Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Complex symplectic geometry). Showing records 1 – 12 of 12 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Cambridge

1. Kirchhoff-Lukat, Charlotte Sophie. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.

Degree: PhD, 2018, University of Cambridge

 This thesis explores aspects of generalized geometry, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce… (more)

Subjects/Keywords: differential geometry; generalized complex geometry; Poisson geometry; symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kirchhoff-Lukat, C. S. (2018). Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570

Chicago Manual of Style (16th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Doctoral Dissertation, University of Cambridge. Accessed November 28, 2020. https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

MLA Handbook (7th Edition):

Kirchhoff-Lukat, Charlotte Sophie. “Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles.” 2018. Web. 28 Nov 2020.

Vancouver:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Internet] [Doctoral dissertation]. University of Cambridge; 2018. [cited 2020 Nov 28]. Available from: https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570.

Council of Science Editors:

Kirchhoff-Lukat CS. Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles. [Doctoral Dissertation]. University of Cambridge; 2018. Available from: https://doi.org/10.17863/CAM.30372 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763570


Universiteit Utrecht

2. Tel, A.W. Lefschetz fibrations and symplectic structures.

Degree: 2015, Universiteit Utrecht

 In this thesis, we study a relation between symplectic structures and Lefschetz ?brations to shed some light on 4-manifold theory. We introduce symplectic manifolds and… (more)

Subjects/Keywords: Lefschetz fibration; Lefschetz pencil; symplectic geometry; fiber bundle; complex geometry; compatibility

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tel, A. W. (2015). Lefschetz fibrations and symplectic structures. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/311281

Chicago Manual of Style (16th Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Masters Thesis, Universiteit Utrecht. Accessed November 28, 2020. http://dspace.library.uu.nl:8080/handle/1874/311281.

MLA Handbook (7th Edition):

Tel, A W. “Lefschetz fibrations and symplectic structures.” 2015. Web. 28 Nov 2020.

Vancouver:

Tel AW. Lefschetz fibrations and symplectic structures. [Internet] [Masters thesis]. Universiteit Utrecht; 2015. [cited 2020 Nov 28]. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281.

Council of Science Editors:

Tel AW. Lefschetz fibrations and symplectic structures. [Masters Thesis]. Universiteit Utrecht; 2015. Available from: http://dspace.library.uu.nl:8080/handle/1874/311281


University of Minnesota

3. Li, Jun. Symplectomorphism Group of Rational 4-Manifolds.

Degree: PhD, Mathematics, 2017, University of Minnesota

 We develop techniques for studying the symplectomorphism group of rational 4-manifolds. We study the space of tamed almost complex structures \mJ\w using a fine decomposition… (more)

Subjects/Keywords: almost complex manifold; ball packing; holomorphic curves; rational 4-manifolds; symplectic geometry; symplectomorphism groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, J. (2017). Symplectomorphism Group of Rational 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/190537

Chicago Manual of Style (16th Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Doctoral Dissertation, University of Minnesota. Accessed November 28, 2020. http://hdl.handle.net/11299/190537.

MLA Handbook (7th Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Web. 28 Nov 2020.

Vancouver:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2017. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/11299/190537.

Council of Science Editors:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2017. Available from: http://hdl.handle.net/11299/190537

4. Dahl, Matias F. Geometric Properties of Electromagnetic Waves.

Degree: 2007, Helsinki University of Technology

This work studies geometrical properties of electromagnetic wave propagation. The work starts by studying geometrical properties of electromagnetic Gaussian beams in inhomogeneous anisotropic media. These… (more)

Subjects/Keywords: electromagnetism; Maxwell's equations; Riemann geometry; Finsler geometry; contact geometry; symplectic geometry; Hamilton-Jacobi equation; phase function; complex Riccati equation; Gaussian beams; propagation; polarization; helicity; Bohren decomposition; Moses decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dahl, M. F. (2007). Geometric Properties of Electromagnetic Waves. (Thesis). Helsinki University of Technology. Retrieved from http://lib.tkk.fi/Diss/2007/isbn9789512286737/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dahl, Matias F. “Geometric Properties of Electromagnetic Waves.” 2007. Thesis, Helsinki University of Technology. Accessed November 28, 2020. http://lib.tkk.fi/Diss/2007/isbn9789512286737/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dahl, Matias F. “Geometric Properties of Electromagnetic Waves.” 2007. Web. 28 Nov 2020.

Vancouver:

Dahl MF. Geometric Properties of Electromagnetic Waves. [Internet] [Thesis]. Helsinki University of Technology; 2007. [cited 2020 Nov 28]. Available from: http://lib.tkk.fi/Diss/2007/isbn9789512286737/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dahl MF. Geometric Properties of Electromagnetic Waves. [Thesis]. Helsinki University of Technology; 2007. Available from: http://lib.tkk.fi/Diss/2007/isbn9789512286737/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Bailey, Michael. On the Local and Global Classification of Generalized Complex Structures.

Degree: 2012, University of Toronto

We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which… (more)

Subjects/Keywords: Mathematics; Geometry; Differential geometry; Geometric analysis; Symplectic geometry; Poisson geometry; Complex geometry; Mathematical physics; 0405

…generalized complex geometry is the phenomenon that the number of symplectic and complex dimensions… …concrete criteria in the case of smooth symplectic families over a complex manifold—these are… …generalized complex structures. If a smooth symplectic family induced by a generalized complex… …generalized complex but which is not a symplectic fibre bundle, that is, its fibres are inequevalent… …between the orbits and the symplectic leaves, we will have a generalized complex principal… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bailey, M. (2012). On the Local and Global Classification of Generalized Complex Structures. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/32657

Chicago Manual of Style (16th Edition):

Bailey, Michael. “On the Local and Global Classification of Generalized Complex Structures.” 2012. Doctoral Dissertation, University of Toronto. Accessed November 28, 2020. http://hdl.handle.net/1807/32657.

MLA Handbook (7th Edition):

Bailey, Michael. “On the Local and Global Classification of Generalized Complex Structures.” 2012. Web. 28 Nov 2020.

Vancouver:

Bailey M. On the Local and Global Classification of Generalized Complex Structures. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/1807/32657.

Council of Science Editors:

Bailey M. On the Local and Global Classification of Generalized Complex Structures. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/32657

6. A. Cattaneo. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Degree: 2018, Università degli Studi di Milano

La tesi si concentra sullo studio degli automorfismi di varietà olomorfe simplettiche irriducibili di tipo K3^[n], ovvero varietà equivalenti per deformazione allo schema di Hilbert… (more)

Subjects/Keywords: complex algebraic geometry; lattice theory; holomorphic symplectic manifold; Hilbert schemes of points on K3 surfaces; automorphisms; Torelli theorem; moduli spaces; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Thesis, Università degli Studi di Milano. Accessed November 28, 2020. http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Web. 28 Nov 2020.

Vancouver:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Tari, Kévin. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.

Degree: Docteur es, Mathématiques, 2015, Poitiers

Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action… (more)

Subjects/Keywords: Géométrie algébrique complexe; Variétés symplectiques holomorphes; Variétés de Kummer généralisées; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Automorphismes naturels; Théorème de Torelli; Surfaces abéliennes; Théorie des réseaux; Isométries; Complex algebraic geometry; Holomorphic symplectic varieties; Generalized Kummer varieties; Hilbert schemes of points on K3 surfaces; Automorphisms; Natural automorphisms; Torelli thoerem; Abelian surfaces; Lattice theory; Isometries; 516.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tari, K. (2015). Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2015POIT2301

Chicago Manual of Style (16th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Doctoral Dissertation, Poitiers. Accessed November 28, 2020. http://www.theses.fr/2015POIT2301.

MLA Handbook (7th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Web. 28 Nov 2020.

Vancouver:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Internet] [Doctoral dissertation]. Poitiers; 2015. [cited 2020 Nov 28]. Available from: http://www.theses.fr/2015POIT2301.

Council of Science Editors:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Doctoral Dissertation]. Poitiers; 2015. Available from: http://www.theses.fr/2015POIT2301

8. Cattaneo, Alberto. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.

Degree: Docteur es, Mathématiques, 2018, Poitiers; Università degli studi (Milan, Italie)

Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n… (more)

Subjects/Keywords: Géométrie algébrique complexe; Théorie des réseaux; Variétés symplectiques holomorphes; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Théorème de Torelli; Espaces de modules.; Complex algebraic geometry; Lattice theory; Holomorphic symplectic manifolds; Hilbert schemes of points on K3 surfaces; Automorphisms; Torelli theorem; Moduli spaces.; 516.35; 514.223; 511.326

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. (Doctoral Dissertation). Poitiers; Università degli studi (Milan, Italie). Retrieved from http://www.theses.fr/2018POIT2322

Chicago Manual of Style (16th Edition):

Cattaneo, Alberto. “Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.” 2018. Doctoral Dissertation, Poitiers; Università degli studi (Milan, Italie). Accessed November 28, 2020. http://www.theses.fr/2018POIT2322.

MLA Handbook (7th Edition):

Cattaneo, Alberto. “Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.” 2018. Web. 28 Nov 2020.

Vancouver:

Cattaneo A. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. [Internet] [Doctoral dissertation]. Poitiers; Università degli studi (Milan, Italie); 2018. [cited 2020 Nov 28]. Available from: http://www.theses.fr/2018POIT2322.

Council of Science Editors:

Cattaneo A. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. [Doctoral Dissertation]. Poitiers; Università degli studi (Milan, Italie); 2018. Available from: http://www.theses.fr/2018POIT2322


University of Florida

9. Fisher, Andrew. Hyperkahler Manifolds.

Degree: PhD, Mathematics, 2010, University of Florida

 The University of Florida is not alone in tracing its origins to 1853: important events in modern geometry (of curved spaces) and quaternions (a number… (more)

Subjects/Keywords: Cotangent function; Curves; Distance functions; Geometry; Inner products; Mathematical vectors; Riemann manifold; Tangents; Vector fields; Vector spaces; calabi, complex, cotangent, hyperkahler, projective, quaternion, reduction, symplectic, tangent

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fisher, A. (2010). Hyperkahler Manifolds. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0041403

Chicago Manual of Style (16th Edition):

Fisher, Andrew. “Hyperkahler Manifolds.” 2010. Doctoral Dissertation, University of Florida. Accessed November 28, 2020. https://ufdc.ufl.edu/UFE0041403.

MLA Handbook (7th Edition):

Fisher, Andrew. “Hyperkahler Manifolds.” 2010. Web. 28 Nov 2020.

Vancouver:

Fisher A. Hyperkahler Manifolds. [Internet] [Doctoral dissertation]. University of Florida; 2010. [cited 2020 Nov 28]. Available from: https://ufdc.ufl.edu/UFE0041403.

Council of Science Editors:

Fisher A. Hyperkahler Manifolds. [Doctoral Dissertation]. University of Florida; 2010. Available from: https://ufdc.ufl.edu/UFE0041403

10. Platis, Ioannis. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.

Degree: 2000, University of Crete (UOC); Πανεπιστήμιο Κρήτης

 Μελετάται η γεωμετρία του χώρου των Quasi-fuchsian παραμορφώσεων QF(S) μιας επιφάνειας S. Η διατριβή χωρίζεται σε δύο μέρη. Στο πρώτο μέρος εξετάζεται η μιγαδική συμπλεκτική… (more)

Subjects/Keywords: Ομάδες Klein; Quasiconformal απεικονίσεις; Riemann επιφάνειες; Teichmuller χώροι; Quasifuchsian χώροι; Μιγαδική συμπλεκτική γεωμετρία; Weil-Peterson γεωμετρία; Kleinian groups; Quasiconformal mappings; Riemann surfaces; Teichmuller space; Weil-Petersson geometry; Quasifuchsian space; Complex symplectic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Platis, I. (2000). Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. (Thesis). University of Crete (UOC); Πανεπιστήμιο Κρήτης. Retrieved from http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Thesis, University of Crete (UOC); Πανεπιστήμιο Κρήτης. Accessed November 28, 2020. http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Platis, Ioannis. “Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας.” 2000. Web. 28 Nov 2020.

Vancouver:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Internet] [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/10442/hedi/31904.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Platis I. Περί της γεωμετρίας του χώρου των Quasi-Fuchsian παραμορφώσεων μιας υπερβολικής επιφάνειας. [Thesis]. University of Crete (UOC); Πανεπιστήμιο Κρήτης; 2000. Available from: http://hdl.handle.net/10442/hedi/31904

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

11. Herrera-Cordero, Esteban. L'éclatement en géométrie algébrique, différentielle et symplectique.

Degree: 2011, Université de Montréal

Subjects/Keywords: Géométrie algébrique classique; Éclatement réel; Éclatement complexe; Éclatement symplectique; Éclatement le long d'une sous-variété; Classical algebraic geometry; Real blow up; Complex blow up; Symplectic blow up; Blow up along a submanifold; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herrera-Cordero, E. (2011). L'éclatement en géométrie algébrique, différentielle et symplectique. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/5347

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Herrera-Cordero, Esteban. “L'éclatement en géométrie algébrique, différentielle et symplectique.” 2011. Thesis, Université de Montréal. Accessed November 28, 2020. http://hdl.handle.net/1866/5347.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Herrera-Cordero, Esteban. “L'éclatement en géométrie algébrique, différentielle et symplectique.” 2011. Web. 28 Nov 2020.

Vancouver:

Herrera-Cordero E. L'éclatement en géométrie algébrique, différentielle et symplectique. [Internet] [Thesis]. Université de Montréal; 2011. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/1866/5347.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Herrera-Cordero E. L'éclatement en géométrie algébrique, différentielle et symplectique. [Thesis]. Université de Montréal; 2011. Available from: http://hdl.handle.net/1866/5347

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

12. Engeli, Markus Peter Roderick. Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators.

Degree: 2008, ETH Zürich

Subjects/Keywords: DEFORMATIONEN ALGEBRAISCHER STRUKTUREN (ALGEBRA); SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); DIFFERENTIALOPERATOREN + INTEGRALOPERATOREN AUF MANNIGFALTIGKEITEN (TOPOLOGIE); RIEMANN-ROCH-THEOREM FÜR KOMPLEXE MANNIGFALTIGKEITEN (ANALYTISCHE RÄUME); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); DEFORMATIONS OF ALGEBRAIC STRUCTURES (ALGEBRA); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); DIFFERENTIAL + INTEGRAL OPERATORS ON MANIFOLDS (TOPOLOGY); RIEMANN-ROCH THEOREM FOR COMPLEX MANIFOLDS (ANALYTIC SPACES); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Engeli, M. P. R. (2008). Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/150558

Chicago Manual of Style (16th Edition):

Engeli, Markus Peter Roderick. “Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators.” 2008. Doctoral Dissertation, ETH Zürich. Accessed November 28, 2020. http://hdl.handle.net/20.500.11850/150558.

MLA Handbook (7th Edition):

Engeli, Markus Peter Roderick. “Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators.” 2008. Web. 28 Nov 2020.

Vancouver:

Engeli MPR. Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators. [Internet] [Doctoral dissertation]. ETH Zürich; 2008. [cited 2020 Nov 28]. Available from: http://hdl.handle.net/20.500.11850/150558.

Council of Science Editors:

Engeli MPR. Traces in deformation quantization and a Riemann-Roch-Hirzebruch formula for differential operators. [Doctoral Dissertation]. ETH Zürich; 2008. Available from: http://hdl.handle.net/20.500.11850/150558

.