Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Continued fractions). Showing records 1 – 30 of 48 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Levels

▼ Search Limiters


University of Minnesota

1. Thalagoda, Kalani. Continued fractions with irrational numerators.

Degree: MS, Applied and Computational Mathematics, 2018, University of Minnesota

 A continued fraction is called a simple continued fraction when the numerator is 1 and non-simple otherwise. Simple continued fractions of square roots have particularly… (more)

Subjects/Keywords: Continued Fractions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thalagoda, K. (2018). Continued fractions with irrational numerators. (Masters Thesis). University of Minnesota. Retrieved from http://hdl.handle.net/11299/200155

Chicago Manual of Style (16th Edition):

Thalagoda, Kalani. “Continued fractions with irrational numerators.” 2018. Masters Thesis, University of Minnesota. Accessed July 09, 2020. http://hdl.handle.net/11299/200155.

MLA Handbook (7th Edition):

Thalagoda, Kalani. “Continued fractions with irrational numerators.” 2018. Web. 09 Jul 2020.

Vancouver:

Thalagoda K. Continued fractions with irrational numerators. [Internet] [Masters thesis]. University of Minnesota; 2018. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/11299/200155.

Council of Science Editors:

Thalagoda K. Continued fractions with irrational numerators. [Masters Thesis]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/200155


McGill University

2. Anglin, William Sherron Raymond. Simple continued fractions and the class number.

Degree: MS, Department of Mathematics and Statistics., 1985, McGill University

Subjects/Keywords: Continued fractions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anglin, W. S. R. (1985). Simple continued fractions and the class number. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile63321.pdf

Chicago Manual of Style (16th Edition):

Anglin, William Sherron Raymond. “Simple continued fractions and the class number.” 1985. Masters Thesis, McGill University. Accessed July 09, 2020. http://digitool.library.mcgill.ca/thesisfile63321.pdf.

MLA Handbook (7th Edition):

Anglin, William Sherron Raymond. “Simple continued fractions and the class number.” 1985. Web. 09 Jul 2020.

Vancouver:

Anglin WSR. Simple continued fractions and the class number. [Internet] [Masters thesis]. McGill University; 1985. [cited 2020 Jul 09]. Available from: http://digitool.library.mcgill.ca/thesisfile63321.pdf.

Council of Science Editors:

Anglin WSR. Simple continued fractions and the class number. [Masters Thesis]. McGill University; 1985. Available from: http://digitool.library.mcgill.ca/thesisfile63321.pdf

3. Rasheed, Saburi Tolulope. New properties for ramanujan's continued rractions .

Degree: คณะวิทยาศาสตร์ ภาควิชาคณิตศาสตร์และสถิติ, 2018, Prince of Songkla University

Subjects/Keywords: Continued fractions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rasheed, S. T. (2018). New properties for ramanujan's continued rractions . (Thesis). Prince of Songkla University. Retrieved from http://kb.psu.ac.th/psukb/handle/2016/12477

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rasheed, Saburi Tolulope. “New properties for ramanujan's continued rractions .” 2018. Thesis, Prince of Songkla University. Accessed July 09, 2020. http://kb.psu.ac.th/psukb/handle/2016/12477.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rasheed, Saburi Tolulope. “New properties for ramanujan's continued rractions .” 2018. Web. 09 Jul 2020.

Vancouver:

Rasheed ST. New properties for ramanujan's continued rractions . [Internet] [Thesis]. Prince of Songkla University; 2018. [cited 2020 Jul 09]. Available from: http://kb.psu.ac.th/psukb/handle/2016/12477.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rasheed ST. New properties for ramanujan's continued rractions . [Thesis]. Prince of Songkla University; 2018. Available from: http://kb.psu.ac.th/psukb/handle/2016/12477

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Adelaide

4. Kooswinarsinindyah, R. A. D. Geometric interpretation of results concerning continued fractions.

Degree: 1997, University of Adelaide

Subjects/Keywords: Continued fractions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kooswinarsinindyah, R. A. D. (1997). Geometric interpretation of results concerning continued fractions. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/110286

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kooswinarsinindyah, R A D. “Geometric interpretation of results concerning continued fractions.” 1997. Thesis, University of Adelaide. Accessed July 09, 2020. http://hdl.handle.net/2440/110286.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kooswinarsinindyah, R A D. “Geometric interpretation of results concerning continued fractions.” 1997. Web. 09 Jul 2020.

Vancouver:

Kooswinarsinindyah RAD. Geometric interpretation of results concerning continued fractions. [Internet] [Thesis]. University of Adelaide; 1997. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/2440/110286.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kooswinarsinindyah RAD. Geometric interpretation of results concerning continued fractions. [Thesis]. University of Adelaide; 1997. Available from: http://hdl.handle.net/2440/110286

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

5. de Jonge, C.J. Gaps, Frequencies and Spacial Limits of Continued Fraction Expansions.

Degree: 2020, Delft University of Technology

 In this thesis continued fractions are studied in three directions: semi-regular continued fractions, Nakada’s α-expansions and N-expansions. In Chapter 1 the general concept of a… (more)

Subjects/Keywords: Continued fractions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

de Jonge, C. J. (2020). Gaps, Frequencies and Spacial Limits of Continued Fraction Expansions. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; 10.4233/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:isbn:978-94-6384-087-3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3

Chicago Manual of Style (16th Edition):

de Jonge, C J. “Gaps, Frequencies and Spacial Limits of Continued Fraction Expansions.” 2020. Doctoral Dissertation, Delft University of Technology. Accessed July 09, 2020. http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; 10.4233/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:isbn:978-94-6384-087-3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3.

MLA Handbook (7th Edition):

de Jonge, C J. “Gaps, Frequencies and Spacial Limits of Continued Fraction Expansions.” 2020. Web. 09 Jul 2020.

Vancouver:

de Jonge CJ. Gaps, Frequencies and Spacial Limits of Continued Fraction Expansions. [Internet] [Doctoral dissertation]. Delft University of Technology; 2020. [cited 2020 Jul 09]. Available from: http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; 10.4233/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:isbn:978-94-6384-087-3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3.

Council of Science Editors:

de Jonge CJ. Gaps, Frequencies and Spacial Limits of Continued Fraction Expansions. [Doctoral Dissertation]. Delft University of Technology; 2020. Available from: http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; 10.4233/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; urn:isbn:978-94-6384-087-3 ; urn:NBN:nl:ui:24-uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3 ; http://resolver.tudelft.nl/uuid:e0b37188-c8b6-4c96-9d04-93ac1f6899e3

6. Daowsud, Katthaleeya. Continued fractions and the divisor at infinity on a hyperelliptic curve : examples and order bounds.

Degree: PhD, Mathematics, 2013, Oregon State University

 We use the theory of continued fractions over function fields in the setting of hyperelliptic curves of equation y²=f(x), with deg(f)=2g+2. By introducing a new… (more)

Subjects/Keywords: Continued fractions; Continued fractions

…70 CONTINUED FRACTIONS AND THE DIVISOR AT INFINITY ON A HYPERELLIPTIC CURVE: EXAMPLES AND… …related to periodicity of continued fractions, is a notion that can be traced back to Abel [… …Friesen in particular has studied the structure of class groups using continued fractions, refer… …continued fractions over function fields continues to have much to offer. We show that with a… …at infinity. In Section 2.3, we discuss continued fractions in function fields and their… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Sample image

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daowsud, K. (2013). Continued fractions and the divisor at infinity on a hyperelliptic curve : examples and order bounds. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/38663

Chicago Manual of Style (16th Edition):

Daowsud, Katthaleeya. “Continued fractions and the divisor at infinity on a hyperelliptic curve : examples and order bounds.” 2013. Doctoral Dissertation, Oregon State University. Accessed July 09, 2020. http://hdl.handle.net/1957/38663.

MLA Handbook (7th Edition):

Daowsud, Katthaleeya. “Continued fractions and the divisor at infinity on a hyperelliptic curve : examples and order bounds.” 2013. Web. 09 Jul 2020.

Vancouver:

Daowsud K. Continued fractions and the divisor at infinity on a hyperelliptic curve : examples and order bounds. [Internet] [Doctoral dissertation]. Oregon State University; 2013. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/1957/38663.

Council of Science Editors:

Daowsud K. Continued fractions and the divisor at infinity on a hyperelliptic curve : examples and order bounds. [Doctoral Dissertation]. Oregon State University; 2013. Available from: http://hdl.handle.net/1957/38663

7. Kostelec, John C. A Theorem on the Convergence of a Continued Fraction.

Degree: 1953, North Texas State College

This thesis discusses a theorem on the convergence of a continued fraction. Advisors/Committee Members: Copp, George, Parrish, Herbert C..

Subjects/Keywords: fraction; Continued fractions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kostelec, J. C. (1953). A Theorem on the Convergence of a Continued Fraction. (Thesis). North Texas State College. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc107838/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kostelec, John C. “A Theorem on the Convergence of a Continued Fraction.” 1953. Thesis, North Texas State College. Accessed July 09, 2020. https://digital.library.unt.edu/ark:/67531/metadc107838/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kostelec, John C. “A Theorem on the Convergence of a Continued Fraction.” 1953. Web. 09 Jul 2020.

Vancouver:

Kostelec JC. A Theorem on the Convergence of a Continued Fraction. [Internet] [Thesis]. North Texas State College; 1953. [cited 2020 Jul 09]. Available from: https://digital.library.unt.edu/ark:/67531/metadc107838/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kostelec JC. A Theorem on the Convergence of a Continued Fraction. [Thesis]. North Texas State College; 1953. Available from: https://digital.library.unt.edu/ark:/67531/metadc107838/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

8. Hartono, Y. Ergodic Properties of Continued Fraction Algorithms.

Degree: 2003, Delft University of Technology

Subjects/Keywords: metric fractions; arithmetric fractions; continued fractions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hartono, Y. (2003). Ergodic Properties of Continued Fraction Algorithms. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554

Chicago Manual of Style (16th Edition):

Hartono, Y. “Ergodic Properties of Continued Fraction Algorithms.” 2003. Doctoral Dissertation, Delft University of Technology. Accessed July 09, 2020. http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554.

MLA Handbook (7th Edition):

Hartono, Y. “Ergodic Properties of Continued Fraction Algorithms.” 2003. Web. 09 Jul 2020.

Vancouver:

Hartono Y. Ergodic Properties of Continued Fraction Algorithms. [Internet] [Doctoral dissertation]. Delft University of Technology; 2003. [cited 2020 Jul 09]. Available from: http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554.

Council of Science Editors:

Hartono Y. Ergodic Properties of Continued Fraction Algorithms. [Doctoral Dissertation]. Delft University of Technology; 2003. Available from: http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; urn:NBN:nl:ui:24-uuid:502be2b8-6b44-4657-880c-9a0c163ed554 ; http://resolver.tudelft.nl/uuid:502be2b8-6b44-4657-880c-9a0c163ed554

9. Tarsissi, Lama. Balance properties on Christoffel words and applications : Propriétés d'équilibre sur les mots de Christoffel et applications.

Degree: Docteur es, Mathématiques et Informatique, 2017, Université Grenoble Alpes (ComUE)

 De nombreux chercheurs se sont intéressés à la Combinatoire des mots aussi bien d'un point de vue théorique que pratique. Pendant plus de 100 ans… (more)

Subjects/Keywords: Mots de Christoffel; Equilibre; Fractions continues; Christofell word; Balancedness; Continued fractions; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tarsissi, L. (2017). Balance properties on Christoffel words and applications : Propriétés d'équilibre sur les mots de Christoffel et applications. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2017GREAM097

Chicago Manual of Style (16th Edition):

Tarsissi, Lama. “Balance properties on Christoffel words and applications : Propriétés d'équilibre sur les mots de Christoffel et applications.” 2017. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed July 09, 2020. http://www.theses.fr/2017GREAM097.

MLA Handbook (7th Edition):

Tarsissi, Lama. “Balance properties on Christoffel words and applications : Propriétés d'équilibre sur les mots de Christoffel et applications.” 2017. Web. 09 Jul 2020.

Vancouver:

Tarsissi L. Balance properties on Christoffel words and applications : Propriétés d'équilibre sur les mots de Christoffel et applications. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2017. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2017GREAM097.

Council of Science Editors:

Tarsissi L. Balance properties on Christoffel words and applications : Propriétés d'équilibre sur les mots de Christoffel et applications. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2017. Available from: http://www.theses.fr/2017GREAM097

10. Randazzo, Lucas. Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks.

Degree: Docteur es, Informatique, 2019, Université Paris-Est

Cette thèse située dans le cadre de la combinatoire bijective a pour sujet plusieurs familles d'arbres et de chemins, objets classiques de la combinatoire, et… (more)

Subjects/Keywords: Combinatoire; Bijections; Arbres; Chemins; Fractions continues; Polynômes; Combinatorics; Bijections; Trees; Walks; Continued fractions; Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Randazzo, L. (2019). Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2019PESC2059

Chicago Manual of Style (16th Edition):

Randazzo, Lucas. “Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks.” 2019. Doctoral Dissertation, Université Paris-Est. Accessed July 09, 2020. http://www.theses.fr/2019PESC2059.

MLA Handbook (7th Edition):

Randazzo, Lucas. “Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks.” 2019. Web. 09 Jul 2020.

Vancouver:

Randazzo L. Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks. [Internet] [Doctoral dissertation]. Université Paris-Est; 2019. [cited 2020 Jul 09]. Available from: http://www.theses.fr/2019PESC2059.

Council of Science Editors:

Randazzo L. Combinatoire bijective autour d'arbres et de chemins : Bijective combinatorics on trees and walks. [Doctoral Dissertation]. Université Paris-Est; 2019. Available from: http://www.theses.fr/2019PESC2059


California State University – San Bernardino

11. Munoz, Susana L. A Fundamental Unit of O_K.

Degree: MAin Mathematics, Mathematics, 2015, California State University – San Bernardino

  In the classical case we make use of Pells equation to compute units in the ring OF. Consider the parallel to the classical… (more)

Subjects/Keywords: Unit; Algebraic Extensions; Pells equation; continued fractions; Algebra; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Munoz, S. L. (2015). A Fundamental Unit of O_K. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/133

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Munoz, Susana L. “A Fundamental Unit of O_K.” 2015. Thesis, California State University – San Bernardino. Accessed July 09, 2020. https://scholarworks.lib.csusb.edu/etd/133.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Munoz, Susana L. “A Fundamental Unit of O_K.” 2015. Web. 09 Jul 2020.

Vancouver:

Munoz SL. A Fundamental Unit of O_K. [Internet] [Thesis]. California State University – San Bernardino; 2015. [cited 2020 Jul 09]. Available from: https://scholarworks.lib.csusb.edu/etd/133.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Munoz SL. A Fundamental Unit of O_K. [Thesis]. California State University – San Bernardino; 2015. Available from: https://scholarworks.lib.csusb.edu/etd/133

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Wesleyan University

12. Ryan, Max. Continued Fractions: A Geometric Perspective.

Degree: Mathematics, 2016, Wesleyan University

  In this paper we explore the relationship between continued fractions and Diophantine approximation using an alternative geometric view developed by Caroline Series in her… (more)

Subjects/Keywords: continued fractions; Diophantine approximation; hyperbolic geometry; number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ryan, M. (2016). Continued Fractions: A Geometric Perspective. (Masters Thesis). Wesleyan University. Retrieved from https://wesscholar.wesleyan.edu/etd_mas_theses/121

Chicago Manual of Style (16th Edition):

Ryan, Max. “Continued Fractions: A Geometric Perspective.” 2016. Masters Thesis, Wesleyan University. Accessed July 09, 2020. https://wesscholar.wesleyan.edu/etd_mas_theses/121.

MLA Handbook (7th Edition):

Ryan, Max. “Continued Fractions: A Geometric Perspective.” 2016. Web. 09 Jul 2020.

Vancouver:

Ryan M. Continued Fractions: A Geometric Perspective. [Internet] [Masters thesis]. Wesleyan University; 2016. [cited 2020 Jul 09]. Available from: https://wesscholar.wesleyan.edu/etd_mas_theses/121.

Council of Science Editors:

Ryan M. Continued Fractions: A Geometric Perspective. [Masters Thesis]. Wesleyan University; 2016. Available from: https://wesscholar.wesleyan.edu/etd_mas_theses/121

13. Smith, Harold Kermit, Jr. Continued Fractions.

Degree: 1966, North Texas State University

The purpose of this paper is to study convergence of certain continued fractions. Advisors/Committee Members: Dawson, David Fleming, Appling, William D. L..

Subjects/Keywords: continued fractions; mathematics; convergence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, Harold Kermit, J. (1966). Continued Fractions. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc130672/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Smith, Harold Kermit, Jr. “Continued Fractions.” 1966. Thesis, North Texas State University. Accessed July 09, 2020. https://digital.library.unt.edu/ark:/67531/metadc130672/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Smith, Harold Kermit, Jr. “Continued Fractions.” 1966. Web. 09 Jul 2020.

Vancouver:

Smith, Harold Kermit J. Continued Fractions. [Internet] [Thesis]. North Texas State University; 1966. [cited 2020 Jul 09]. Available from: https://digital.library.unt.edu/ark:/67531/metadc130672/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Smith, Harold Kermit J. Continued Fractions. [Thesis]. North Texas State University; 1966. Available from: https://digital.library.unt.edu/ark:/67531/metadc130672/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

14. Narayanaswami, Saraswathi. The QD algoritm and its Application to the Transformation of Power Series Into Continued Fraction.

Degree: 1971, Texas Tech University

Subjects/Keywords: Power series; Continued fractions; Algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Narayanaswami, S. (1971). The QD algoritm and its Application to the Transformation of Power Series Into Continued Fraction. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/19211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Narayanaswami, Saraswathi. “The QD algoritm and its Application to the Transformation of Power Series Into Continued Fraction.” 1971. Thesis, Texas Tech University. Accessed July 09, 2020. http://hdl.handle.net/2346/19211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Narayanaswami, Saraswathi. “The QD algoritm and its Application to the Transformation of Power Series Into Continued Fraction.” 1971. Web. 09 Jul 2020.

Vancouver:

Narayanaswami S. The QD algoritm and its Application to the Transformation of Power Series Into Continued Fraction. [Internet] [Thesis]. Texas Tech University; 1971. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/2346/19211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Narayanaswami S. The QD algoritm and its Application to the Transformation of Power Series Into Continued Fraction. [Thesis]. Texas Tech University; 1971. Available from: http://hdl.handle.net/2346/19211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Compton, Stanley Max. Continued fractions and their application in the computation of definite Riemann integrals.

Degree: 1973, Texas Tech University

Subjects/Keywords: Continued fractions; Riemann integral

continued fractions of the form (1.6) with b. > 0 and a. real, i = l , 2, 3, ... . In… …x5B;l9, 20] obtained answers to questions about convergence of continued fractions with… …complex elements. These continued fractions were of the form (1.7) ^ 1 + Zg ^ ^2… …1 + 1 + '. Pringsheim found thkt continued fractions of the form (1.7)… …29] also found that continued fractions of the form (1.8) ^1 • " 1 ^2… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Compton, S. M. (1973). Continued fractions and their application in the computation of definite Riemann integrals. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/20231

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Compton, Stanley Max. “Continued fractions and their application in the computation of definite Riemann integrals.” 1973. Thesis, Texas Tech University. Accessed July 09, 2020. http://hdl.handle.net/2346/20231.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Compton, Stanley Max. “Continued fractions and their application in the computation of definite Riemann integrals.” 1973. Web. 09 Jul 2020.

Vancouver:

Compton SM. Continued fractions and their application in the computation of definite Riemann integrals. [Internet] [Thesis]. Texas Tech University; 1973. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/2346/20231.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Compton SM. Continued fractions and their application in the computation of definite Riemann integrals. [Thesis]. Texas Tech University; 1973. Available from: http://hdl.handle.net/2346/20231

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Loughborough University

16. Spalding, Kathryn. Growth and integrability in multi-valued dynamics.

Degree: PhD, 2018, Loughborough University

 This thesis is focused on the problem of growth and integrability in multi-valued dynamics generated by SL2 (ℤ) actions. An important example is given by… (more)

Subjects/Keywords: Lyapunov exponents; Modular group; Continued fractions; Markov numbers; Binary forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spalding, K. (2018). Growth and integrability in multi-valued dynamics. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/33483

Chicago Manual of Style (16th Edition):

Spalding, Kathryn. “Growth and integrability in multi-valued dynamics.” 2018. Doctoral Dissertation, Loughborough University. Accessed July 09, 2020. http://hdl.handle.net/2134/33483.

MLA Handbook (7th Edition):

Spalding, Kathryn. “Growth and integrability in multi-valued dynamics.” 2018. Web. 09 Jul 2020.

Vancouver:

Spalding K. Growth and integrability in multi-valued dynamics. [Internet] [Doctoral dissertation]. Loughborough University; 2018. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/2134/33483.

Council of Science Editors:

Spalding K. Growth and integrability in multi-valued dynamics. [Doctoral Dissertation]. Loughborough University; 2018. Available from: http://hdl.handle.net/2134/33483


Penn State University

17. Zydney, Adam. Boundary maps and their natural extensions associated with Fuchsian and Kleinian groups.

Degree: 2018, Penn State University

 Geodesic flows on surfaces of constant negative curvature are a rich source of examples in ergodic theory, and geodesic flow on the modular surface in… (more)

Subjects/Keywords: geodesic flow; symbolic dynamics; continued fractions; complex numbers; reduction theory; Fuchsian groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zydney, A. (2018). Boundary maps and their natural extensions associated with Fuchsian and Kleinian groups. (Thesis). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/15102ajz5041

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zydney, Adam. “Boundary maps and their natural extensions associated with Fuchsian and Kleinian groups.” 2018. Thesis, Penn State University. Accessed July 09, 2020. https://etda.libraries.psu.edu/catalog/15102ajz5041.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zydney, Adam. “Boundary maps and their natural extensions associated with Fuchsian and Kleinian groups.” 2018. Web. 09 Jul 2020.

Vancouver:

Zydney A. Boundary maps and their natural extensions associated with Fuchsian and Kleinian groups. [Internet] [Thesis]. Penn State University; 2018. [cited 2020 Jul 09]. Available from: https://etda.libraries.psu.edu/catalog/15102ajz5041.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zydney A. Boundary maps and their natural extensions associated with Fuchsian and Kleinian groups. [Thesis]. Penn State University; 2018. Available from: https://etda.libraries.psu.edu/catalog/15102ajz5041

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

18. Liberman, Harry Levi. Continued Fractions and Newton's Algorithm.

Degree: MSc, 1971, McMaster University

This thesis examines continued fraction expansions of the square root of nonsquare positive integers of periods one to six, and shows their relationships with… (more)

Subjects/Keywords: continued; fractions; Newton's Algorithm; integers; approximation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liberman, H. L. (1971). Continued Fractions and Newton's Algorithm. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/18508

Chicago Manual of Style (16th Edition):

Liberman, Harry Levi. “Continued Fractions and Newton's Algorithm.” 1971. Masters Thesis, McMaster University. Accessed July 09, 2020. http://hdl.handle.net/11375/18508.

MLA Handbook (7th Edition):

Liberman, Harry Levi. “Continued Fractions and Newton's Algorithm.” 1971. Web. 09 Jul 2020.

Vancouver:

Liberman HL. Continued Fractions and Newton's Algorithm. [Internet] [Masters thesis]. McMaster University; 1971. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/11375/18508.

Council of Science Editors:

Liberman HL. Continued Fractions and Newton's Algorithm. [Masters Thesis]. McMaster University; 1971. Available from: http://hdl.handle.net/11375/18508


McGill University

19. Edward, David Charles. Continued fractions in rational approximations, and number theory.

Degree: MS, Department of Mathematics, 1971, McGill University

Subjects/Keywords: Continued fractions.; Number theory.; Approximation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Edward, D. C. (1971). Continued fractions in rational approximations, and number theory. (Masters Thesis). McGill University. Retrieved from http://digitool.library.mcgill.ca/thesisfile47717.pdf

Chicago Manual of Style (16th Edition):

Edward, David Charles. “Continued fractions in rational approximations, and number theory.” 1971. Masters Thesis, McGill University. Accessed July 09, 2020. http://digitool.library.mcgill.ca/thesisfile47717.pdf.

MLA Handbook (7th Edition):

Edward, David Charles. “Continued fractions in rational approximations, and number theory.” 1971. Web. 09 Jul 2020.

Vancouver:

Edward DC. Continued fractions in rational approximations, and number theory. [Internet] [Masters thesis]. McGill University; 1971. [cited 2020 Jul 09]. Available from: http://digitool.library.mcgill.ca/thesisfile47717.pdf.

Council of Science Editors:

Edward DC. Continued fractions in rational approximations, and number theory. [Masters Thesis]. McGill University; 1971. Available from: http://digitool.library.mcgill.ca/thesisfile47717.pdf


University of Colorado

20. Hines, Robert. Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation.

Degree: PhD, 2019, University of Colorado

  This dissertation explores relations between hyperbolic geometry and Diophantine approximation, with an emphasis on continued fractions over the Euclidean imaginary quadratic fields, Q(√−d), d… (more)

Subjects/Keywords: hyperbolic geometry; Diophantine approximation; continued fractions; Euclidean imaginary quadrtic fields; geometric interpretation; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hines, R. (2019). Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/74

Chicago Manual of Style (16th Edition):

Hines, Robert. “Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation.” 2019. Doctoral Dissertation, University of Colorado. Accessed July 09, 2020. https://scholar.colorado.edu/math_gradetds/74.

MLA Handbook (7th Edition):

Hines, Robert. “Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation.” 2019. Web. 09 Jul 2020.

Vancouver:

Hines R. Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2020 Jul 09]. Available from: https://scholar.colorado.edu/math_gradetds/74.

Council of Science Editors:

Hines R. Applications of Hyperbolic Geometry to Continued Fractions and Diophantine Approximation. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/74


University of North Texas

21. Jacobs, G. Tony. Reduced Ideals and Periodic Sequences in Pure Cubic Fields.

Degree: 2015, University of North Texas

 The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in… (more)

Subjects/Keywords: continued fractions; cubic fields; Diophantine approximation; Quadratic fields.; Algebraic fields.; Diophantine approximation.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jacobs, G. T. (2015). Reduced Ideals and Periodic Sequences in Pure Cubic Fields. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc804842/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jacobs, G Tony. “Reduced Ideals and Periodic Sequences in Pure Cubic Fields.” 2015. Thesis, University of North Texas. Accessed July 09, 2020. https://digital.library.unt.edu/ark:/67531/metadc804842/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jacobs, G Tony. “Reduced Ideals and Periodic Sequences in Pure Cubic Fields.” 2015. Web. 09 Jul 2020.

Vancouver:

Jacobs GT. Reduced Ideals and Periodic Sequences in Pure Cubic Fields. [Internet] [Thesis]. University of North Texas; 2015. [cited 2020 Jul 09]. Available from: https://digital.library.unt.edu/ark:/67531/metadc804842/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jacobs GT. Reduced Ideals and Periodic Sequences in Pure Cubic Fields. [Thesis]. University of North Texas; 2015. Available from: https://digital.library.unt.edu/ark:/67531/metadc804842/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

22. Martinez Mantilla, Dario Fernando. Floquet theory and continued fractions for harmonically driven systems.

Degree: PhD, Physics, 2003, University of Texas – Austin

 We derive an exact solution using continued fractions for a quantum particle scattering from an oscillating delta-function potential. We study its transmission properties such as:… (more)

Subjects/Keywords: Floquet theory; Continued fractions; Quantum theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martinez Mantilla, D. F. (2003). Floquet theory and continued fractions for harmonically driven systems. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/756

Chicago Manual of Style (16th Edition):

Martinez Mantilla, Dario Fernando. “Floquet theory and continued fractions for harmonically driven systems.” 2003. Doctoral Dissertation, University of Texas – Austin. Accessed July 09, 2020. http://hdl.handle.net/2152/756.

MLA Handbook (7th Edition):

Martinez Mantilla, Dario Fernando. “Floquet theory and continued fractions for harmonically driven systems.” 2003. Web. 09 Jul 2020.

Vancouver:

Martinez Mantilla DF. Floquet theory and continued fractions for harmonically driven systems. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2003. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/2152/756.

Council of Science Editors:

Martinez Mantilla DF. Floquet theory and continued fractions for harmonically driven systems. [Doctoral Dissertation]. University of Texas – Austin; 2003. Available from: http://hdl.handle.net/2152/756


California State University – Northridge

23. Philipp, Randolph A. Continued fractions.

Degree: MS, Department of Mathematics, 1987, California State University – Northridge

 Following is my thesis submitted in partial satisfaction of the requirements for the Master's Degree in Mathematics, Option 2. I focused on arithmetic continued fractions,… (more)

Subjects/Keywords: Continued fractions.; Dissertations, Academic  – CSUN  – Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Philipp, R. A. (1987). Continued fractions. (Masters Thesis). California State University – Northridge. Retrieved from http://hdl.handle.net/10211.3/131485

Chicago Manual of Style (16th Edition):

Philipp, Randolph A. “Continued fractions.” 1987. Masters Thesis, California State University – Northridge. Accessed July 09, 2020. http://hdl.handle.net/10211.3/131485.

MLA Handbook (7th Edition):

Philipp, Randolph A. “Continued fractions.” 1987. Web. 09 Jul 2020.

Vancouver:

Philipp RA. Continued fractions. [Internet] [Masters thesis]. California State University – Northridge; 1987. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/10211.3/131485.

Council of Science Editors:

Philipp RA. Continued fractions. [Masters Thesis]. California State University – Northridge; 1987. Available from: http://hdl.handle.net/10211.3/131485


Penn State University

24. Egorov, Arseni. Symbolic Dynamics of the Weyl Chamber Flow.

Degree: PhD, Mathematics, 2011, Penn State University

 This thesis studies codings of orbits of Weyl chamber flows on symmetric spaces of non-compact type.</br> Let H be the hyperbolic plane with constant curvature… (more)

Subjects/Keywords: topological Markov chains; geodesic flow; Weyl chamber flow; geometric coding; arithmetic coding; symmetric spaces; continued fractions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Egorov, A. (2011). Symbolic Dynamics of the Weyl Chamber Flow. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/12425

Chicago Manual of Style (16th Edition):

Egorov, Arseni. “Symbolic Dynamics of the Weyl Chamber Flow.” 2011. Doctoral Dissertation, Penn State University. Accessed July 09, 2020. https://etda.libraries.psu.edu/catalog/12425.

MLA Handbook (7th Edition):

Egorov, Arseni. “Symbolic Dynamics of the Weyl Chamber Flow.” 2011. Web. 09 Jul 2020.

Vancouver:

Egorov A. Symbolic Dynamics of the Weyl Chamber Flow. [Internet] [Doctoral dissertation]. Penn State University; 2011. [cited 2020 Jul 09]. Available from: https://etda.libraries.psu.edu/catalog/12425.

Council of Science Editors:

Egorov A. Symbolic Dynamics of the Weyl Chamber Flow. [Doctoral Dissertation]. Penn State University; 2011. Available from: https://etda.libraries.psu.edu/catalog/12425


University of Vienna

25. Puttinger, Johannes. Die Vermutung von Zaremba.

Degree: 2010, University of Vienna

In dieser Diplomarbeit wird eine Vermutung behandelt, die im Jahr 1972 in einer Arbeit von S. K. Zaremba veröffentlicht wurde. Es geht dabei um die… (more)

Subjects/Keywords: 31.14 Zahlentheorie; Kettenbrüche / Kontinuanten / Methode der guten Gitterpunkte / Faltungslemma; continued fractions / continuants / good lattice points / folding lemma

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Puttinger, J. (2010). Die Vermutung von Zaremba. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/9317/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Puttinger, Johannes. “Die Vermutung von Zaremba.” 2010. Thesis, University of Vienna. Accessed July 09, 2020. http://othes.univie.ac.at/9317/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Puttinger, Johannes. “Die Vermutung von Zaremba.” 2010. Web. 09 Jul 2020.

Vancouver:

Puttinger J. Die Vermutung von Zaremba. [Internet] [Thesis]. University of Vienna; 2010. [cited 2020 Jul 09]. Available from: http://othes.univie.ac.at/9317/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Puttinger J. Die Vermutung von Zaremba. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/9317/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kent State University

26. Henry, Michael A. Various Old and New Results in Classical Arithmetic by Special Functions.

Degree: MS, College of Arts and Sciences / Department of Mathematical Science, 2018, Kent State University

 Beginning with the essentials from the theory of simple continued fractions, we review some early results in Diophantine approximation. We proceed to prove that Liouville’s… (more)

Subjects/Keywords: Mathematics; number theory, classical analysis, special functions, special constants, continued fractions, irrational numbers, transcendental numbers, classical arithmetic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Henry, M. A. (2018). Various Old and New Results in Classical Arithmetic by Special Functions. (Masters Thesis). Kent State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=kent1524583992694218

Chicago Manual of Style (16th Edition):

Henry, Michael A. “Various Old and New Results in Classical Arithmetic by Special Functions.” 2018. Masters Thesis, Kent State University. Accessed July 09, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1524583992694218.

MLA Handbook (7th Edition):

Henry, Michael A. “Various Old and New Results in Classical Arithmetic by Special Functions.” 2018. Web. 09 Jul 2020.

Vancouver:

Henry MA. Various Old and New Results in Classical Arithmetic by Special Functions. [Internet] [Masters thesis]. Kent State University; 2018. [cited 2020 Jul 09]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1524583992694218.

Council of Science Editors:

Henry MA. Various Old and New Results in Classical Arithmetic by Special Functions. [Masters Thesis]. Kent State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=kent1524583992694218


Brno University of Technology

27. Špaček, Michal. Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers.

Degree: 2020, Brno University of Technology

 The main aim of this thesis is to design and implement library for interactive numerical computation with rational numbers. The library implements mainly numerical methods… (more)

Subjects/Keywords: Numerické výpočty; racionální čísla; maticové rozklady; řetězové zlomky; Python; Numerical computation; Rational numbers; matrix decompositions; continued fractions; Python

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Špaček, M. (2020). Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/188365

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Špaček, Michal. “Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers.” 2020. Thesis, Brno University of Technology. Accessed July 09, 2020. http://hdl.handle.net/11012/188365.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Špaček, Michal. “Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers.” 2020. Web. 09 Jul 2020.

Vancouver:

Špaček M. Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers. [Internet] [Thesis]. Brno University of Technology; 2020. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/11012/188365.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Špaček M. Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers. [Thesis]. Brno University of Technology; 2020. Available from: http://hdl.handle.net/11012/188365

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

28. Špaček, Michal. Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers.

Degree: 2019, Brno University of Technology

 The main aim of this thesis is to design and implement library for interactive numerical computation with rational numbers. The library implements mainly numerical methods… (more)

Subjects/Keywords: Numerické výpočty; racionální čísla; maticové rozklady; řetězové zlomky; Python; Numerical computation; Rational numbers; matrix decompositions; continued fractions; Python

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Špaček, M. (2019). Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/56407

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Špaček, Michal. “Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers.” 2019. Thesis, Brno University of Technology. Accessed July 09, 2020. http://hdl.handle.net/11012/56407.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Špaček, Michal. “Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers.” 2019. Web. 09 Jul 2020.

Vancouver:

Špaček M. Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/11012/56407.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Špaček M. Knihovna pro interaktivní numerické výpočty s racionálními čísly: Library for Interactive Numerical Computation with Rational Numbers. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/56407

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

29. Merriman, Claire. Geometric and ergodic properties of certain classes of continued fractions.

Degree: PhD, Mathematics, 2019, University of Illinois – Urbana-Champaign

Continued fractions are systematically studied in number theory, dynamical systems, and ergodic theory, and appear frequently in other areas of mathematics. The first part of… (more)

Subjects/Keywords: ergodic theory; continued fractions; cutting sequence

…plane. Visualizing continued fractions via tessellations provides insights into the key tool I… …modular surface M = PSL(2, Z)\H and regular continued fractions, originating in… …grotesque continued fractions using the geodesic flow on some modular surfaces. In Chapter 5, I… …continued fractions are typically not invertible, so it is useful to work with the minimal… …expansions using the geodesic flow. For example, I look at eventually periodic continued fractions… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Merriman, C. (2019). Geometric and ergodic properties of certain classes of continued fractions. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/105632

Chicago Manual of Style (16th Edition):

Merriman, Claire. “Geometric and ergodic properties of certain classes of continued fractions.” 2019. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed July 09, 2020. http://hdl.handle.net/2142/105632.

MLA Handbook (7th Edition):

Merriman, Claire. “Geometric and ergodic properties of certain classes of continued fractions.” 2019. Web. 09 Jul 2020.

Vancouver:

Merriman C. Geometric and ergodic properties of certain classes of continued fractions. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2019. [cited 2020 Jul 09]. Available from: http://hdl.handle.net/2142/105632.

Council of Science Editors:

Merriman C. Geometric and ergodic properties of certain classes of continued fractions. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2019. Available from: http://hdl.handle.net/2142/105632


Boise State University

30. Smith, Jason. Solvability Characterizations of Pell Like Equations.

Degree: 2009, Boise State University

 Pell's equation has intrigued mathematicians for centuries. First stated as Archimedes' Cattle Problem, Pell's equation, in its most general form, X2 – P • Y2… (more)

Subjects/Keywords: number theory; cryptography; continued fractions; Pell Like equations; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, J. (2009). Solvability Characterizations of Pell Like Equations. (Thesis). Boise State University. Retrieved from https://scholarworks.boisestate.edu/td/55

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Smith, Jason. “Solvability Characterizations of Pell Like Equations.” 2009. Thesis, Boise State University. Accessed July 09, 2020. https://scholarworks.boisestate.edu/td/55.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Smith, Jason. “Solvability Characterizations of Pell Like Equations.” 2009. Web. 09 Jul 2020.

Vancouver:

Smith J. Solvability Characterizations of Pell Like Equations. [Internet] [Thesis]. Boise State University; 2009. [cited 2020 Jul 09]. Available from: https://scholarworks.boisestate.edu/td/55.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Smith J. Solvability Characterizations of Pell Like Equations. [Thesis]. Boise State University; 2009. Available from: https://scholarworks.boisestate.edu/td/55

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2]

.