Advanced search options
You searched for subject:(Contact manifolds)
.
Showing records 1 – 26 of
26 total matches.
▼ Search Limiters
Michigan State University
1. Kasebian, Kaveh. Concave fillings and branched covers.
Degree: 2018, Michigan State University
URL: http://etd.lib.msu.edu/islandora/object/etd:16402
Subjects/Keywords: Contact manifolds; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kasebian, K. (2018). Concave fillings and branched covers. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:16402
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Kasebian, Kaveh. “Concave fillings and branched covers.” 2018. Thesis, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:16402.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Kasebian, Kaveh. “Concave fillings and branched covers.” 2018. Web. 08 Mar 2021.
Vancouver:
Kasebian K. Concave fillings and branched covers. [Internet] [Thesis]. Michigan State University; 2018. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:16402.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Kasebian K. Concave fillings and branched covers. [Thesis]. Michigan State University; 2018. Available from: http://etd.lib.msu.edu/islandora/object/etd:16402
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
University of Aberdeen
2. Spáčil, Oldřich. On the Chern-Weil theory for transformation groups of contact manifolds.
Degree: PhD, 2014, University of Aberdeen
URL: https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183
Subjects/Keywords: 510; Transformation groups; Contact manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Spáčil, O. (2014). On the Chern-Weil theory for transformation groups of contact manifolds. (Doctoral Dissertation). University of Aberdeen. Retrieved from https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183
Chicago Manual of Style (16th Edition):
Spáčil, Oldřich. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Doctoral Dissertation, University of Aberdeen. Accessed March 08, 2021. https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183.
MLA Handbook (7th Edition):
Spáčil, Oldřich. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Web. 08 Mar 2021.
Vancouver:
Spáčil O. On the Chern-Weil theory for transformation groups of contact manifolds. [Internet] [Doctoral dissertation]. University of Aberdeen; 2014. [cited 2021 Mar 08]. Available from: https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183.
Council of Science Editors:
Spáčil O. On the Chern-Weil theory for transformation groups of contact manifolds. [Doctoral Dissertation]. University of Aberdeen; 2014. Available from: https://abdn.alma.exlibrisgroup.com/view/delivery/44ABE_INST/12153235850005941 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619183
Georgia Tech
3. Tosun, Bulent. Legendrian and transverse knots and their invariants.
Degree: PhD, Mathematics, 2012, Georgia Tech
URL: http://hdl.handle.net/1853/44880
Subjects/Keywords: Knots in contact geometry. cabling; Knot theory; Contact manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Tosun, B. (2012). Legendrian and transverse knots and their invariants. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/44880
Chicago Manual of Style (16th Edition):
Tosun, Bulent. “Legendrian and transverse knots and their invariants.” 2012. Doctoral Dissertation, Georgia Tech. Accessed March 08, 2021. http://hdl.handle.net/1853/44880.
MLA Handbook (7th Edition):
Tosun, Bulent. “Legendrian and transverse knots and their invariants.” 2012. Web. 08 Mar 2021.
Vancouver:
Tosun B. Legendrian and transverse knots and their invariants. [Internet] [Doctoral dissertation]. Georgia Tech; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1853/44880.
Council of Science Editors:
Tosun B. Legendrian and transverse knots and their invariants. [Doctoral Dissertation]. Georgia Tech; 2012. Available from: http://hdl.handle.net/1853/44880
University of Southern California
4. Golovko, Roman. The embedded contact homology of S1xD2.
Degree: PhD, Mathematics, 2009, University of Southern California
URL: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686
Subjects/Keywords: embedded contact homology; sutured contact manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Golovko, R. (2009). The embedded contact homology of S1xD2. (Doctoral Dissertation). University of Southern California. Retrieved from http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686
Chicago Manual of Style (16th Edition):
Golovko, Roman. “The embedded contact homology of S1xD2.” 2009. Doctoral Dissertation, University of Southern California. Accessed March 08, 2021. http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686.
MLA Handbook (7th Edition):
Golovko, Roman. “The embedded contact homology of S1xD2.” 2009. Web. 08 Mar 2021.
Vancouver:
Golovko R. The embedded contact homology of S1xD2. [Internet] [Doctoral dissertation]. University of Southern California; 2009. [cited 2021 Mar 08]. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686.
Council of Science Editors:
Golovko R. The embedded contact homology of S1xD2. [Doctoral Dissertation]. University of Southern California; 2009. Available from: http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll127/id/236216/rec/6686
5. Ahmad, Sharfuddin. On almost contact manifolds;.
Degree: Mathematics, 1977, Aligarh Muslim University
URL: http://shodhganga.inflibnet.ac.in/handle/10603/53120
Abstract not available newline newline
Bibliography p. 89-92
Advisors/Committee Members: Ishar Husain, S.Subjects/Keywords: Contact Manifolds; Curvature Tensor; Connexions
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ahmad, S. (1977). On almost contact manifolds;. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/53120
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Thesis, Aligarh Muslim University. Accessed March 08, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/53120.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Web. 08 Mar 2021.
Vancouver:
Ahmad S. On almost contact manifolds;. [Internet] [Thesis]. Aligarh Muslim University; 1977. [cited 2021 Mar 08]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53120.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ahmad S. On almost contact manifolds;. [Thesis]. Aligarh Muslim University; 1977. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/53120
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
6. Ahmad, Sharfuddin. On almost contact manifolds;.
Degree: Mathematics, 1977, Aligarh Muslim University
URL: http://shodhganga.inflibnet.ac.in/handle/10603/52218
Abstract not available newline newline
Bibliography p. 89-92
Advisors/Committee Members: Ishar Husain, S.Subjects/Keywords: Contact Manifolds; Curvature Tensor; Connexions
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ahmad, S. (1977). On almost contact manifolds;. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52218
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Thesis, Aligarh Muslim University. Accessed March 08, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/52218.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ahmad, Sharfuddin. “On almost contact manifolds;.” 1977. Web. 08 Mar 2021.
Vancouver:
Ahmad S. On almost contact manifolds;. [Internet] [Thesis]. Aligarh Muslim University; 1977. [cited 2021 Mar 08]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52218.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ahmad S. On almost contact manifolds;. [Thesis]. Aligarh Muslim University; 1977. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52218
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
7. Μάρκελλος, Μιχαήλ. Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.
Degree: 2009, University of Patras
URL: http://nemertes.lis.upatras.gr/jspui/handle/10889/2705
Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Η-μετρικές πολλαπλότητες επαφής; (κ, μ, ν)-μετρικές πολλαπλότητες επαφής; Γενικευμένες (κ, μ)-πολλαπλότητες επαφής; Αρμονικές απεικονίσεις; Διαρμονικές απεικονίσεις; 516.373; Contact metric manifolds; H-contact metric manifolds; (κ, μ, ν)-contact metric manifolds; Generalized (κ, μ)-contact metric manifolds; Harmonic maps; Biharmonic maps
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Μάρκελλος, . (2009). Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. (Doctoral Dissertation). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/2705
Chicago Manual of Style (16th Edition):
Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Doctoral Dissertation, University of Patras. Accessed March 08, 2021. http://nemertes.lis.upatras.gr/jspui/handle/10889/2705.
MLA Handbook (7th Edition):
Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Web. 08 Mar 2021.
Vancouver:
Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Internet] [Doctoral dissertation]. University of Patras; 2009. [cited 2021 Mar 08]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/2705.
Council of Science Editors:
Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Doctoral Dissertation]. University of Patras; 2009. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/2705
University of Aberdeen
8. Spáčil, Oldřich.; University of Aberdeen.Dept. of Mathematics. On the Chern-Weil theory for transformation groups of contact manifolds.
Degree: Dept. of Mathematics., 2014, University of Aberdeen
URL: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433
;
http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer
Subjects/Keywords: Transformation groups.; Contact manifolds.
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Spáčil, O. ;. U. o. A. D. o. M. (2014). On the Chern-Weil theory for transformation groups of contact manifolds. (Doctoral Dissertation). University of Aberdeen. Retrieved from http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer
Chicago Manual of Style (16th Edition):
Spáčil, Oldřich ; University of Aberdeen Dept of Mathematics. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Doctoral Dissertation, University of Aberdeen. Accessed March 08, 2021. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer.
MLA Handbook (7th Edition):
Spáčil, Oldřich ; University of Aberdeen Dept of Mathematics. “On the Chern-Weil theory for transformation groups of contact manifolds.” 2014. Web. 08 Mar 2021.
Vancouver:
Spáčil O;UoADoM. On the Chern-Weil theory for transformation groups of contact manifolds. [Internet] [Doctoral dissertation]. University of Aberdeen; 2014. [cited 2021 Mar 08]. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer.
Council of Science Editors:
Spáčil O;UoADoM. On the Chern-Weil theory for transformation groups of contact manifolds. [Doctoral Dissertation]. University of Aberdeen; 2014. Available from: http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=211433 ; http://digitool.abdn.ac.uk:1801/webclient/DeliveryManager?pid=211433&custom_att_2=simple_viewer
Georgia Tech
9. Conway, James. Transverse surgery on knots in contact three-manifolds.
Degree: PhD, Mathematics, 2016, Georgia Tech
URL: http://hdl.handle.net/1853/55563
Subjects/Keywords: Contact geometry; Geometric topology; Knot theory; 3-manifolds; Topology; Geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Conway, J. (2016). Transverse surgery on knots in contact three-manifolds. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/55563
Chicago Manual of Style (16th Edition):
Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Doctoral Dissertation, Georgia Tech. Accessed March 08, 2021. http://hdl.handle.net/1853/55563.
MLA Handbook (7th Edition):
Conway, James. “Transverse surgery on knots in contact three-manifolds.” 2016. Web. 08 Mar 2021.
Vancouver:
Conway J. Transverse surgery on knots in contact three-manifolds. [Internet] [Doctoral dissertation]. Georgia Tech; 2016. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1853/55563.
Council of Science Editors:
Conway J. Transverse surgery on knots in contact three-manifolds. [Doctoral Dissertation]. Georgia Tech; 2016. Available from: http://hdl.handle.net/1853/55563
Michigan State University
10. Arıkan, Mehmet Fırat. Topological invariants of contact structures and planar open books.
Degree: PhD, Department of Mathematics, 2008, Michigan State University
URL: http://etd.lib.msu.edu/islandora/object/etd:39191
Subjects/Keywords: Decomposition (Mathematics); Three-manifolds (Topology); Contact manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Arıkan, M. F. (2008). Topological invariants of contact structures and planar open books. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:39191
Chicago Manual of Style (16th Edition):
Arıkan, Mehmet Fırat. “Topological invariants of contact structures and planar open books.” 2008. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:39191.
MLA Handbook (7th Edition):
Arıkan, Mehmet Fırat. “Topological invariants of contact structures and planar open books.” 2008. Web. 08 Mar 2021.
Vancouver:
Arıkan MF. Topological invariants of contact structures and planar open books. [Internet] [Doctoral dissertation]. Michigan State University; 2008. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:39191.
Council of Science Editors:
Arıkan MF. Topological invariants of contact structures and planar open books. [Doctoral Dissertation]. Michigan State University; 2008. Available from: http://etd.lib.msu.edu/islandora/object/etd:39191
11. Courte, Sylvain. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.
Degree: Docteur es, Mathématiques, 2015, Lyon, École normale supérieure
URL: http://www.theses.fr/2015ENSL0991
Subjects/Keywords: Variétés de contact; Variétés symplectiques; Symplectisation; Cobordismes de Weinstein; H-principe; H-cobordismes; Torsion de Whitehead; Contact manifolds; Symplectic manifolds; Symplectization; Weinstein cobordisms; H-principle; H-cobordisms; Whitehead torsion
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Courte, S. (2015). H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL0991
Chicago Manual of Style (16th Edition):
Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 08, 2021. http://www.theses.fr/2015ENSL0991.
MLA Handbook (7th Edition):
Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Web. 08 Mar 2021.
Vancouver:
Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015ENSL0991.
Council of Science Editors:
Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL0991
Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
12. Τσολακίδου, Νίκη. Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας.
Degree: 2002, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
URL: http://hdl.handle.net/10442/hedi/15078
Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Πολλαπλότητες του Riemann; Πολλαπλότητες κ-επαφής; Πολλαπλότητες Sasaki; Contact metric manifolds; Riemannian manifolds; K-contact manifolds; Sasakian manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Τσολακίδου, . . (2002). Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/15078
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Τσολακίδου, Νίκη. “Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας.” 2002. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/15078.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Τσολακίδου, Νίκη. “Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας.” 2002. Web. 08 Mar 2021.
Vancouver:
Τσολακίδου . Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2002. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/15078.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Τσολακίδου . Μελέτη μετρικών πολλαπλοτήτων επαφής με τη βοήθεια τανυστών καμπυλότητας. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2002. Available from: http://hdl.handle.net/10442/hedi/15078
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Penn State University
13. Van Erp, Johannes. The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds.
Degree: 2008, Penn State University
URL: https://submit-etda.libraries.psu.edu/catalog/6880
Subjects/Keywords: Index theory; Hypoelliptic operators; Contact manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Van Erp, J. (2008). The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/6880
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Van Erp, Johannes. “The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds.” 2008. Thesis, Penn State University. Accessed March 08, 2021. https://submit-etda.libraries.psu.edu/catalog/6880.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Van Erp, Johannes. “The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds.” 2008. Web. 08 Mar 2021.
Vancouver:
Van Erp J. The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds. [Internet] [Thesis]. Penn State University; 2008. [cited 2021 Mar 08]. Available from: https://submit-etda.libraries.psu.edu/catalog/6880.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Van Erp J. The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds. [Thesis]. Penn State University; 2008. Available from: https://submit-etda.libraries.psu.edu/catalog/6880
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Massey University
14. Jayne, Nicola. Legendre foliations on contact metric manifolds.
Degree: PhD, Mathematics, 1992, Massey University
URL: http://hdl.handle.net/10179/3554
Subjects/Keywords: Legendre foliations; Contact manifolds; Legendre polynomials
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Jayne, N. (1992). Legendre foliations on contact metric manifolds. (Doctoral Dissertation). Massey University. Retrieved from http://hdl.handle.net/10179/3554
Chicago Manual of Style (16th Edition):
Jayne, Nicola. “Legendre foliations on contact metric manifolds.” 1992. Doctoral Dissertation, Massey University. Accessed March 08, 2021. http://hdl.handle.net/10179/3554.
MLA Handbook (7th Edition):
Jayne, Nicola. “Legendre foliations on contact metric manifolds.” 1992. Web. 08 Mar 2021.
Vancouver:
Jayne N. Legendre foliations on contact metric manifolds. [Internet] [Doctoral dissertation]. Massey University; 1992. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10179/3554.
Council of Science Editors:
Jayne N. Legendre foliations on contact metric manifolds. [Doctoral Dissertation]. Massey University; 1992. Available from: http://hdl.handle.net/10179/3554
15. Μάρκελλος, Μιχαήλ. Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann.
Degree: 2006, University of Patras
URL: http://nemertes.lis.upatras.gr/jspui/handle/10889/881
Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Πολλαπλότητες Κ – επαφής; Πολλαπλότητες του Sasaki; (κ, μ) - πολλαπλότητες επαφής; Μετρικές πολλαπλότητες Η – επαφής; 512.73; Contact metric manifolds; K – contact manifolds; Sasakian manifolds; (κ, μ) – contact manifolds; H – contact metric manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Μάρκελλος, . (2006). Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann. (Masters Thesis). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/881
Chicago Manual of Style (16th Edition):
Μάρκελλος, Μιχαήλ. “Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann.” 2006. Masters Thesis, University of Patras. Accessed March 08, 2021. http://nemertes.lis.upatras.gr/jspui/handle/10889/881.
MLA Handbook (7th Edition):
Μάρκελλος, Μιχαήλ. “Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann.” 2006. Web. 08 Mar 2021.
Vancouver:
Μάρκελλος . Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann. [Internet] [Masters thesis]. University of Patras; 2006. [cited 2021 Mar 08]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/881.
Council of Science Editors:
Μάρκελλος . Ειδικές κατηγορίες πολλαπλοτήτων επαφής Riemann. [Masters Thesis]. University of Patras; 2006. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/881
16. Casey, Meredith Perrie. Branched covers of contact manifolds.
Degree: PhD, Mathematics, 2013, Georgia Tech
URL: http://hdl.handle.net/1853/50313
Subjects/Keywords: Branched covers; Contact geometry; Contact manifolds; Topology; Manifolds (Mathematics); Three-manifolds (Topology); Covering spaces (Topology)
…made to the case of contact manifolds. One such construction is branched covers. In the past… …contact structures. Our goal is to better understand branched covers of 3-manifolds and contact… …manifolds. The real substance to the subject of branched covers of contact manifolds came in 2002… …interested in contact manifolds) we want to construct open book decompositions for manifolds… …much about the behavior of the structure and for constructing contact manifolds via surgery…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Casey, M. P. (2013). Branched covers of contact manifolds. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/50313
Chicago Manual of Style (16th Edition):
Casey, Meredith Perrie. “Branched covers of contact manifolds.” 2013. Doctoral Dissertation, Georgia Tech. Accessed March 08, 2021. http://hdl.handle.net/1853/50313.
MLA Handbook (7th Edition):
Casey, Meredith Perrie. “Branched covers of contact manifolds.” 2013. Web. 08 Mar 2021.
Vancouver:
Casey MP. Branched covers of contact manifolds. [Internet] [Doctoral dissertation]. Georgia Tech; 2013. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1853/50313.
Council of Science Editors:
Casey MP. Branched covers of contact manifolds. [Doctoral Dissertation]. Georgia Tech; 2013. Available from: http://hdl.handle.net/1853/50313
University of South Africa
17. Tshikunguila, Tshikuna-Matamba. The differential geometry of the fibres of an almost contract metric submersion .
Degree: 2013, University of South Africa
URL: http://hdl.handle.net/10500/18622
Subjects/Keywords: Differential Geometry; Riemannian submersions; Almost contact metric submersions; CR-submersions; Contact CR-submanifolds; Almost contact metric manifolds; Almost Hermitian manifolds; Riemannian curvature tensor; Holomorphic sectional curvature; Minimal fibres; Superminimal fibres; Umbilicity
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Tshikunguila, T. (2013). The differential geometry of the fibres of an almost contract metric submersion . (Doctoral Dissertation). University of South Africa. Retrieved from http://hdl.handle.net/10500/18622
Chicago Manual of Style (16th Edition):
Tshikunguila, Tshikuna-Matamba. “The differential geometry of the fibres of an almost contract metric submersion .” 2013. Doctoral Dissertation, University of South Africa. Accessed March 08, 2021. http://hdl.handle.net/10500/18622.
MLA Handbook (7th Edition):
Tshikunguila, Tshikuna-Matamba. “The differential geometry of the fibres of an almost contract metric submersion .” 2013. Web. 08 Mar 2021.
Vancouver:
Tshikunguila T. The differential geometry of the fibres of an almost contract metric submersion . [Internet] [Doctoral dissertation]. University of South Africa; 2013. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10500/18622.
Council of Science Editors:
Tshikunguila T. The differential geometry of the fibres of an almost contract metric submersion . [Doctoral Dissertation]. University of South Africa; 2013. Available from: http://hdl.handle.net/10500/18622
Michigan State University
18. Deng, Shangrong. Variational problems on contact manifolds.
Degree: PhD, Department of Mathematics, 1991, Michigan State University
URL: http://etd.lib.msu.edu/islandora/object/etd:23041
Subjects/Keywords: Contact manifolds; Variational inequalities (Mathematics); Geometry, Differential
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Deng, S. (1991). Variational problems on contact manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:23041
Chicago Manual of Style (16th Edition):
Deng, Shangrong. “Variational problems on contact manifolds.” 1991. Doctoral Dissertation, Michigan State University. Accessed March 08, 2021. http://etd.lib.msu.edu/islandora/object/etd:23041.
MLA Handbook (7th Edition):
Deng, Shangrong. “Variational problems on contact manifolds.” 1991. Web. 08 Mar 2021.
Vancouver:
Deng S. Variational problems on contact manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 1991. [cited 2021 Mar 08]. Available from: http://etd.lib.msu.edu/islandora/object/etd:23041.
Council of Science Editors:
Deng S. Variational problems on contact manifolds. [Doctoral Dissertation]. Michigan State University; 1991. Available from: http://etd.lib.msu.edu/islandora/object/etd:23041
University of New Mexico
19. Pati, Justin. Contact homology of toric contact manifolds of Reeb type.
Degree: Mathematics & Statistics, 2010, University of New Mexico
URL: http://hdl.handle.net/1928/11193
Subjects/Keywords: Contact manifolds; Symplectic and contact topology; Toric varieties; Orbifolds; Homology theory.
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pati, J. (2010). Contact homology of toric contact manifolds of Reeb type. (Doctoral Dissertation). University of New Mexico. Retrieved from http://hdl.handle.net/1928/11193
Chicago Manual of Style (16th Edition):
Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Doctoral Dissertation, University of New Mexico. Accessed March 08, 2021. http://hdl.handle.net/1928/11193.
MLA Handbook (7th Edition):
Pati, Justin. “Contact homology of toric contact manifolds of Reeb type.” 2010. Web. 08 Mar 2021.
Vancouver:
Pati J. Contact homology of toric contact manifolds of Reeb type. [Internet] [Doctoral dissertation]. University of New Mexico; 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1928/11193.
Council of Science Editors:
Pati J. Contact homology of toric contact manifolds of Reeb type. [Doctoral Dissertation]. University of New Mexico; 2010. Available from: http://hdl.handle.net/1928/11193
Indian Institute of Science
20. Kulkarni, Dheeraj. Relative Symplectic Caps, Fibered Knots And 4-Genus.
Degree: PhD, Faculty of Science, 2014, Indian Institute of Science
URL: http://etd.iisc.ac.in/handle/2005/2285
Subjects/Keywords: Symplectic Geometry; Symplectic Capping Theorem; Symlpectic Manifolds; Fibered Knots; 4-Genus Knots; Symplectic Caps; Knot Theory; Contact Geometry; Contact Manifolds; Quasipositive Knots; Symplectic Convexity; Topology; Symplectic Neighborhood Theorem; Seifert Surfaces; Riemann Surface; Geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kulkarni, D. (2014). Relative Symplectic Caps, Fibered Knots And 4-Genus. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2285
Chicago Manual of Style (16th Edition):
Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Doctoral Dissertation, Indian Institute of Science. Accessed March 08, 2021. http://etd.iisc.ac.in/handle/2005/2285.
MLA Handbook (7th Edition):
Kulkarni, Dheeraj. “Relative Symplectic Caps, Fibered Knots And 4-Genus.” 2014. Web. 08 Mar 2021.
Vancouver:
Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2014. [cited 2021 Mar 08]. Available from: http://etd.iisc.ac.in/handle/2005/2285.
Council of Science Editors:
Kulkarni D. Relative Symplectic Caps, Fibered Knots And 4-Genus. [Doctoral Dissertation]. Indian Institute of Science; 2014. Available from: http://etd.iisc.ac.in/handle/2005/2285
21. Μάρκελλος, Μιχαήλ. Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.
Degree: 2009, University of Patras; Πανεπιστήμιο Πατρών
URL: http://hdl.handle.net/10442/hedi/18245
Subjects/Keywords: Μετρικές πολλαπλότητες επαφής; Κ, μ, ν, μετρικές πολλαπλότητες επαφής; Αρμονικά χαρακτηριστικά διανυσματικά πεδία; Η - πολλαπλότητες επαφής; Αρμονικές απεικονίσεις; Διαρμονικές απεικονίσεις; Contact metric manifolds; Κ, μ, ν, contact metric manifolds; Harmonic characteristic vector fields; Η - contact manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Μάρκελλος, . . (2009). Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. (Thesis). University of Patras; Πανεπιστήμιο Πατρών. Retrieved from http://hdl.handle.net/10442/hedi/18245
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Thesis, University of Patras; Πανεπιστήμιο Πατρών. Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/18245.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Μάρκελλος, Μιχαήλ. “Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann.” 2009. Web. 08 Mar 2021.
Vancouver:
Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Internet] [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2009. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/18245.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Μάρκελλος . Μελέτη ειδικών κατηγοριών πολλαπλοτήτων επαφής Riemann. [Thesis]. University of Patras; Πανεπιστήμιο Πατρών; 2009. Available from: http://hdl.handle.net/10442/hedi/18245
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
22. Silva, André Vanderlinde da. Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido.
Degree: PhD, Matemática, 2014, University of São Paulo
URL: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/
;
Subjects/Keywords: Closed orbits; Contact manifolds; Curvas pseudo-holomorfas em simplectizações; Dinâmica de Reeb; Folheações transversais; Órbitas periódicas; Pseudo-holomorphic curves in simplectizations; Reeb dynamics; Transverse foliations.; Variedades de contato
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Silva, A. V. d. (2014). Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;
Chicago Manual of Style (16th Edition):
Silva, André Vanderlinde da. “Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido.” 2014. Doctoral Dissertation, University of São Paulo. Accessed March 08, 2021. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;.
MLA Handbook (7th Edition):
Silva, André Vanderlinde da. “Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido.” 2014. Web. 08 Mar 2021.
Vancouver:
Silva AVd. Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. [Internet] [Doctoral dissertation]. University of São Paulo; 2014. [cited 2021 Mar 08]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;.
Council of Science Editors:
Silva AVd. Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. [Doctoral Dissertation]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05022015-222314/ ;
University of Michigan
23. Boland, Jeffrey Ronald. The dynamics and geometry of contact Anosov flows.
Degree: PhD, Pure Sciences, 1998, University of Michigan
URL: http://hdl.handle.net/2027.42/131167
Subjects/Keywords: Contact Anosov Flows; Dynamics; Finsler Geometry; Geodesic Flows; Riemannian Manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Boland, J. R. (1998). The dynamics and geometry of contact Anosov flows. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131167
Chicago Manual of Style (16th Edition):
Boland, Jeffrey Ronald. “The dynamics and geometry of contact Anosov flows.” 1998. Doctoral Dissertation, University of Michigan. Accessed March 08, 2021. http://hdl.handle.net/2027.42/131167.
MLA Handbook (7th Edition):
Boland, Jeffrey Ronald. “The dynamics and geometry of contact Anosov flows.” 1998. Web. 08 Mar 2021.
Vancouver:
Boland JR. The dynamics and geometry of contact Anosov flows. [Internet] [Doctoral dissertation]. University of Michigan; 1998. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2027.42/131167.
Council of Science Editors:
Boland JR. The dynamics and geometry of contact Anosov flows. [Doctoral Dissertation]. University of Michigan; 1998. Available from: http://hdl.handle.net/2027.42/131167
Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
24. Θεοφανίδης, Θεοχάρης. Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.
Degree: 2011, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
URL: http://hdl.handle.net/10442/hedi/27049
Subjects/Keywords: Διαφορική γεωμετρία; Πολλαπλότητα Riemann; Μιγαδικός χώρος μορφής; Πραγματική υπερεπιφάνεια; Δομή σχεδόν επαφής; Τελεστής δομής Jacobi; Differential geometry; Riemannian manifolds; Complex space form; Real hypersurface; Almost contact structure; Jacobi structure operator
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Θεοφανίδης, . . (2011). Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/27049
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/27049.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Web. 08 Mar 2021.
Vancouver:
Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/27049.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. Available from: http://hdl.handle.net/10442/hedi/27049
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
25. Μουτάφη, Ευαγγελία. Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων.
Degree: 2010, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
URL: http://hdl.handle.net/10442/hedi/22094
Subjects/Keywords: Επαφής μετρικές πολλαπλότητες; Ψευδοσυμμετρικοί χώροι κατά R. Deszcz; Contact metric manifolds; Pseudosymmetric spaces according to R. Deszcz
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Μουτάφη, . . (2010). Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/22094
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Μουτάφη, Ευαγγελία. “Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων.” 2010. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 08, 2021. http://hdl.handle.net/10442/hedi/22094.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Μουτάφη, Ευαγγελία. “Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων.” 2010. Web. 08 Mar 2021.
Vancouver:
Μουτάφη . Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2010. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10442/hedi/22094.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Μουτάφη . Μελέτη πολλαπλοτήτων επαφής με τη βοήθεια καμπυλοτήτων. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2010. Available from: http://hdl.handle.net/10442/hedi/22094
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
26. Josà Nazareno Vieira Gomes. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.
Degree: PhD, 2012, Universidade Federal do Ceará
URL: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660
;
Subjects/Keywords: GEOMETRIA DIFERENCIAL; Ãngulo de contato; toro de Clifford; curvatura mÃdia constante; esfera euclidiana; quase sÃliton de Ricci; campo de vetores conforme; curvatura escalar constante; contact angle; Clifford torus; constant mean curvature; euclidian sphere; almost Ricci soliton; conformal vector fields; constant scalar curvature; variedades riemanianas; Riemannian manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gomes, J. N. V. (2012). Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. (Doctoral Dissertation). Universidade Federal do Ceará. Retrieved from http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;
Chicago Manual of Style (16th Edition):
Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Doctoral Dissertation, Universidade Federal do Ceará. Accessed March 08, 2021. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.
MLA Handbook (7th Edition):
Gomes, Josà Nazareno Vieira. “Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial.” 2012. Web. 08 Mar 2021.
Vancouver:
Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Internet] [Doctoral dissertation]. Universidade Federal do Ceará 2012. [cited 2021 Mar 08]. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;.
Council of Science Editors:
Gomes JNV. Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial. [Doctoral Dissertation]. Universidade Federal do Ceará 2012. Available from: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8660 ;