Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Curvature Constraint). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Mazzieri, Lorenzo. Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry.

Degree: Docteur es, Mathématiques, 2008, Université Paris-Est

Ces deux dernières décennies, les techniques de somme connexe essentiellement basées sur des outils d'analyse ont permis de faire des progrès importants dans la compréhension… (more)

Subjects/Keywords: Sommes connexes; Courbure scalaire; Connected sum; Scalar curvature; Yamabe equation; Einstein constraint equations; Conformal geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mazzieri, L. (2008). Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2008PEST0003

Chicago Manual of Style (16th Edition):

Mazzieri, Lorenzo. “Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry.” 2008. Doctoral Dissertation, Université Paris-Est. Accessed January 19, 2020. http://www.theses.fr/2008PEST0003.

MLA Handbook (7th Edition):

Mazzieri, Lorenzo. “Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry.” 2008. Web. 19 Jan 2020.

Vancouver:

Mazzieri L. Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry. [Internet] [Doctoral dissertation]. Université Paris-Est; 2008. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2008PEST0003.

Council of Science Editors:

Mazzieri L. Sommes connexes généralisées pour des problèmes issus de la géométrie : Generalized connected sums for problems issued from the geometry. [Doctoral Dissertation]. Université Paris-Est; 2008. Available from: http://www.theses.fr/2008PEST0003


NSYSU

2. Chu, Hung-Jen. Variational Approach to Pursuit-Evasion Game with Curvature Constraint.

Degree: PhD, Electrical Engineering, 2000, NSYSU

 In this thesis, a pursuit-evasion game, in which the pursuer moves with simple motion whereas the evader moves at a fixed speed but with a… (more)

Subjects/Keywords: Pursuit-Evasion Game; Variational Approach; Curvature Constraint

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chu, H. (2000). Variational Approach to Pursuit-Evasion Game with Curvature Constraint. (Doctoral Dissertation). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612100-150130

Chicago Manual of Style (16th Edition):

Chu, Hung-Jen. “Variational Approach to Pursuit-Evasion Game with Curvature Constraint.” 2000. Doctoral Dissertation, NSYSU. Accessed January 19, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612100-150130.

MLA Handbook (7th Edition):

Chu, Hung-Jen. “Variational Approach to Pursuit-Evasion Game with Curvature Constraint.” 2000. Web. 19 Jan 2020.

Vancouver:

Chu H. Variational Approach to Pursuit-Evasion Game with Curvature Constraint. [Internet] [Doctoral dissertation]. NSYSU; 2000. [cited 2020 Jan 19]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612100-150130.

Council of Science Editors:

Chu H. Variational Approach to Pursuit-Evasion Game with Curvature Constraint. [Doctoral Dissertation]. NSYSU; 2000. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612100-150130


University of Western Ontario

3. Zhang, Zhongwen. Vessel Tree Reconstruction with Divergence Prior.

Degree: 2019, University of Western Ontario

 Accurate structure analysis of high-resolution 3D biomedical images of vessels is a challenging issue and in demand for medical diagnosis nowadays. Previous curvature regularization based… (more)

Subjects/Keywords: Computer vision; divergence constraint; curvature regularization; vessel tree reconstruction; Artificial Intelligence and Robotics; Other Computer Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, Z. (2019). Vessel Tree Reconstruction with Divergence Prior. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/6008

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Zhongwen. “Vessel Tree Reconstruction with Divergence Prior.” 2019. Thesis, University of Western Ontario. Accessed January 19, 2020. https://ir.lib.uwo.ca/etd/6008.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Zhongwen. “Vessel Tree Reconstruction with Divergence Prior.” 2019. Web. 19 Jan 2020.

Vancouver:

Zhang Z. Vessel Tree Reconstruction with Divergence Prior. [Internet] [Thesis]. University of Western Ontario; 2019. [cited 2020 Jan 19]. Available from: https://ir.lib.uwo.ca/etd/6008.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang Z. Vessel Tree Reconstruction with Divergence Prior. [Thesis]. University of Western Ontario; 2019. Available from: https://ir.lib.uwo.ca/etd/6008

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Nguyen, The-Cang. Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive : Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem.

Degree: Docteur es, Mathématiques, 2015, Université François-Rabelais de Tours

Dans cette thèse nous étudions deux problèmes issus de la relativité générale : la construction de données initiales pour le problème de Cauchy des équations… (more)

Subjects/Keywords: Équations d’Einstein; Méthode dite conforme; Théorème de la masse positive; Einstein constraint equations; Non-constant mean curvature; Conformal method; Positive mass theorem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, T. (2015). Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive : Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem. (Doctoral Dissertation). Université François-Rabelais de Tours. Retrieved from http://www.theses.fr/2015TOUR4028

Chicago Manual of Style (16th Edition):

Nguyen, The-Cang. “Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive : Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem.” 2015. Doctoral Dissertation, Université François-Rabelais de Tours. Accessed January 19, 2020. http://www.theses.fr/2015TOUR4028.

MLA Handbook (7th Edition):

Nguyen, The-Cang. “Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive : Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem.” 2015. Web. 19 Jan 2020.

Vancouver:

Nguyen T. Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive : Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem. [Internet] [Doctoral dissertation]. Université François-Rabelais de Tours; 2015. [cited 2020 Jan 19]. Available from: http://www.theses.fr/2015TOUR4028.

Council of Science Editors:

Nguyen T. Construction de solutions pour les équations de contraintes en relativité générale et remarques sur le théorème de la masse positive : Construction of solutions to the Einstein constrainit equations in general relativity and comments on the positive mass theorem. [Doctoral Dissertation]. Université François-Rabelais de Tours; 2015. Available from: http://www.theses.fr/2015TOUR4028


University of Otago

5. Daszuta, Boris. Numerical scalar curvature deformation and a gluing construction .

Degree: University of Otago

 In this work a new numerical technique to prepare Cauchy data for the initial value problem (IVP) formulation of Einstein's field equations (EFE) is presented.… (more)

Subjects/Keywords: numerical relativity; gluing solutions; initial data; constraint equations; spin weight; spectral methods; arbitrary precision; complex analysis; scalar curvature

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daszuta, B. (n.d.). Numerical scalar curvature deformation and a gluing construction . (Doctoral Dissertation). University of Otago. Retrieved from http://hdl.handle.net/10523/8967

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Chicago Manual of Style (16th Edition):

Daszuta, Boris. “Numerical scalar curvature deformation and a gluing construction .” Doctoral Dissertation, University of Otago. Accessed January 19, 2020. http://hdl.handle.net/10523/8967.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

MLA Handbook (7th Edition):

Daszuta, Boris. “Numerical scalar curvature deformation and a gluing construction .” Web. 19 Jan 2020.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Daszuta B. Numerical scalar curvature deformation and a gluing construction . [Internet] [Doctoral dissertation]. University of Otago; [cited 2020 Jan 19]. Available from: http://hdl.handle.net/10523/8967.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Council of Science Editors:

Daszuta B. Numerical scalar curvature deformation and a gluing construction . [Doctoral Dissertation]. University of Otago; Available from: http://hdl.handle.net/10523/8967

Note: this citation may be lacking information needed for this citation format:
No year of publication.


North Carolina State University

6. Lowe, Lisa Lenore. Topics in Numerical Relativity: Solving the Initial Value Problem Using Adaptive Mesh Refinement, Examining Evolution Stability Using Spectral Methods, and Finding Apparent Horizons using a Mean Curvature – Level Set Method.

Degree: PhD, Physics, 2008, North Carolina State University

Subjects/Keywords: numerical relativity; multigrid; adaptive mesh refinement; initial value problem; apparent horizon finder; level set method; mean curvature flow; distorted black holes; constraint violating modes; constrained evolution; spectral methods; ADM

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lowe, L. L. (2008). Topics in Numerical Relativity: Solving the Initial Value Problem Using Adaptive Mesh Refinement, Examining Evolution Stability Using Spectral Methods, and Finding Apparent Horizons using a Mean Curvature – Level Set Method. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/4042

Chicago Manual of Style (16th Edition):

Lowe, Lisa Lenore. “Topics in Numerical Relativity: Solving the Initial Value Problem Using Adaptive Mesh Refinement, Examining Evolution Stability Using Spectral Methods, and Finding Apparent Horizons using a Mean Curvature – Level Set Method.” 2008. Doctoral Dissertation, North Carolina State University. Accessed January 19, 2020. http://www.lib.ncsu.edu/resolver/1840.16/4042.

MLA Handbook (7th Edition):

Lowe, Lisa Lenore. “Topics in Numerical Relativity: Solving the Initial Value Problem Using Adaptive Mesh Refinement, Examining Evolution Stability Using Spectral Methods, and Finding Apparent Horizons using a Mean Curvature – Level Set Method.” 2008. Web. 19 Jan 2020.

Vancouver:

Lowe LL. Topics in Numerical Relativity: Solving the Initial Value Problem Using Adaptive Mesh Refinement, Examining Evolution Stability Using Spectral Methods, and Finding Apparent Horizons using a Mean Curvature – Level Set Method. [Internet] [Doctoral dissertation]. North Carolina State University; 2008. [cited 2020 Jan 19]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4042.

Council of Science Editors:

Lowe LL. Topics in Numerical Relativity: Solving the Initial Value Problem Using Adaptive Mesh Refinement, Examining Evolution Stability Using Spectral Methods, and Finding Apparent Horizons using a Mean Curvature – Level Set Method. [Doctoral Dissertation]. North Carolina State University; 2008. Available from: http://www.lib.ncsu.edu/resolver/1840.16/4042

.