e4-a02f-4b28-b49a-5e8b8cf3767c).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690721


The Ohio State University

13. Schmidt, Benjamin. Stability Conditions on Threefolds and Space Curves.

Degree: PhD, Mathematics, 2016, The Ohio State University

 This thesis investigates both constructions and applications of Bridgeland stability conditions on smooth complex projective varieties of dimension three. A conjectural construction of stability condition… (more)

Subjects/Keywords: Mathematics; Algebraic Geometry, Bridgeland Stability Conditions, Derived Categories, Threefolds, Hilbert Schemes of Curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schmidt, B. (2016). Stability Conditions on Threefolds and Space Curves. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1460542777

Chicago Manual of Style (16th Edition):

Schmidt, Benjamin. “Stability Conditions on Threefolds and Space Curves.” 2016. Doctoral Dissertation, The Ohio State University. Accessed April 13, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1460542777.

MLA Handbook (7th Edition):

Schmidt, Benjamin. “Stability Conditions on Threefolds and Space Curves.” 2016. Web. 13 Apr 2021.

Vancouver:

Schmidt B. Stability Conditions on Threefolds and Space Curves. [Internet] [Doctoral dissertation]. The Ohio State University; 2016. [cited 2021 Apr 13]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1460542777.

Council of Science Editors:

Schmidt B. Stability Conditions on Threefolds and Space Curves. [Doctoral Dissertation]. The Ohio State University; 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1460542777


University of Oxford

14. Lam, Yan Ting. Calabi-Yau categories and quivers with superpotential.

Degree: PhD, 2014, University of Oxford

 This thesis studies derived equivalences between total spaces of vector bundles and dg-quivers. A dg-quiver is a graded quiver whose path algebra is a dg-algebra.… (more)

Subjects/Keywords: 516.3; Algebraic geometry; Geometry; Representation Theory; Calabi-Yau Categories; Quivers with Superpotential; Derived Equivalences; Tilting; McKay Quivers; Koszul Functor

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, Y. T. (2014). Calabi-Yau categories and quivers with superpotential. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419

Chicago Manual of Style (16th Edition):

Lam, Yan Ting. “Calabi-Yau categories and quivers with superpotential.” 2014. Doctoral Dissertation, University of Oxford. Accessed April 13, 2021. http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419.

MLA Handbook (7th Edition):

Lam, Yan Ting. “Calabi-Yau categories and quivers with superpotential.” 2014. Web. 13 Apr 2021.

Vancouver:

Lam YT. Calabi-Yau categories and quivers with superpotential. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2021 Apr 13]. Available from: http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419.

Council of Science Editors:

Lam YT. Calabi-Yau categories and quivers with superpotential. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419

15. Melani, Valerio. Poisson and coisotropic structures in derived algebraic geometry : Structures de Poisson et coïsotropes en géométrie algébrique dérivée.

Degree: Docteur es, Mathématiques, 2016, Sorbonne Paris Cité; Università degli studi (Florence, Italie)

Dans cette thèse, on définit et on étudie les notions de structure de Poisson et coïsotrope sur un champ dérivé, dans le contexte de la… (more)

Subjects/Keywords: Géométrie algébrique dérivée; Algèbre supérieure; Théorie des catégories supérieures; Derived algebraic geometry; Higher algebra; Higher category theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Melani, V. (2016). Poisson and coisotropic structures in derived algebraic geometry : Structures de Poisson et coïsotropes en géométrie algébrique dérivée. (Doctoral Dissertation). Sorbonne Paris Cité; Università degli studi (Florence, Italie). Retrieved from http://www.theses.fr/2016USPCC299

Chicago Manual of Style (16th Edition):

Melani, Valerio. “Poisson and coisotropic structures in derived algebraic geometry : Structures de Poisson et coïsotropes en géométrie algébrique dérivée.” 2016. Doctoral Dissertation, Sorbonne Paris Cité; Università degli studi (Florence, Italie). Accessed April 13, 2021. http://www.theses.fr/2016USPCC299.

MLA Handbook (7th Edition):

Melani, Valerio. “Poisson and coisotropic structures in derived algebraic geometry : Structures de Poisson et coïsotropes en géométrie algébrique dérivée.” 2016. Web. 13 Apr 2021.

Vancouver:

Melani V. Poisson and coisotropic structures in derived algebraic geometry : Structures de Poisson et coïsotropes en géométrie algébrique dérivée. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; Università degli studi (Florence, Italie); 2016. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2016USPCC299.

Council of Science Editors:

Melani V. Poisson and coisotropic structures in derived algebraic geometry : Structures de Poisson et coïsotropes en géométrie algébrique dérivée. [Doctoral Dissertation]. Sorbonne Paris Cité; Università degli studi (Florence, Italie); 2016. Available from: http://www.theses.fr/2016USPCC299

16. Hennion, Benjamin. Formal loops spaces and tangent Lie algebras : Espace de lacets formels et algèbres de Lie tangentes.

Degree: Docteur es, Mathématiques et modélisation, 2015, Montpellier

L'espace des lacets lisses C(S1,M) associé à une variété symplectique M se voit doté d'une structure (quasi-)symplectique induite par celle de M.Nous traiterons dans cette… (more)

Subjects/Keywords: Lacets formels; Champs algébriques; Géométrie dérivée; Algèbres de Lie; Formal loops; Algebraic stacks; Derived geometry; Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hennion, B. (2015). Formal loops spaces and tangent Lie algebras : Espace de lacets formels et algèbres de Lie tangentes. (Doctoral Dissertation). Montpellier. Retrieved from http://www.theses.fr/2015MONTS160

Chicago Manual of Style (16th Edition):

Hennion, Benjamin. “Formal loops spaces and tangent Lie algebras : Espace de lacets formels et algèbres de Lie tangentes.” 2015. Doctoral Dissertation, Montpellier. Accessed April 13, 2021. http://www.theses.fr/2015MONTS160.

MLA Handbook (7th Edition):

Hennion, Benjamin. “Formal loops spaces and tangent Lie algebras : Espace de lacets formels et algèbres de Lie tangentes.” 2015. Web. 13 Apr 2021.

Vancouver:

Hennion B. Formal loops spaces and tangent Lie algebras : Espace de lacets formels et algèbres de Lie tangentes. [Internet] [Doctoral dissertation]. Montpellier; 2015. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2015MONTS160.

Council of Science Editors:

Hennion B. Formal loops spaces and tangent Lie algebras : Espace de lacets formels et algèbres de Lie tangentes. [Doctoral Dissertation]. Montpellier; 2015. Available from: http://www.theses.fr/2015MONTS160


University of Western Ontario

17. Yan, Youlong. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.

Degree: 2014, University of Western Ontario

 The derived category of coherent sheaves on a smooth projective variety is an important object of study in algebraic geometry. One important device relevant for… (more)

Subjects/Keywords: Derived category of coherent sheaves; tilting sheaf; Brauer group; Brauer-Severi schemes; arithmetic toric varieities; descent; Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yan, Y. (2014). Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/2312

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yan, Youlong. “Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.” 2014. Thesis, University of Western Ontario. Accessed April 13, 2021. https://ir.lib.uwo.ca/etd/2312.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yan, Youlong. “Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties.” 2014. Web. 13 Apr 2021.

Vancouver:

Yan Y. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. [Internet] [Thesis]. University of Western Ontario; 2014. [cited 2021 Apr 13]. Available from: https://ir.lib.uwo.ca/etd/2312.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yan Y. Tilting Sheaves on Brauer-Severi Schemes and Arithmetic Toric Varieties. [Thesis]. University of Western Ontario; 2014. Available from: https://ir.lib.uwo.ca/etd/2312

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Marangoni, Davide. On Derived de Rham cohomology : Sur la cohomologie de de Rham derivée.

Degree: Docteur es, Mathématiques Pures, 2020, Bordeaux; Università degli studi (Milan, Italie)

La cohomologie de de Rham dérivée a été introduite par Luc Illusie en 1972, suite à ses travaux sur le complexe cotangent. Cette théorie semble… (more)

Subjects/Keywords: Geometrie derivée; Geometrie algebrique derivée; Cohomologie de de Rham; De Rham Cohomology; Derived Geometry; Algebraic varieties over finite fields

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Marangoni, D. (2020). On Derived de Rham cohomology : Sur la cohomologie de de Rham derivée. (Doctoral Dissertation). Bordeaux; Università degli studi (Milan, Italie). Retrieved from http://www.theses.fr/2020BORD0095

Chicago Manual of Style (16th Edition):

Marangoni, Davide. “On Derived de Rham cohomology : Sur la cohomologie de de Rham derivée.” 2020. Doctoral Dissertation, Bordeaux; Università degli studi (Milan, Italie). Accessed April 13, 2021. http://www.theses.fr/2020BORD0095.

MLA Handbook (7th Edition):

Marangoni, Davide. “On Derived de Rham cohomology : Sur la cohomologie de de Rham derivée.” 2020. Web. 13 Apr 2021.

Vancouver:

Marangoni D. On Derived de Rham cohomology : Sur la cohomologie de de Rham derivée. [Internet] [Doctoral dissertation]. Bordeaux; Università degli studi (Milan, Italie); 2020. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2020BORD0095.

Council of Science Editors:

Marangoni D. On Derived de Rham cohomology : Sur la cohomologie de de Rham derivée. [Doctoral Dissertation]. Bordeaux; Università degli studi (Milan, Italie); 2020. Available from: http://www.theses.fr/2020BORD0095

19. Roy, Arya. Towards A Stability Condition on the Quintic Threefold .

Degree: 2010, Duke University

  In this thesis we try to construct a stability condition on the quintic threefold. We have not succeeded in proving the existence of such… (more)

Subjects/Keywords: Mathematics; Algebraic Geometry; Derived category; Stability Condition

…proved to be a powerful tool to analyse problems in algebraic geometry and topology. Recently… …x28;X) The bounded derived category of an abelian category X. θx The skyscraper… …patience in dealing with me and without his encouragement I would never have discovered derived… …wild idea I could think of and gently correcting the most basic mistakes in algebraic… …geometry! I would like to thank my parents and my sister for their lifelong support, encour… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roy, A. (2010). Towards A Stability Condition on the Quintic Threefold . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/2976

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roy, Arya. “Towards A Stability Condition on the Quintic Threefold .” 2010. Thesis, Duke University. Accessed April 13, 2021. http://hdl.handle.net/10161/2976.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roy, Arya. “Towards A Stability Condition on the Quintic Threefold .” 2010. Web. 13 Apr 2021.

Vancouver:

Roy A. Towards A Stability Condition on the Quintic Threefold . [Internet] [Thesis]. Duke University; 2010. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/10161/2976.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roy A. Towards A Stability Condition on the Quintic Threefold . [Thesis]. Duke University; 2010. Available from: http://hdl.handle.net/10161/2976

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Safronov, Pavel. Geometry of integrable hierarchies and their dispersionless limits.

Degree: PhD, Mathematics, 2014, University of Texas – Austin

 This thesis describes a geometric approach to integrable systems. In the first part we describe the geometry of Drinfeld – Sokolov integrable hierarchies including the corresponding… (more)

Subjects/Keywords: Algebraic geometry; Integrable systems; Derived geometry; Topological field theories

…that the underlying two-form ωX is closed. Working in derived algebraic geometry the tangent… …sides. 1.2 Derived symplectic geometry Let us recall the definition of the Hitchin… …paper is to understand what kind of geometry is behind these solutions and to prove the… …ordinary symplectic geometry, one can introduce the notion of isotropic and Lagrangian morphisms… …their derived intersection L1 ×X L2 carries a natural (n − 1)-shifted symplectic… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Safronov, P. (2014). Geometry of integrable hierarchies and their dispersionless limits. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/24818

Chicago Manual of Style (16th Edition):

Safronov, Pavel. “Geometry of integrable hierarchies and their dispersionless limits.” 2014. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://hdl.handle.net/2152/24818.

MLA Handbook (7th Edition):

Safronov, Pavel. “Geometry of integrable hierarchies and their dispersionless limits.” 2014. Web. 13 Apr 2021.

Vancouver:

Safronov P. Geometry of integrable hierarchies and their dispersionless limits. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2014. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2152/24818.

Council of Science Editors:

Safronov P. Geometry of integrable hierarchies and their dispersionless limits. [Doctoral Dissertation]. University of Texas – Austin; 2014. Available from: http://hdl.handle.net/2152/24818


Northeastern University

21. Zhao, Gufang. Derived category and cohomology of resolutions of singularities: examples from representation theory.

Degree: PhD, Department of Mathematics, 2014, Northeastern University

 In this thesis, we study examples of noncommutative crepant resolutions of determinantal varieties, noncommutative symplectic varieties, and elliptic genera. All of these examples are motivated… (more)

Subjects/Keywords: derived categories; cohomology rings; Chern numbers; Mathematics; Noncommutative algebras; Mathematical models; Rings (Algebra); Mathematical models; Arithmetical algebraic geometry; Mathematical models; Algebraic topology; Mathematical models; Homology theory; Mathematical models; Derived categories (Mathematics); Determinantal varieties; Mathematical models

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, G. (2014). Derived category and cohomology of resolutions of singularities: examples from representation theory. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/d20005066

Chicago Manual of Style (16th Edition):

Zhao, Gufang. “Derived category and cohomology of resolutions of singularities: examples from representation theory.” 2014. Doctoral Dissertation, Northeastern University. Accessed April 13, 2021. http://hdl.handle.net/2047/d20005066.

MLA Handbook (7th Edition):

Zhao, Gufang. “Derived category and cohomology of resolutions of singularities: examples from representation theory.” 2014. Web. 13 Apr 2021.

Vancouver:

Zhao G. Derived category and cohomology of resolutions of singularities: examples from representation theory. [Internet] [Doctoral dissertation]. Northeastern University; 2014. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2047/d20005066.

Council of Science Editors:

Zhao G. Derived category and cohomology of resolutions of singularities: examples from representation theory. [Doctoral Dissertation]. Northeastern University; 2014. Available from: http://hdl.handle.net/2047/d20005066

22. Honigs, Katrina. Derived Equivalent Varieties and their Zeta Functions.

Degree: Mathematics, 2015, University of California – Berkeley

 In order to shed light on Orlov’s conjecture that derived equivalent smooth, projective varieties have isomorphic Chow motives, we examine the zeta functions of derived(more)

Subjects/Keywords: Mathematics; derived algebraic geometry; Fourier-Mukai; zeta functions

…1 Chapter 0 Introduction The formalism of derived categories, and in particular the… …notion of the derived category of the abelian category of coherent sheaves on a variety, was… …setting for homological algebra. Recently, derived categories have emerged as important objects… …in a surprisingly manageable way. In particular, the bounded derived category of the… …abelian category of coherent sheaves on a variety X, abbreviated from here on to the “derived… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Honigs, K. (2015). Derived Equivalent Varieties and their Zeta Functions. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/34r6b94t

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Honigs, Katrina. “Derived Equivalent Varieties and their Zeta Functions.” 2015. Thesis, University of California – Berkeley. Accessed April 13, 2021. http://www.escholarship.org/uc/item/34r6b94t.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Honigs, Katrina. “Derived Equivalent Varieties and their Zeta Functions.” 2015. Web. 13 Apr 2021.

Vancouver:

Honigs K. Derived Equivalent Varieties and their Zeta Functions. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2021 Apr 13]. Available from: http://www.escholarship.org/uc/item/34r6b94t.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Honigs K. Derived Equivalent Varieties and their Zeta Functions. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/34r6b94t

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

23. Wallbridge, James. Higher Tannaka duality.

Degree: 2011, University of Adelaide

 In this thesis we prove a Tannaka duality theorem for (∞, 1)-categories. Classical Tannaka duality is a duality between certain groups and certain monoidal categories… (more)

Subjects/Keywords: Tannaka duality; (∞, 1) - category; stack; gerbe; derived algebraic geometry

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wallbridge, J. (2011). Higher Tannaka duality. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/69436

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wallbridge, James. “Higher Tannaka duality.” 2011. Thesis, University of Adelaide. Accessed April 13, 2021. http://hdl.handle.net/2440/69436.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wallbridge, James. “Higher Tannaka duality.” 2011. Web. 13 Apr 2021.

Vancouver:

Wallbridge J. Higher Tannaka duality. [Internet] [Thesis]. University of Adelaide; 2011. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2440/69436.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wallbridge J. Higher Tannaka duality. [Thesis]. University of Adelaide; 2011. Available from: http://hdl.handle.net/2440/69436

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

24. Lowrey, Parker Eastin. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.

Degree: PhD, Mathematics, 2010, University of Texas – Austin

 Understanding the action of an autoequivalence on a triangulated category is generally a very difficult problem. If one can find a stability condition for which… (more)

Subjects/Keywords: Category theory; Algebraic geometry; Derived categories; Moduli spaces; Autoequivalences; N-gons; Stability conditions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lowrey, P. E. (2010). Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-986

Chicago Manual of Style (16th Edition):

Lowrey, Parker Eastin. “Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.” 2010. Doctoral Dissertation, University of Texas – Austin. Accessed April 13, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-986.

MLA Handbook (7th Edition):

Lowrey, Parker Eastin. “Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories.” 2010. Web. 13 Apr 2021.

Vancouver:

Lowrey PE. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2010. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-986.

Council of Science Editors:

Lowrey PE. Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categories. [Doctoral Dissertation]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-986

25. Pippi, Massimo. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.

Degree: Docteur es, Mathématiques et Applications, 2020, Université Toulouse III – Paul Sabatier

Le but de cette thèse est d'étudier les dg-catégories de singularités Sing(X, s), associées à des couples (X, s), où X est un schéma et… (more)

Subjects/Keywords: Géométrie algébrique dérivée; Géométrie non-commutative; Cycles évanescents; Dg-catégories des singularités; Factorisations matricielles; Réalisations motivique et l-adique des dg-catégories; Derived algebraic geometry; Non-commutative geometry; Vanishing cycles; Dg categories of singularitie; Matrix factorizations; Motivic and`-adic realizationsof dg categories

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pippi, M. (2020). Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2020TOU30049

Chicago Manual of Style (16th Edition):

Pippi, Massimo. “Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.” 2020. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed April 13, 2021. http://www.theses.fr/2020TOU30049.

MLA Handbook (7th Edition):

Pippi, Massimo. “Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles.” 2020. Web. 13 Apr 2021.

Vancouver:

Pippi M. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2020. [cited 2021 Apr 13]. Available from: http://www.theses.fr/2020TOU30049.

Council of Science Editors:

Pippi M. Catégories des singularités, factorisations matricielles et cycles évanescents : Categories of singularities, matrix factorizations and vanishing cycles. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2020. Available from: http://www.theses.fr/2020TOU30049

26. Pham, Tuan D. On the Picard Varieties of Surfaces with Equivalent Derived Categories.

Degree: 2012, University of Illinois – Chicago

 It was shown recently by Popa and Schnell that the irregularities of two smooth projective varieties with equivalent bounded derived categories of coherent sheaves are… (more)

Subjects/Keywords: algebraic geometry; derived categories; Picard varieties; automorphism groups; Albanese varieties; Fourier-Mukai transforms

…SUMMARY The study of derived categories as invariants of algebraic varieties has… …algebraic varieties are preserved by derived equivalences. Only until recently, Popa and Schnell… …of derived categories as an invariant of algebraic varieties has not been investigated… …Conjecture, which is of great importance to birational geometry and string theory. By the work of… …preserved under derived equivalences. They also conjectured that the Picard varieties of derived… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pham, T. D. (2012). On the Picard Varieties of Surfaces with Equivalent Derived Categories. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/9623

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pham, Tuan D. “On the Picard Varieties of Surfaces with Equivalent Derived Categories.” 2012. Thesis, University of Illinois – Chicago. Accessed April 13, 2021. http://hdl.handle.net/10027/9623.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pham, Tuan D. “On the Picard Varieties of Surfaces with Equivalent Derived Categories.” 2012. Web. 13 Apr 2021.

Vancouver:

Pham TD. On the Picard Varieties of Surfaces with Equivalent Derived Categories. [Internet] [Thesis]. University of Illinois – Chicago; 2012. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/10027/9623.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pham TD. On the Picard Varieties of Surfaces with Equivalent Derived Categories. [Thesis]. University of Illinois – Chicago; 2012. Available from: http://hdl.handle.net/10027/9623

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

27. Feyzbakhsh, Soheyla. Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program.

Degree: PhD, 2018, University of Edinburgh

 In [Bri07], Bridgeland introduced the notion of stability conditions on the bounded derived category D(X) of coherent sheaves on an algebraic variety X. This topic… (more)

Subjects/Keywords: 516.3; Algebraic geometry; derived categories; Bridgeland stability conditions; Brill-Noether theory; K3 surfaces

…Bridgeland defined stability conditions on the bounded derived category D(X) of coherent… …sheaves on an algebraic variety X. This is a very important topic because of its applications in… …various subjects, including Donaldson-Thomas invariants [Tod14], Birational geometry… …derived category [BB17]. A Bridgeland stability condition is a pair σ = Z, A… …conditions on the bounded derived category D(X) enjoys some remarkable properties. First… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Feyzbakhsh, S. (2018). Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/31485

Chicago Manual of Style (16th Edition):

Feyzbakhsh, Soheyla. “Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program.” 2018. Doctoral Dissertation, University of Edinburgh. Accessed April 13, 2021. http://hdl.handle.net/1842/31485.

MLA Handbook (7th Edition):

Feyzbakhsh, Soheyla. “Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program.” 2018. Web. 13 Apr 2021.

Vancouver:

Feyzbakhsh S. Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program. [Internet] [Doctoral dissertation]. University of Edinburgh; 2018. [cited 2021 Apr 13]. Available from: http://hdl.handle.net/1842/31485.

Council of Science Editors:

Feyzbakhsh S. Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program. [Doctoral Dissertation]. University of Edinburgh; 2018. Available from: http://hdl.handle.net/1842/31485

.