Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Contact manifolds). Showing records 1 – 26 of 26 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Michigan State University

1. Kasebian, Kaveh. Concave fillings and branched covers.

Degree: 2018, Michigan State University

Thesis Ph. D. Michigan State University. Mathematics 2018

This dissertation contains two results. The first result involves concave symplectic struc-tures on a neighborhood of certain… (more)

Subjects/Keywords: Contact manifolds; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kasebian, K. (2018). Concave fillings and branched covers. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:16402

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kasebian, Kaveh. “Concave fillings and branched covers.” 2018. Thesis, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:16402.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kasebian, Kaveh. “Concave fillings and branched covers.” 2018. Web. 08 Mar 2021.

Vancouver:

Kasebian K. Concave fillings and branched covers. [Internet] [Thesis]. Michigan State University; 2018. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:16402.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kasebian K. Concave fillings and branched covers. [Thesis]. Michigan State University; 2018. Available from: http://etd.lib.msu.edu/islandora/object/etd:16402

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Aberdeen

2. Spáčil, Oldřich. On the Chern-Weil theory for transformation groups of contact manifolds.

Degree: PhD, 2014, University of Aberdeen

 The thesis deals with contact manifolds and their groups of transformations and relatedly with contact fibre bundles. We apply the framework of convenient calculus on… (more)

Subjects/Keywords: 510; Transformation groups; Contact manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spáčil, O. (2014). On the Chern-Weil theory for transformation groups of contact manifolds. (Doctoral Dissertation). University of Aberdeen. Retrieved from https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183

Chicago Manual of Style (16th Edition):

Spáčil, Oldřich. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Doctoral Dissertation, University of Aberdeen. Accessed March 08, 2021. https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183.

MLA Handbook (7th Edition):

Spáčil, Oldřich. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Web. 08 Mar 2021.

Vancouver:

Spáčil O. On the Chern-Weil theory for transformation groups of contact manifolds. [Internet] [Doctoral dissertation]. University of Aberdeen; 2014. [cited 2021 Mar 08]. Available from: https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183.

Council of Science Editors:

Spáčil O. On the Chern-Weil theory for transformation groups of contact manifolds. [Doctoral Dissertation]. University of Aberdeen; 2014. Available from: https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183


Georgia Tech

3. Tosun, Bulent. Legendrian and transverse knots and their invariants.

Degree: PhD, Mathematics, 2012, Georgia Tech

 In this thesis, we study Legendrian and transverse isotopy problem for cabled knot types. We give two structural theorems to describe when the (r,s)- cable… (more)

Subjects/Keywords: Knots in contact geometry. cabling; Knot theory; Contact manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tosun, B. (2012). Legendrian and transverse knots and their invariants. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/44880

Chicago Manual of Style (16th Edition):

Tosun, Bulent. “Legendrian and transverse knots and their invariants.” 2012. Doctoral Dissertation, Georgia Tech. Accessed March 08, 2021. http://hdl.handle.net/1853/44880.

MLA Handbook (7th Edition):

Tosun, Bulent. “Legendrian and transverse knots and their invariants.” 2012. Web. 08 Mar 2021.

Vancouver:

Tosun B. Legendrian and transverse knots and their invariants. [Internet] [Doctoral dissertation]. Georgia Tech; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1853/44880.

Council of Science Editors:

Tosun B. Legendrian and transverse knots and their invariants. [Doctoral Dissertation]. Georgia Tech; 2012. Available from: http://hdl.handle.net/1853/44880


University of Southern California

4. Golovko, Roman. The embedded contact homology of S1xD2.

Degree: PhD, Mathematics, 2009, University of Southern California

 The goal of this thesis is to understand generalizations of (cylindrical) contact homology and embedded contact homology to contact 3-manifolds with sutured boundary. Both contact(more)

Subjects/Keywords: embedded contact homology; sutured contact manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Golovko, R. (2009). The embedded contact homology of S1xD2. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686

Chicago Manual of Style (16th Edition):

Golovko, Roman. “The embedded contact homology of S1xD2.” 2009. Doctoral Dissertation, University of Southern California. Accessed March 08, 2021. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686.

MLA Handbook (7th Edition):

Golovko, Roman. “The embedded contact homology of S1xD2.” 2009. Web. 08 Mar 2021.

Vancouver:

Golovko R. The embedded contact homology of S1xD2. [Internet] [Doctoral dissertation]. University of Southern California; 2009. [cited 2021 Mar 08]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686.

Council of Science Editors:

Golovko R. The embedded contact homology of S1xD2. [Doctoral Dissertation]. University of Southern California; 2009. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686

5. Ahmad, Sharfuddin. On almost contact manifolds;.

Degree: Mathematics, 1977, Aligarh Muslim University

Abstract not available newline newline

Bibliography p. 89-92

Advisors/Committee Members: Ishar Husain, S.

Subjects/Keywords: Contact Manifolds; Curvature Tensor; Connexions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ahmad, S. (1977). On almost contact manifolds;. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/53120

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Thesis, Aligarh Muslim University. Accessed March 08, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/53120.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Web. 08 Mar 2021.

Vancouver:

Ahmad S. On almost contact manifolds;. [Internet] [Thesis]. Aligarh Muslim University; 1977. [cited 2021 Mar 08]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53120.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ahmad S. On almost contact manifolds;. [Thesis]. Aligarh Muslim University; 1977. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53120

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Ahmad, Sharfuddin. On almost contact manifolds;.

Degree: Mathematics, 1977, Aligarh Muslim University

Abstract not available newline newline

Bibliography p. 89-92

Advisors/Committee Members: Ishar Husain, S.

Subjects/Keywords: Contact Manifolds; Curvature Tensor; Connexions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ahmad, S. (1977). On almost contact manifolds;. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52218

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Thesis, Aligarh Muslim University. Accessed March 08, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/52218.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Web. 08 Mar 2021.

Vancouver:

Ahmad S. On almost contact manifolds;. [Internet] [Thesis]. Aligarh Muslim University; 1977. [cited 2021 Mar 08]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52218.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ahmad S. On almost contact manifolds;. [Thesis]. Aligarh Muslim University; 1977. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52218

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Μάρκελλος, Μιχαήλ. Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.

Degree: 2009, University of Patras

Το κύριο αντικείμενο της διατριβής συνίσταται στη μελέτη της γεωμετρίας των τρισδιάστατων H-μετρικών πολλαπλοτήτων επαφής, ή, ισοδύναμα, των μετρικών πολλαπλοτήτων επαφής για τις οποίες το… (more)

Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Η-μετρικές πολλαπλότητες επαφής; (κ, μ, ν)-μετρικές πολλαπλότητες επαφής; Γενικευμένες (κ, μ)-πολλαπλότητες επαφής; Αρμονικές απεικονίσεις; Διαρμονικές απεικονίσεις; 516.373; Contact metric manifolds; H-contact metric manifolds; (κ, μ, ν)-contact metric manifolds; Generalized (κ, μ)-contact metric manifolds; Harmonic maps; Biharmonic maps

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μάρκελλος, . (2009). Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. (Doctoral Dissertation). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/2705

Chicago Manual of Style (16th Edition):

Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Doctoral Dissertation, University of Patras. Accessed March 08, 2021. http://nemertes.lis.upatras.gr/jspui/handle/10889/2705.

MLA Handbook (7th Edition):

Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Web. 08 Mar 2021.

Vancouver:

Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Internet] [Doctoral dissertation]. University of Patras; 2009. [cited 2021 Mar 08]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/2705.

Council of Science Editors:

Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Doctoral Dissertation]. University of Patras; 2009. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/2705


University of Aberdeen

8. Spáčil, Oldřich.; University of Aberdeen.Dept. of Mathematics. On the Chern-Weil theory for transformation groups of contact manifolds.

Degree: Dept. of Mathematics., 2014, University of Aberdeen

Subjects/Keywords: Transformation groups.; Contact manifolds.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Spáčil, O. ;. U. o. A. D. o. M. (2014). On the Chern-Weil theory for transformation groups of contact manifolds. (Doctoral Dissertation). University of Aberdeen. Retrieved from http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer

Chicago Manual of Style (16th Edition):

Spáčil, Oldřich ; University of Aberdeen Dept of Mathematics. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Doctoral Dissertation, University of Aberdeen. Accessed March 08, 2021. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer.

MLA Handbook (7th Edition):

Spáčil, Oldřich ; University of Aberdeen Dept of Mathematics. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Web. 08 Mar 2021.

Vancouver:

Spáčil O;UoADoM. On the Chern-Weil theory for transformation groups of contact manifolds. [Internet] [Doctoral dissertation]. University of Aberdeen; 2014. [cited 2021 Mar 08]. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer.

Council of Science Editors:

Spáčil O;UoADoM. On the Chern-Weil theory for transformation groups of contact manifolds. [Doctoral Dissertation]. University of Aberdeen; 2014. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer


Georgia Tech

9. Conway, James. Transverse surgery on knots in contact three-manifolds.

Degree: PhD, Mathematics, 2016, Georgia Tech

 We study the effect of surgery on transverse knots in contact 3-manifolds by examining its effect on open books, the Heegaard Floer contact invariant, and… (more)

Subjects/Keywords: Contact geometry; Geometric topology; Knot theory; 3-manifolds; Topology; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Conway, J. (2016). Transverse surgery on knots in contact three-manifolds. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/55563

Chicago Manual of Style (16th Edition):

Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Doctoral Dissertation, Georgia Tech. Accessed March 08, 2021. http://hdl.handle.net/1853/55563.

MLA Handbook (7th Edition):

Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Web. 08 Mar 2021.

Vancouver:

Conway J. Transverse surgery on knots in contact three-manifolds. [Internet] [Doctoral dissertation]. Georgia Tech; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1853/55563.

Council of Science Editors:

Conway J. Transverse surgery on knots in contact three-manifolds. [Doctoral Dissertation]. Georgia Tech; 2016. Available from: http://hdl.handle.net/1853/55563


Michigan State University

10. Arıkan, Mehmet Fırat. Topological invariants of contact structures and planar open books.

Degree: PhD, Department of Mathematics, 2008, Michigan State University

Subjects/Keywords: Decomposition (Mathematics); Three-manifolds (Topology); Contact manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arıkan, M. F. (2008). Topological invariants of contact structures and planar open books. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:39191

Chicago Manual of Style (16th Edition):

Arıkan, Mehmet Fırat. “Topological invariants of contact structures and planar open books.” 2008. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:39191.

MLA Handbook (7th Edition):

Arıkan, Mehmet Fırat. “Topological invariants of contact structures and planar open books.” 2008. Web. 08 Mar 2021.

Vancouver:

Arıkan MF. Topological invariants of contact structures and planar open books. [Internet] [Doctoral dissertation]. Michigan State University; 2008. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:39191.

Council of Science Editors:

Arıkan MF. Topological invariants of contact structures and planar open books. [Doctoral Dissertation]. Michigan State University; 2008. Available from: http://etd.lib.msu.edu/islandora/object/etd:39191

11. Courte, Sylvain. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.

Degree: Docteur es, Mathématiques, 2015, Lyon, École normale supérieure

À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler… (more)

Subjects/Keywords: Variétés de contact; Variétés symplectiques; Symplectisation; Cobordismes de Weinstein; H-principe; H-cobordismes; Torsion de Whitehead; Contact manifolds; Symplectic manifolds; Symplectization; Weinstein cobordisms; H-principle; H-cobordisms; Whitehead torsion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Courte, S. (2015). H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL0991

Chicago Manual of Style (16th Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 08, 2021. http://www.theses.fr/2015ENSL0991.

MLA Handbook (7th Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Web. 08 Mar 2021.

Vancouver:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015ENSL0991.

Council of Science Editors:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL0991


Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

12. Τσολακίδου, Νίκη. Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας.

Degree: 2002, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

A contact manifold is a C? ? manifold M2n+1 equipped with a global 1? form η , called the contact form, such that ? (… (more)

Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Πολλαπλότητες του Riemann; Πολλαπλότητες κ-επαφής; Πολλαπλότητες Sasaki; Contact metric manifolds; Riemannian manifolds; K-contact manifolds; Sasakian manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Τσολακίδου, . . (2002). Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/15078

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Τσολακίδου, Νίκη. “Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας.” 2002. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/15078.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Τσολακίδου, Νίκη. “Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας.” 2002. Web. 08 Mar 2021.

Vancouver:

Τσολακίδου . Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2002. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/15078.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Τσολακίδου . Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2002. Available from: http://hdl.handle.net/10442/hedi/15078

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

13. Van Erp, Johannes. The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds.

Degree: 2008, Penn State University

 The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic differential operator. The topological index depends on a cohomology class that… (more)

Subjects/Keywords: Index theory; Hypoelliptic operators; Contact manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Erp, J. (2008). The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/6880

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Van Erp, Johannes. “The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds.” 2008. Thesis, Penn State University. Accessed March 08, 2021. https://submit-etda.libraries.psu.edu/catalog/6880.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Van Erp, Johannes. “The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds.” 2008. Web. 08 Mar 2021.

Vancouver:

Van Erp J. The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds. [Internet] [Thesis]. Penn State University; 2008. [cited 2021 Mar 08]. Available from: https://submit-etda.libraries.psu.edu/catalog/6880.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Van Erp J. The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds. [Thesis]. Penn State University; 2008. Available from: https://submit-etda.libraries.psu.edu/catalog/6880

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Massey University

14. Jayne, Nicola. Legendre foliations on contact metric manifolds.

Degree: PhD, Mathematics, 1992, Massey University

 This thesis develops the theory of Legendre foliations on contact manifolds by associating a contact metric structure with a contact manifold and investigating Legendre foliations… (more)

Subjects/Keywords: Legendre foliations; Contact manifolds; Legendre polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jayne, N. (1992). Legendre foliations on contact metric manifolds. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/3554

Chicago Manual of Style (16th Edition):

Jayne, Nicola. “Legendre foliations on contact metric manifolds.” 1992. Doctoral Dissertation, Massey University. Accessed March 08, 2021. http://hdl.handle.net/10179/3554.

MLA Handbook (7th Edition):

Jayne, Nicola. “Legendre foliations on contact metric manifolds.” 1992. Web. 08 Mar 2021.

Vancouver:

Jayne N. Legendre foliations on contact metric manifolds. [Internet] [Doctoral dissertation]. Massey University; 1992. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10179/3554.

Council of Science Editors:

Jayne N. Legendre foliations on contact metric manifolds. [Doctoral Dissertation]. Massey University; 1992. Available from: http://hdl.handle.net/10179/3554

15. Μάρκελλος, Μιχαήλ. Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann.

Degree: 2006, University of Patras

Στη μεταπτυχιακή αυτή διπλωματική εργασία, αρχικά εισάγουμε τις έννοιες των μετρικών πολλαπλοτήτων σχεδόν επαφής και των μετρικών πολλαπλοτήτων επαφής, δίνοντας και μερικά παραδείγματα από κάθε… (more)

Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Πολλαπλότητες Κ – επαφής; Πολλαπλότητες του Sasaki; (κ, μ) - πολλαπλότητες επαφής; Μετρικές πολλαπλότητες Η – επαφής; 512.73; Contact metric manifolds; K – contact manifolds; Sasakian manifolds; (κ, μ) – contact manifolds; H – contact metric manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μάρκελλος, . (2006). Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann. (Masters Thesis). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/881

Chicago Manual of Style (16th Edition):

Μάρκελλος, Μιχαήλ. “Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann.” 2006. Masters Thesis, University of Patras. Accessed March 08, 2021. http://nemertes.lis.upatras.gr/jspui/handle/10889/881.

MLA Handbook (7th Edition):

Μάρκελλος, Μιχαήλ. “Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann.” 2006. Web. 08 Mar 2021.

Vancouver:

Μάρκελλος . Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann. [Internet] [Masters thesis]. University of Patras; 2006. [cited 2021 Mar 08]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/881.

Council of Science Editors:

Μάρκελλος . Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann. [Masters Thesis]. University of Patras; 2006. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/881

16. Casey, Meredith Perrie. Branched covers of contact manifolds.

Degree: PhD, Mathematics, 2013, Georgia Tech

 We will discuss what is known about the construction of contact structures via branched covers, emphasizing the search for universal transverse knots. Recall that a… (more)

Subjects/Keywords: Branched covers; Contact geometry; Contact manifolds; Topology; Manifolds (Mathematics); Three-manifolds (Topology); Covering spaces (Topology)

…made to the case of contact manifolds. One such construction is branched covers. In the past… …contact structures. Our goal is to better understand branched covers of 3-manifolds and contact… …manifolds. The real substance to the subject of branched covers of contact manifolds came in 2002… …interested in contact manifolds) we want to construct open book decompositions for manifolds… …much about the behavior of the structure and for constructing contact manifolds via surgery… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Casey, M. P. (2013). Branched covers of contact manifolds. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/50313

Chicago Manual of Style (16th Edition):

Casey, Meredith Perrie. “Branched covers of contact manifolds.” 2013. Doctoral Dissertation, Georgia Tech. Accessed March 08, 2021. http://hdl.handle.net/1853/50313.

MLA Handbook (7th Edition):

Casey, Meredith Perrie. “Branched covers of contact manifolds.” 2013. Web. 08 Mar 2021.

Vancouver:

Casey MP. Branched covers of contact manifolds. [Internet] [Doctoral dissertation]. Georgia Tech; 2013. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1853/50313.

Council of Science Editors:

Casey MP. Branched covers of contact manifolds. [Doctoral Dissertation]. Georgia Tech; 2013. Available from: http://hdl.handle.net/1853/50313


University of South Africa

17. Tshikunguila, Tshikuna-Matamba. The differential geometry of the fibres of an almost contract metric submersion .

Degree: 2013, University of South Africa

 Almost contact metric submersions constitute a class of Riemannian submersions whose total space is an almost contact metric manifold. Regarding the base space, two types… (more)

Subjects/Keywords: Differential Geometry; Riemannian submersions; Almost contact metric submersions; CR-submersions; Contact CR-submanifolds; Almost contact metric manifolds; Almost Hermitian manifolds; Riemannian curvature tensor; Holomorphic sectional curvature; Minimal fibres; Superminimal fibres; Umbilicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tshikunguila, T. (2013). The differential geometry of the fibres of an almost contract metric submersion . (Doctoral Dissertation). University of South Africa. Retrieved from http://hdl.handle.net/10500/18622

Chicago Manual of Style (16th Edition):

Tshikunguila, Tshikuna-Matamba. “The differential geometry of the fibres of an almost contract metric submersion .” 2013. Doctoral Dissertation, University of South Africa. Accessed March 08, 2021. http://hdl.handle.net/10500/18622.

MLA Handbook (7th Edition):

Tshikunguila, Tshikuna-Matamba. “The differential geometry of the fibres of an almost contract metric submersion .” 2013. Web. 08 Mar 2021.

Vancouver:

Tshikunguila T. The differential geometry of the fibres of an almost contract metric submersion . [Internet] [Doctoral dissertation]. University of South Africa; 2013. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10500/18622.

Council of Science Editors:

Tshikunguila T. The differential geometry of the fibres of an almost contract metric submersion . [Doctoral Dissertation]. University of South Africa; 2013. Available from: http://hdl.handle.net/10500/18622


Michigan State University

18. Deng, Shangrong. Variational problems on contact manifolds.

Degree: PhD, Department of Mathematics, 1991, Michigan State University

Subjects/Keywords: Contact manifolds; Variational inequalities (Mathematics); Geometry, Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Deng, S. (1991). Variational problems on contact manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:23041

Chicago Manual of Style (16th Edition):

Deng, Shangrong. “Variational problems on contact manifolds.” 1991. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:23041.

MLA Handbook (7th Edition):

Deng, Shangrong. “Variational problems on contact manifolds.” 1991. Web. 08 Mar 2021.

Vancouver:

Deng S. Variational problems on contact manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 1991. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:23041.

Council of Science Editors:

Deng S. Variational problems on contact manifolds. [Doctoral Dissertation]. Michigan State University; 1991. Available from: http://etd.lib.msu.edu/islandora/object/etd:23041


University of New Mexico

19. Pati, Justin. Contact homology of toric contact manifolds of Reeb type.

Degree: Mathematics & Statistics, 2010, University of New Mexico

 We use contact homology to distinguish contact structures on various manifolds. We are primarily interested in contact manifolds which admit an action of Reeb type… (more)

Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193

Chicago Manual of Style (16th Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed March 08, 2021. http://hdl.handle.net/1928/11193.

MLA Handbook (7th Edition):

Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 08 Mar 2021.

Vancouver:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1928/11193.

Council of Science Editors:

Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193


Indian Institute of Science

20. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.

Degree: PhD, Faculty of Science, 2014, Indian Institute of Science

 The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the… (more)

Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285

Chicago Manual of Style (16th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed March 08, 2021. http://etd.iisc.ac.in/handle/2005/2285.

MLA Handbook (7th Edition):

Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 08 Mar 2021.

Vancouver:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2021 Mar 08]. Available from: http://etd.iisc.ac.in/handle/2005/2285.

Council of Science Editors:

Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285

21. Μάρκελλος, Μιχαήλ. Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.

Degree: 2009, University of Patras; Πανεπιστήμιο Πατρών

The main object of this Doctoral Thesis is the study of the geometry of 3-dimensional H-contact metric manifolds, or, equivalently, the contact metric manifolds whose… (more)

Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Κ, μ, ν, μετρικές πολλαπλότητες επαφής; Αρμονικά χαρακτηριστικά διανυσματικά πεδία; Η - πολλαπλότητες επαφής; Αρμονικές απεικονίσεις; Διαρμονικές απεικονίσεις; Contact metric manifolds; Κ, μ, ν, contact metric manifolds; Harmonic characteristic vector fields; Η - contact manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μάρκελλος, . . (2009). Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. (Thesis). University of Patras; Πανεπιστήμιο Πατρών. Retrieved from http://hdl.handle.net/10442/hedi/18245

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Thesis, University of Patras; Πανεπιστήμιο Πατρών. Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/18245.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Web. 08 Mar 2021.

Vancouver:

Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Internet] [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2009. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/18245.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2009. Available from: http://hdl.handle.net/10442/hedi/18245

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

22. Silva, André Vanderlinde da. Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido.

Degree: PhD, Matemática, 2014, University of São Paulo

Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato \λ definida numa 3-variedade compacta e conexa M. Assumimos que \λ é… (more)

Subjects/Keywords: Closed orbits; Contact manifolds; Curvas pseudo-holomorfas em simplectizações; Dinâmica de Reeb; Folheações transversais; Órbitas periódicas; Pseudo-holomorphic curves in simplectizations; Reeb dynamics; Transverse foliations.; Variedades de contato

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, A. V. d. (2014). Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;

Chicago Manual of Style (16th Edition):

Silva, André Vanderlinde da. “Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido.” 2014. Doctoral Dissertation, University of São Paulo. Accessed March 08, 2021. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;.

MLA Handbook (7th Edition):

Silva, André Vanderlinde da. “Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido.” 2014. Web. 08 Mar 2021.

Vancouver:

Silva AVd. Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2021 Mar 08]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;.

Council of Science Editors:

Silva AVd. Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;


University of Michigan

23. Boland, Jeffrey Ronald. The dynamics and geometry of contact Anosov flows.

Degree: PhD, Pure Sciences, 1998, University of Michigan

 We study the rigidity of negatively curved Riemannian manifolds from the dynamical point of view by considering contact Anosov flows on their unit tangent bundles.… (more)

Subjects/Keywords: Contact Anosov Flows; Dynamics; Finsler Geometry; Geodesic Flows; Riemannian Manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boland, J. R. (1998). The dynamics and geometry of contact Anosov flows. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131167

Chicago Manual of Style (16th Edition):

Boland, Jeffrey Ronald. “The dynamics and geometry of contact Anosov flows.” 1998. Doctoral Dissertation, University of Michigan. Accessed March 08, 2021. http://hdl.handle.net/2027.42/131167.

MLA Handbook (7th Edition):

Boland, Jeffrey Ronald. “The dynamics and geometry of contact Anosov flows.” 1998. Web. 08 Mar 2021.

Vancouver:

Boland JR. The dynamics and geometry of contact Anosov flows. [Internet] [Doctoral dissertation]. University of Michigan; 1998. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2027.42/131167.

Council of Science Editors:

Boland JR. The dynamics and geometry of contact Anosov flows. [Doctoral Dissertation]. University of Michigan; 1998. Available from: http://hdl.handle.net/2027.42/131167


Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

24. Θεοφανίδης, Θεοχάρης. Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.

Degree: 2011, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

 J. de Dios Perez, F. G. Santos and Y. J. Suh in [29], studied real hypersurfaces of dimension greater than 3 in complex projective spaces,… (more)

Subjects/Keywords: Διαφορική γεωμετρία; Πολλαπλότητα Riemann; Μιγαδικός χώρος μορφής; Πραγματική υπερεπιφάνεια; Δομή σχεδόν επαφής; Τελεστής δομής Jacobi; Differential geometry; Riemannian manifolds; Complex space form; Real hypersurface; Almost contact structure; Jacobi structure operator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Θεοφανίδης, . . (2011). Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/27049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/27049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Web. 08 Mar 2021.

Vancouver:

Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/27049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. Available from: http://hdl.handle.net/10442/hedi/27049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

25. Μουτάφη, Ευαγγελία. Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων.

Degree: 2010, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

The aim of this thesis which is entitled “Study of Contact Manifolds Using the Curvature”, is the study of 3-dimensional contact metric manifolds which are… (more)

Subjects/Keywords: Επαφής μετρικές πολλαπλότητες; Ψευδοσυμμετρικοί χώροι κατά R. Deszcz; Contact metric manifolds; Pseudosymmetric spaces according to R. Deszcz

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Μουτάφη, . . (2010). Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/22094

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Μουτάφη, Ευαγγελία. “Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων.” 2010. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/22094.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Μουτάφη, Ευαγγελία. “Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων.” 2010. Web. 08 Mar 2021.

Vancouver:

Μουτάφη . Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/22094.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Μουτάφη . Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2010. Available from: http://hdl.handle.net/10442/hedi/22094

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

26. Josà Nazareno Vieira Gomes. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.

Degree: PhD, 2012, Universidade Federal do Ceará

Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta… (more)

Subjects/Keywords: GEOMETRIA DIFERENCIAL; Ãngulo de contato; toro de Clifford; curvatura mÃdia constante; esfera euclidiana; quase sÃliton de Ricci; campo de vetores conforme; curvatura escalar constante; contact angle; Clifford torus; constant mean curvature; euclidian sphere; almost Ricci soliton; conformal vector fields; constant scalar curvature; variedades riemanianas; Riemannian manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gomes, J. N. V. (2012). Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. (Doctoral Dissertation). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;

Chicago Manual of Style (16th Edition):

Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Doctoral Dissertation, Universidade Federal do Ceará. Accessed March 08, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.

MLA Handbook (7th Edition):

Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Web. 08 Mar 2021.

Vancouver:

Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Internet] [Doctoral dissertation]. Universidade Federal do Ceará 2012. [cited 2021 Mar 08]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.

Council of Science Editors:

Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Doctoral Dissertation]. Universidade Federal do Ceará 2012. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;

.