Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Couplage EDP EDO). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Barreau, Matthieu. Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism : Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage.

Degree: Docteur es, Automatique, 2019, Université Toulouse III – Paul Sabatier

Cette thèse porte sur l'analyse de stabilité de couplage entre deux systèmes, l'un de dimension finie et l'autre infinie. Ce type de systèmes apparait en physique car il est intimement lié aux modèles de structures. L'analyse générique de tels systèmes est complexe à cause des natures très différentes de chacun des sous-systèmes. Ici, l'analyse est conduite en utilisant deux méthodologies. Tout d'abord, la séparation quadratique est utilisée pour traiter le côté fréquentiel de ce système couplé. L'autre méthode est basée sur la théorie de Lyapunov pour prouver la stabilité asymptotique de l'interconnexion. Tous ces résultats sont obtenus en utilisant la méthode de projection de l'état de dimension infinie sur une base polynomiale. Il est alors possible de prendre en compte le couplage entre les deux systèmes et ainsi d'obtenir des tests numériques fiables, rapides et peu conservatifs. De plus, une hiérarchie de conditions est établie dans le cas de Lyapunov. L'application au cas concret du forage pétrolier est proposée pour illustrer l'efficacité de la méthode et les nouvelles perspectives qu'elle offre. Par exemple, en utilisant la notion de stabilité pratique, nous avons montré qu'une tige de forage controlée à l'aide d'un PI est sujette à un cycle limite et qu'il est possible d'estimer son amplitude.

This thesis is about the stability analysis of a coupled finite dimensional system and an infinite dimensional one. This kind of systems emerges in the physics since it is related to the modeling of structures for instance. The generic analysis of such systems is complex, mainly because of their different nature. Here, the analysis is conducted using different methodologies. First, the recent Quadratic Separation framework is used to deal with the frequency aspect of such systems. Then, a second result is derived using a Lyapunov-based argument. All the results are obtained considering the projections of the infinite dimensional state on a basis of polynomials. It is then possible to take into account the coupling between the two systems. That results in tractable and reliable numerical tests with a moderate conservatism. Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case. The real application to a drilling mechanism is proposed to illustrate the efficiency of the method and it opens new perspectives. For instance, using the notion of practical stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it is possible to estimate its amplitude.

Advisors/Committee Members: Gouaisbaut, Frédéric (thesis director), Seuret, Alexandre (thesis director).

Subjects/Keywords: Couplage EDO/EDP; Système hétérogène; Equation des ondes; Méthodologie de projection; Mécanisme de forage; Stabilité de Lyapunov; Inégalités matricielles linéaires; Coupled ODE-PDE; Heterogeneous system; Wave equation; Projection methodology; Drilling mechanism; Lyapunov stability; Linear matrix inequality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barreau, M. (2019). Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism : Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2019TOU30058

Chicago Manual of Style (16th Edition):

Barreau, Matthieu. “Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism : Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage.” 2019. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed April 16, 2021. http://www.theses.fr/2019TOU30058.

MLA Handbook (7th Edition):

Barreau, Matthieu. “Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism : Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage.” 2019. Web. 16 Apr 2021.

Vancouver:

Barreau M. Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism : Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2019. [cited 2021 Apr 16]. Available from: http://www.theses.fr/2019TOU30058.

Council of Science Editors:

Barreau M. Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism : Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2019. Available from: http://www.theses.fr/2019TOU30058

2. Laurent-Brouty, Nicolas. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.

Degree: Docteur es, Mathématiques, 2019, Université Côte d'Azur (ComUE)

Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application des modèles macroscopiques en milieu urbain. Les zones urbaines sont désormais régulièrement confrontées à des niveaux de congestion record et à des épisodes de pollution atmosphérique causés par le trafic routier. L’objectif de cette thèse est alors de développer des modèles de trafic qui représentent de manière réaliste l’évolution des véhicules en milieu urbain. Dans un premier temps, nous considérons le modèle Aw-Rascle-Zhang avec relaxation. Nous construisons une suite de solutions approchées à l'aide de la méthode de suivi des fronts (wave-front tracking en anglais) couplée à une méthode de décomposition temporelle (splitting en anglais) en référentiel Lagrangien. Pour chaque valeur du paramètre de relaxation, nous montrons que cette suite converge vers une solution faible et entropique du système pour une donnée initiale à variation bornée. Par la suite, nous calculons une borne supérieure sur la décroissance des ondes positives. Nous démontrons que les solutions du système convergent vers une solution faible du modèle Lighthill-Whitham-Richards (LWR), c'est à dire vers la solution de la loi de conservation scalaire, lorsque le paramètre de relaxation tend vers zéro. Nous concluons par une discussion sur le caractère entropique de cette solution faible du modèle LWR. Dans un second temps, nous proposons un nouveau modèle macroscopique de trafic routier qui préserve le caractère borné de l'accélération des véhicules. Notre modèle couple une Équation aux Dérivées Partielles (EDP), la loi de conservation scalaire, à plusieurs Équations aux Dérivées Ordinaires (EDO), décrivant la trajectoire de véhicules accélérant à taux constant. Ces véhicules sont traités dans le modèle comme des goulots d'étranglement mobiles. Nous proposons la construction de solutions approchées avec un algorithme de suivi des fronts d'ondes et prouvons l'existence et l'unicité de la solution pour le problème de Cauchy associé à une donnée initiale constante par morceaux. Nous produisons ensuite des simulations numériques de notre modèle dans différentes situations urbaines, allant de la résolution du problème de Riemann à la simulation d'un axe urbain comportant plusieurs feux de signalisation. Enfin nous comparons ces simulations aux solutions du modèle LWR appliqué aux mêmes situations. Pour terminer, nous proposons un nouveau modèle macroscopique de trafic routier avec des stockages tampon (buffers en anglais) aux intersections afin de résoudre le modèle LWR sur des réseaux routiers. Ce modèle utilise des buffers de dimension finie, qui garantissent la propagation de la congestion au sein du réseau. Il comporte également des fonctions de répartition de véhicules aux jonctions qui sont dépendantes du temps, et peuvent dès lors être contrôlées au cours du temps. La dynamique du trafic est d'abord établie à l'aide des lois de conservation hyperboliques,… Advisors/Committee Members: Goatin, Paola (thesis director).

Subjects/Keywords: Lois de conservation hyperboliques; Systèmes de conservation hyperboliques avec relaxation; Modèles macroscopiques de trafic routier; Suivi de fronts d'onde; Systèmes de Temple; Couplage EDP-EDO; Contraintes de flux; Trafic routier sur les réseaux; Équations d'Hamilton-Jacobi; Méthodes de point fixe; Hyperbolic conservation laws; Hyperbolic systems of conservation laws with relaxation; Macroscopic traffic flow models; Wave-front tracking; Temple class systems; PDE-ODE coupling; Flux constraints; Traffic flow on networks; Hamilton-Jacobi equations; Fixed-point problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laurent-Brouty, N. (2019). Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2019AZUR4056

Chicago Manual of Style (16th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed April 16, 2021. http://www.theses.fr/2019AZUR4056.

MLA Handbook (7th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Web. 16 Apr 2021.

Vancouver:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2019. [cited 2021 Apr 16]. Available from: http://www.theses.fr/2019AZUR4056.

Council of Science Editors:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2019. Available from: http://www.theses.fr/2019AZUR4056

.