Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Darboux transformation). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Arizona

1. Murphy, Dylan. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .

Degree: 2019, University of Arizona

 We develop a class of Darboux transformations called additions for Jacobi operators. We show that by conjugating by a reflection, an addition may be inverted… (more)

Subjects/Keywords: Darboux transformation; Integrable systems; Toda lattice

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Murphy, D. (2019). Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/636509

Chicago Manual of Style (16th Edition):

Murphy, Dylan. “Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .” 2019. Doctoral Dissertation, University of Arizona. Accessed May 08, 2021. http://hdl.handle.net/10150/636509.

MLA Handbook (7th Edition):

Murphy, Dylan. “Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .” 2019. Web. 08 May 2021.

Vancouver:

Murphy D. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . [Internet] [Doctoral dissertation]. University of Arizona; 2019. [cited 2021 May 08]. Available from: http://hdl.handle.net/10150/636509.

Council of Science Editors:

Murphy D. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . [Doctoral Dissertation]. University of Arizona; 2019. Available from: http://hdl.handle.net/10150/636509

2. Oliveira, Marcelo Silva. Extensões racionais do oscilador harmônico.

Degree: 2020, Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas

Trabalhamos com equação de Schrödinger unidimensional estacionária escalar. Usamos o método das transformações de Darboux para estudar Hamiltonianos isospectrais e design espectral. Aplicamos a teoria… (more)

Subjects/Keywords: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA; Transformação de Darboux; Mecânica quântica; Polinômios excepcionais de Hermite; Teoria da pertubação; Método variacional; Propagador; Darboux Transformation; Quantum mechanics; Exeptional Hermite polinomials; Perturbation theory; Variational methods; Propagator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oliveira, M. S. (2020). Extensões racionais do oscilador harmônico. (Masters Thesis). Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas. Retrieved from https://repositorio.ufjf.br/jspui/handle/ufjf/12066

Chicago Manual of Style (16th Edition):

Oliveira, Marcelo Silva. “Extensões racionais do oscilador harmônico.” 2020. Masters Thesis, Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas. Accessed May 08, 2021. https://repositorio.ufjf.br/jspui/handle/ufjf/12066.

MLA Handbook (7th Edition):

Oliveira, Marcelo Silva. “Extensões racionais do oscilador harmônico.” 2020. Web. 08 May 2021.

Vancouver:

Oliveira MS. Extensões racionais do oscilador harmônico. [Internet] [Masters thesis]. Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas; 2020. [cited 2021 May 08]. Available from: https://repositorio.ufjf.br/jspui/handle/ufjf/12066.

Council of Science Editors:

Oliveira MS. Extensões racionais do oscilador harmônico. [Masters Thesis]. Universidade Federal de Juiz de Fora (UFJF); Mestrado Acadêmico em Matemática; UFJF; Brasil; ICE – Instituto de Ciências Exatas; 2020. Available from: https://repositorio.ufjf.br/jspui/handle/ufjf/12066


University of Arkansas

3. Johnson, Aaron David. Topics in Gravitational Wave Physics.

Degree: PhD, 2020, University of Arkansas

  We begin with a brief introduction to gravitational waves. Next we look into the origin of the Chandrasekhar transformations between the different equations found… (more)

Subjects/Keywords: Christodoulou Memory; Darboux Transformation; EMRI; Extreme Mass Ratio Inspiral; Gravitational Waves; Nonlinear Memory; Algebra; Cosmology, Relativity, and Gravity; Instrumentation; Plasma and Beam Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, A. D. (2020). Topics in Gravitational Wave Physics. (Doctoral Dissertation). University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/3733

Chicago Manual of Style (16th Edition):

Johnson, Aaron David. “Topics in Gravitational Wave Physics.” 2020. Doctoral Dissertation, University of Arkansas. Accessed May 08, 2021. https://scholarworks.uark.edu/etd/3733.

MLA Handbook (7th Edition):

Johnson, Aaron David. “Topics in Gravitational Wave Physics.” 2020. Web. 08 May 2021.

Vancouver:

Johnson AD. Topics in Gravitational Wave Physics. [Internet] [Doctoral dissertation]. University of Arkansas; 2020. [cited 2021 May 08]. Available from: https://scholarworks.uark.edu/etd/3733.

Council of Science Editors:

Johnson AD. Topics in Gravitational Wave Physics. [Doctoral Dissertation]. University of Arkansas; 2020. Available from: https://scholarworks.uark.edu/etd/3733

4. Dubard, Philippe. Multi-rogue solutions to the focusing NLS equation : Solutions multi-rogue de l'équation NLS focalisante.

Degree: Docteur es, Mathématiques, 2010, Université de Bourgogne

L’étude des ondes scélérates est un sujet en plein essor principalement en océanographie mais également dans d’autres domaines. Dans cette thèse, je construis par transformation(more)

Subjects/Keywords: Ondes scélérates; Trois soeurs; Equation NLS; Equation KPI; Solutions rationnelles; Transformation de Darboux; No english keywords; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dubard, P. (2010). Multi-rogue solutions to the focusing NLS equation : Solutions multi-rogue de l'équation NLS focalisante. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2010DIJOS050

Chicago Manual of Style (16th Edition):

Dubard, Philippe. “Multi-rogue solutions to the focusing NLS equation : Solutions multi-rogue de l'équation NLS focalisante.” 2010. Doctoral Dissertation, Université de Bourgogne. Accessed May 08, 2021. http://www.theses.fr/2010DIJOS050.

MLA Handbook (7th Edition):

Dubard, Philippe. “Multi-rogue solutions to the focusing NLS equation : Solutions multi-rogue de l'équation NLS focalisante.” 2010. Web. 08 May 2021.

Vancouver:

Dubard P. Multi-rogue solutions to the focusing NLS equation : Solutions multi-rogue de l'équation NLS focalisante. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2010. [cited 2021 May 08]. Available from: http://www.theses.fr/2010DIJOS050.

Council of Science Editors:

Dubard P. Multi-rogue solutions to the focusing NLS equation : Solutions multi-rogue de l'équation NLS focalisante. [Doctoral Dissertation]. Université de Bourgogne; 2010. Available from: http://www.theses.fr/2010DIJOS050

.