Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Core shuffling optimization). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Texas A&M University

1. Lakshmipathy, Sathish Kumar. VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D.

Degree: MS, Nuclear Engineering, 2012, Texas A&M University

Improving core performance by reshuffling/reloading the fuel blocks within the core is one of the in-core fuel management methods with two major benefits: a possibility to improve core life and increase core safety. VHTR is a hexagonal annular core reactor with reflectors in the center and outside the fuel rings (3-rings). With the block type fuel assemblies, there is an opportunity for muti-dimensional fuel bocks movement within the core during scheduled reactor refueling operations. As the core is symmetric, by optimizing the shuffle operation of 1/6th of the core, the same process can be repeated through the remaining 5/6th of the core. VHTR has 170 fuel blocks in the core of which 50 are control rod blocks and are not movable to regular fuel block locations. The reshuffling problem now is to find the best combination of 120 fuel blocks that has a minimized power peaking and/or increased core life under safety constraints among the 120! combinations. For evaluating each LP during the shuffling, a fitness function that is developed from the parameters affecting the power peaking and core life is required. Calculating the power peaking at each step using Monte Carlo simulations on a whole core exact geometry model is a time consuming process and not feasible. A parameter is developed from the definitions of reactivity and power peaking factor called the localized reactivity potential that can be estimated for every block movement based on the reaction rates and atom densities of the initial core burnup at the time of shuffling. The algorithm (ReloPSO) is based on Particle Swarm Optimization algorithm the search process by improving towards the optimum from a set of random LPs based on the fitness function developed with the reactivity potential parameter. The algorithm works as expected and the output obtained has a flatter reactivity profile than the input. The core criticality is found to increase when shuffled closer to end of life. Detailed analysis on the burn runs after shuffling at different time of core operation is required to correlate the estimated and actual values of the reactivity parameter and to optimize the time of shuffle. Advisors/Committee Members: Tsvetkov, Pavel V. (advisor), Hassan, Yassin A. (committee member), Curry, Guy L. (committee member).

Subjects/Keywords: Particle Swarm Optimization; Core shuffling optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lakshmipathy, S. K. (2012). VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11188

Chicago Manual of Style (16th Edition):

Lakshmipathy, Sathish Kumar. “VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D.” 2012. Masters Thesis, Texas A&M University. Accessed April 15, 2021. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11188.

MLA Handbook (7th Edition):

Lakshmipathy, Sathish Kumar. “VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D.” 2012. Web. 15 Apr 2021.

Vancouver:

Lakshmipathy SK. VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D. [Internet] [Masters thesis]. Texas A&M University; 2012. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11188.

Council of Science Editors:

Lakshmipathy SK. VHTR Core Shuffling Algorithm Using Particle Swarm Optimization ReloPSO-3D. [Masters Thesis]. Texas A&M University; 2012. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11188

.