Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Commutative Algebra)`

.
Showing records 31 – 60 of
131 total matches.

Search Limiters

Dates

- 2016 – 2020 (44)
- 2011 – 2015 (42)
- 2006 – 2010 (25)

▼ Search Limiters

University of Tennessee – Knoxville

31. Laska, Jason A. On Conjectures Concerning Nonassociate Factorizations.

Degree: 2010, University of Tennessee – Knoxville

URL: https://trace.tennessee.edu/utk_graddiss/818

► We consider and solve some open conjectures on the asymptotic behavior of the number of different numbers of the nonassociate factorizations of prescribed minimal length…
(more)

Subjects/Keywords: commutative algebra; non-unique factorization; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Laska, J. A. (2010). On Conjectures Concerning Nonassociate Factorizations. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/818

Chicago Manual of Style (16^{th} Edition):

Laska, Jason A. “On Conjectures Concerning Nonassociate Factorizations.” 2010. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/818.

MLA Handbook (7^{th} Edition):

Laska, Jason A. “On Conjectures Concerning Nonassociate Factorizations.” 2010. Web. 07 Jul 2020.

Vancouver:

Laska JA. On Conjectures Concerning Nonassociate Factorizations. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2010. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/818.

Council of Science Editors:

Laska JA. On Conjectures Concerning Nonassociate Factorizations. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2010. Available from: https://trace.tennessee.edu/utk_graddiss/818

University of California – Berkeley

32. Boocher, Adam Lee. Superflatness.

Degree: Mathematics, 2013, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/9xj6b7r2

► One way to obtain geometric information about a homogeneous ideal is to pass to a monomial ideal via a flat degeneration. Flatness is strong enough…
(more)

Subjects/Keywords: Mathematics; Algebraic Geometry; Combinatorics; Commutative Algebra; Free Resolutions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Boocher, A. L. (2013). Superflatness. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/9xj6b7r2

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Boocher, Adam Lee. “Superflatness.” 2013. Thesis, University of California – Berkeley. Accessed July 07, 2020. http://www.escholarship.org/uc/item/9xj6b7r2.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Boocher, Adam Lee. “Superflatness.” 2013. Web. 07 Jul 2020.

Vancouver:

Boocher AL. Superflatness. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2020 Jul 07]. Available from: http://www.escholarship.org/uc/item/9xj6b7r2.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Boocher AL. Superflatness. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/9xj6b7r2

Not specified: Masters Thesis or Doctoral Dissertation

Rhodes University

33.
Sekaran, Rajakrishnar.
Fuzzy ideals in *commutative* rings.

Degree: MS, Faculty of Science, Mathematics, 1995, Rhodes University

URL: http://hdl.handle.net/10962/d1005221

► In this thesis, we are concerned with various aspects of fuzzy ideals of *commutative* rings. The central theorem is that of primary decomposition of a…
(more)

Subjects/Keywords: Commutative rings; Fuzzy algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sekaran, R. (1995). Fuzzy ideals in commutative rings. (Masters Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005221

Chicago Manual of Style (16^{th} Edition):

Sekaran, Rajakrishnar. “Fuzzy ideals in commutative rings.” 1995. Masters Thesis, Rhodes University. Accessed July 07, 2020. http://hdl.handle.net/10962/d1005221.

MLA Handbook (7^{th} Edition):

Sekaran, Rajakrishnar. “Fuzzy ideals in commutative rings.” 1995. Web. 07 Jul 2020.

Vancouver:

Sekaran R. Fuzzy ideals in commutative rings. [Internet] [Masters thesis]. Rhodes University; 1995. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10962/d1005221.

Council of Science Editors:

Sekaran R. Fuzzy ideals in commutative rings. [Masters Thesis]. Rhodes University; 1995. Available from: http://hdl.handle.net/10962/d1005221

Montana Tech

34. White, Percy Daniel. PRUEFER RINGS.

Degree: PhD, 1978, Montana Tech

URL: https://scholarworks.umt.edu/etd/10022

Subjects/Keywords: Commutative rings.; Rings (Algebra) History.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

White, P. D. (1978). PRUEFER RINGS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10022

Chicago Manual of Style (16^{th} Edition):

White, Percy Daniel. “PRUEFER RINGS.” 1978. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/10022.

MLA Handbook (7^{th} Edition):

White, Percy Daniel. “PRUEFER RINGS.” 1978. Web. 07 Jul 2020.

Vancouver:

White PD. PRUEFER RINGS. [Internet] [Doctoral dissertation]. Montana Tech; 1978. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/10022.

Council of Science Editors:

White PD. PRUEFER RINGS. [Doctoral Dissertation]. Montana Tech; 1978. Available from: https://scholarworks.umt.edu/etd/10022

Cornell University

35. Whieldon, Gwyneth. Betti Numbers Of Stanley-Reisner Ideals .

Degree: 2011, Cornell University

URL: http://hdl.handle.net/1813/30759

► This thesis compiles results in four related areas. • Jump Sequences of Edge Ideals: Given a graph G on n vertices with edge ideal IG…
(more)

Subjects/Keywords: Commutative Algebra; Betti Numbers; Free Resolutions and Syzygies

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Whieldon, G. (2011). Betti Numbers Of Stanley-Reisner Ideals . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/30759

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Whieldon, Gwyneth. “Betti Numbers Of Stanley-Reisner Ideals .” 2011. Thesis, Cornell University. Accessed July 07, 2020. http://hdl.handle.net/1813/30759.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Whieldon, Gwyneth. “Betti Numbers Of Stanley-Reisner Ideals .” 2011. Web. 07 Jul 2020.

Vancouver:

Whieldon G. Betti Numbers Of Stanley-Reisner Ideals . [Internet] [Thesis]. Cornell University; 2011. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1813/30759.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Whieldon G. Betti Numbers Of Stanley-Reisner Ideals . [Thesis]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/30759

Not specified: Masters Thesis or Doctoral Dissertation

University of Sheffield

36. Vamos, Peter. Length function on modules.

Degree: PhD, 1968, University of Sheffield

URL: http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352

Subjects/Keywords: 510; Commutative algebra, R-modules

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vamos, P. (1968). Length function on modules. (Doctoral Dissertation). University of Sheffield. Retrieved from http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352

Chicago Manual of Style (16^{th} Edition):

Vamos, Peter. “Length function on modules.” 1968. Doctoral Dissertation, University of Sheffield. Accessed July 07, 2020. http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352.

MLA Handbook (7^{th} Edition):

Vamos, Peter. “Length function on modules.” 1968. Web. 07 Jul 2020.

Vancouver:

Vamos P. Length function on modules. [Internet] [Doctoral dissertation]. University of Sheffield; 1968. [cited 2020 Jul 07]. Available from: http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352.

Council of Science Editors:

Vamos P. Length function on modules. [Doctoral Dissertation]. University of Sheffield; 1968. Available from: http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352

University of Edinburgh

37. Crawford, Simon Philip. Singularities of noncommutative surfaces.

Degree: PhD, 2018, University of Edinburgh

URL: http://hdl.handle.net/1842/31543

► The primary objects of study in this thesis are noncommutative surfaces; that is, noncommutative noetherian domains of GK dimension 2. Frequently these rings will also…
(more)

Subjects/Keywords: ring theory; abstract algebra; commutative ring; singular points; noncommutative surfaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Crawford, S. P. (2018). Singularities of noncommutative surfaces. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/31543

Chicago Manual of Style (16^{th} Edition):

Crawford, Simon Philip. “Singularities of noncommutative surfaces.” 2018. Doctoral Dissertation, University of Edinburgh. Accessed July 07, 2020. http://hdl.handle.net/1842/31543.

MLA Handbook (7^{th} Edition):

Crawford, Simon Philip. “Singularities of noncommutative surfaces.” 2018. Web. 07 Jul 2020.

Vancouver:

Crawford SP. Singularities of noncommutative surfaces. [Internet] [Doctoral dissertation]. University of Edinburgh; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1842/31543.

Council of Science Editors:

Crawford SP. Singularities of noncommutative surfaces. [Doctoral Dissertation]. University of Edinburgh; 2018. Available from: http://hdl.handle.net/1842/31543

Texas Christian University

38. Aguirre, Luis G.,author. On linking multiple lines.

Degree: 2018, Texas Christian University

URL: https://repository.tcu.edu/handle/116099117/21823

► We study non-reduced locally Cohen-Macaulay quasi-primitive curves supported on a line in three dimensional projective space over an algebraically closed field k. For an odd…
(more)

Subjects/Keywords: Geometry, Algebraic.; Cohen-Macaulay rings.; Commutative algebra.; Forms, Quadratic.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Aguirre, L. G. ,. (2018). On linking multiple lines. (Thesis). Texas Christian University. Retrieved from https://repository.tcu.edu/handle/116099117/21823

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Aguirre, Luis G ,author. “On linking multiple lines.” 2018. Thesis, Texas Christian University. Accessed July 07, 2020. https://repository.tcu.edu/handle/116099117/21823.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Aguirre, Luis G ,author. “On linking multiple lines.” 2018. Web. 07 Jul 2020.

Vancouver:

Aguirre LG,. On linking multiple lines. [Internet] [Thesis]. Texas Christian University; 2018. [cited 2020 Jul 07]. Available from: https://repository.tcu.edu/handle/116099117/21823.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aguirre LG,. On linking multiple lines. [Thesis]. Texas Christian University; 2018. Available from: https://repository.tcu.edu/handle/116099117/21823

Not specified: Masters Thesis or Doctoral Dissertation

University of Louisville

39. Christensen, Katie C. Algebraic properties of neural codes.

Degree: PhD, 2019, University of Louisville

URL: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

► The neural rings and ideals as algebraic tools for analyzing the intrinsic structure of neural codes were introduced by C. Curto, V. Itskov, A.…
(more)

Subjects/Keywords: commutative algebra; neural code; partial code; monomial morphisms; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Christensen, K. C. (2019). Algebraic properties of neural codes. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

Chicago Manual of Style (16^{th} Edition):

Christensen, Katie C. “Algebraic properties of neural codes.” 2019. Doctoral Dissertation, University of Louisville. Accessed July 07, 2020. 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295.

MLA Handbook (7^{th} Edition):

Christensen, Katie C. “Algebraic properties of neural codes.” 2019. Web. 07 Jul 2020.

Vancouver:

Christensen KC. Algebraic properties of neural codes. [Internet] [Doctoral dissertation]. University of Louisville; 2019. [cited 2020 Jul 07]. Available from: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295.

Council of Science Editors:

Christensen KC. Algebraic properties of neural codes. [Doctoral Dissertation]. University of Louisville; 2019. Available from: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

40. Juett, Jason Robert. Some topics in abstract factorization.

Degree: PhD, Mathematics, 2013, University of Iowa

URL: https://ir.uiowa.edu/etd/2534

► Anderson and Frazier defined a generalization of factorization in integral domains called tau-factorization. If D is an integral domain and tau is a symmetric…
(more)

Subjects/Keywords: commutative algebra; factorization; Mathematics

…will refer to a *commutative* multiplicative
semigroup with 1 = 0 unless stated otherwise… …Similarly, all rings will be *commutative*
with 1 = 0.
3
Let H be a monoid. We will use use H × to…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Juett, J. R. (2013). Some topics in abstract factorization. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/2534

Chicago Manual of Style (16^{th} Edition):

Juett, Jason Robert. “Some topics in abstract factorization.” 2013. Doctoral Dissertation, University of Iowa. Accessed July 07, 2020. https://ir.uiowa.edu/etd/2534.

MLA Handbook (7^{th} Edition):

Juett, Jason Robert. “Some topics in abstract factorization.” 2013. Web. 07 Jul 2020.

Vancouver:

Juett JR. Some topics in abstract factorization. [Internet] [Doctoral dissertation]. University of Iowa; 2013. [cited 2020 Jul 07]. Available from: https://ir.uiowa.edu/etd/2534.

Council of Science Editors:

Juett JR. Some topics in abstract factorization. [Doctoral Dissertation]. University of Iowa; 2013. Available from: https://ir.uiowa.edu/etd/2534

Georgia State University

41. Ng, Shuenn. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.

Degree: PhD, Mathematics and Statistics, 2018, Georgia State University

URL: https://scholarworks.gsu.edu/math_diss/55

► This dissertation investigates the characterization of F-rationality. Much work has been done to characterize F-rationality. Here, we will assume that the underlying ring is…
(more)

Subjects/Keywords: commutative algebra; test exponent; Frobenius; tight closure; test element; Matlis dual

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ng, S. (2018). Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/55

Chicago Manual of Style (16^{th} Edition):

Ng, Shuenn. “Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.” 2018. Doctoral Dissertation, Georgia State University. Accessed July 07, 2020. https://scholarworks.gsu.edu/math_diss/55.

MLA Handbook (7^{th} Edition):

Ng, Shuenn. “Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.” 2018. Web. 07 Jul 2020.

Vancouver:

Ng S. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. [Internet] [Doctoral dissertation]. Georgia State University; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.gsu.edu/math_diss/55.

Council of Science Editors:

Ng S. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. [Doctoral Dissertation]. Georgia State University; 2018. Available from: https://scholarworks.gsu.edu/math_diss/55

University of Washington

42. Dorfsman-Hopkins, Gabriel David. Projective Geometry for Perfectoid Spaces.

Degree: PhD, 2019, University of Washington

URL: http://hdl.handle.net/1773/44374

► To understand the structure of an algebraic variety we often embed it in various projective spaces. This develops the notion of projective geometry which has…
(more)

Subjects/Keywords: Algebraic Geometry; Commutative Algebra; Number Theory; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dorfsman-Hopkins, G. D. (2019). Projective Geometry for Perfectoid Spaces. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/44374

Chicago Manual of Style (16^{th} Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Doctoral Dissertation, University of Washington. Accessed July 07, 2020. http://hdl.handle.net/1773/44374.

MLA Handbook (7^{th} Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Web. 07 Jul 2020.

Vancouver:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Internet] [Doctoral dissertation]. University of Washington; 2019. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1773/44374.

Council of Science Editors:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Doctoral Dissertation]. University of Washington; 2019. Available from: http://hdl.handle.net/1773/44374

Michigan State University

43. Curtis, Frank Judson III. Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type.

Degree: PhD, Department of Mathematics, 1990, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:20982

Subjects/Keywords: Geometry, Algebraic; Commutative algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Curtis, F. J. I. (1990). Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:20982

Chicago Manual of Style (16^{th} Edition):

Curtis, Frank Judson III. “Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type.” 1990. Doctoral Dissertation, Michigan State University. Accessed July 07, 2020. http://etd.lib.msu.edu/islandora/object/etd:20982.

MLA Handbook (7^{th} Edition):

Curtis, Frank Judson III. “Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type.” 1990. Web. 07 Jul 2020.

Vancouver:

Curtis FJI. Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type. [Internet] [Doctoral dissertation]. Michigan State University; 1990. [cited 2020 Jul 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:20982.

Council of Science Editors:

Curtis FJI. Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type. [Doctoral Dissertation]. Michigan State University; 1990. Available from: http://etd.lib.msu.edu/islandora/object/etd:20982

Michigan State University

44. Kirkman, Ellen Elizabeth, 1948-. On the characterization of inertial coefficient rings.

Degree: PhD, Department of Mathematics, 1975, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:19110

Subjects/Keywords: Commutative rings; Rings (Algebra)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kirkman, Ellen Elizabeth, 1. (1975). On the characterization of inertial coefficient rings. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:19110

Chicago Manual of Style (16^{th} Edition):

Kirkman, Ellen Elizabeth, 1948-. “On the characterization of inertial coefficient rings.” 1975. Doctoral Dissertation, Michigan State University. Accessed July 07, 2020. http://etd.lib.msu.edu/islandora/object/etd:19110.

MLA Handbook (7^{th} Edition):

Kirkman, Ellen Elizabeth, 1948-. “On the characterization of inertial coefficient rings.” 1975. Web. 07 Jul 2020.

Vancouver:

Kirkman, Ellen Elizabeth 1. On the characterization of inertial coefficient rings. [Internet] [Doctoral dissertation]. Michigan State University; 1975. [cited 2020 Jul 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:19110.

Council of Science Editors:

Kirkman, Ellen Elizabeth 1. On the characterization of inertial coefficient rings. [Doctoral Dissertation]. Michigan State University; 1975. Available from: http://etd.lib.msu.edu/islandora/object/etd:19110

University of Notre Dame

45. Michael Perlman. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.

Degree: Mathematics, 2020, University of Notre Dame

URL: https://curate.nd.edu/show/g732d79512m

► Let G be a connected linear algebraic group acting on a smooth complex variety X with finitely many orbits. In this case, the category…
(more)

Subjects/Keywords: Commutative Algebra; Algebraic Geometry; Local Cohomology; D-modules; Group Actions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Perlman, M. (2020). Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/g732d79512m

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/g732d79512m.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Web. 07 Jul 2020.

Vancouver:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Internet] [Thesis]. University of Notre Dame; 2020. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/g732d79512m.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Thesis]. University of Notre Dame; 2020. Available from: https://curate.nd.edu/show/g732d79512m

Not specified: Masters Thesis or Doctoral Dissertation

University of Notre Dame

46. Erin Suzanne Bela. Numerical Macaulification in Arbitrary Codimension</h1>.

Degree: Mathematics, 2018, University of Notre Dame

URL: https://curate.nd.edu/show/h702q527g73

► An ideal J is said to be numerically c-ACM (NACM) if R/J has the Hilbert function of some codimension c ACM subscheme of P^{n}.…
(more)

Subjects/Keywords: Mathematics; Commutative Algebra; Liaison Theory; Hilbert Functions; Algebraic Geometry; Cohen-Macaulay

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bela, E. S. (2018). Numerical Macaulification in Arbitrary Codimension</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/h702q527g73

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bela, Erin Suzanne. “Numerical Macaulification in Arbitrary Codimension</h1>.” 2018. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/h702q527g73.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bela, Erin Suzanne. “Numerical Macaulification in Arbitrary Codimension</h1>.” 2018. Web. 07 Jul 2020.

Vancouver:

Bela ES. Numerical Macaulification in Arbitrary Codimension</h1>. [Internet] [Thesis]. University of Notre Dame; 2018. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/h702q527g73.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bela ES. Numerical Macaulification in Arbitrary Codimension</h1>. [Thesis]. University of Notre Dame; 2018. Available from: https://curate.nd.edu/show/h702q527g73

Not specified: Masters Thesis or Doctoral Dissertation

University of Arkansas

47. Taylor, William D. Interpolating Between Multiplicities and F-thresholds.

Degree: PhD, 2018, University of Arkansas

URL: https://scholarworks.uark.edu/etd/2842

► We define a family of functions, called s-multiplicity for each s>0, that interpolates between Hilbert-Samuel multiplicity and Hilbert-Kunz multiplicity by comparing powers of ideals…
(more)

Subjects/Keywords: Closures; Commutative Algebra; Hilbert-Kunz; Hilbert-Samuel; Multiplicity; Other Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Taylor, W. D. (2018). Interpolating Between Multiplicities and F-thresholds. (Doctoral Dissertation). University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/2842

Chicago Manual of Style (16^{th} Edition):

Taylor, William D. “Interpolating Between Multiplicities and F-thresholds.” 2018. Doctoral Dissertation, University of Arkansas. Accessed July 07, 2020. https://scholarworks.uark.edu/etd/2842.

MLA Handbook (7^{th} Edition):

Taylor, William D. “Interpolating Between Multiplicities and F-thresholds.” 2018. Web. 07 Jul 2020.

Vancouver:

Taylor WD. Interpolating Between Multiplicities and F-thresholds. [Internet] [Doctoral dissertation]. University of Arkansas; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.uark.edu/etd/2842.

Council of Science Editors:

Taylor WD. Interpolating Between Multiplicities and F-thresholds. [Doctoral Dissertation]. University of Arkansas; 2018. Available from: https://scholarworks.uark.edu/etd/2842

48.
Weber, Darrin.
Various Topics on Graphical Structures Placed on *Commutative* Rings.

Degree: 2017, University of Tennessee – Knoxville

URL: https://trace.tennessee.edu/utk_graddiss/4666

► In this dissertation, we look at two types of graphs that can be placed on a *commutative* ring: the zero-divisor graph and the ideal-based zero-divisor…
(more)

Subjects/Keywords: zero-divisor; graph; ideal; cut-set; commutative; ring; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Weber, D. (2017). Various Topics on Graphical Structures Placed on Commutative Rings. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/4666

Chicago Manual of Style (16^{th} Edition):

Weber, Darrin. “Various Topics on Graphical Structures Placed on Commutative Rings.” 2017. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/4666.

MLA Handbook (7^{th} Edition):

Weber, Darrin. “Various Topics on Graphical Structures Placed on Commutative Rings.” 2017. Web. 07 Jul 2020.

Vancouver:

Weber D. Various Topics on Graphical Structures Placed on Commutative Rings. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2017. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/4666.

Council of Science Editors:

Weber D. Various Topics on Graphical Structures Placed on Commutative Rings. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2017. Available from: https://trace.tennessee.edu/utk_graddiss/4666

University of Southampton

49. Zaris, Paul Marinos. A behavioural approach to the zero structure of multidimensional linear systems.

Degree: PhD, 2000, University of Southampton

URL: https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856

► We use the behavioural approach and *commutative* *algebra* to define and characterize poles and zeros of multidimensional (nD) linear systems. In the case of a…
(more)

Subjects/Keywords: 519; Commutative algebra; Poles; Zeros

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zaris, P. M. (2000). A behavioural approach to the zero structure of multidimensional linear systems. (Doctoral Dissertation). University of Southampton. Retrieved from https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856

Chicago Manual of Style (16^{th} Edition):

Zaris, Paul Marinos. “A behavioural approach to the zero structure of multidimensional linear systems.” 2000. Doctoral Dissertation, University of Southampton. Accessed July 07, 2020. https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856.

MLA Handbook (7^{th} Edition):

Zaris, Paul Marinos. “A behavioural approach to the zero structure of multidimensional linear systems.” 2000. Web. 07 Jul 2020.

Vancouver:

Zaris PM. A behavioural approach to the zero structure of multidimensional linear systems. [Internet] [Doctoral dissertation]. University of Southampton; 2000. [cited 2020 Jul 07]. Available from: https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856.

Council of Science Editors:

Zaris PM. A behavioural approach to the zero structure of multidimensional linear systems. [Doctoral Dissertation]. University of Southampton; 2000. Available from: https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856

50. Basson, Romain. Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1

URL: http://www.theses.fr/2015REN1S019

►

L'objet de cette thèse est une description effective des espaces de modules des courbes hyper- elliptiques de genre 3 en caractéristiques positives. En caractéristique nulle… (more)

Subjects/Keywords: Géométrie algébrique; Courbes algébriques; Formes binaires; Calcul formel; Algèbre commutative; Algebraic Geometry; Algebraic curves; Binary forms; Commutative algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Basson, R. (2015). Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S019

Chicago Manual of Style (16^{th} Edition):

Basson, Romain. “Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic.” 2015. Doctoral Dissertation, Rennes 1. Accessed July 07, 2020. http://www.theses.fr/2015REN1S019.

MLA Handbook (7^{th} Edition):

Basson, Romain. “Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic.” 2015. Web. 07 Jul 2020.

Vancouver:

Basson R. Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2015REN1S019.

Council of Science Editors:

Basson R. Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S019

51. Bignalet-Cazalet, Rémi. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.

Degree: Docteur es, Mathématiques, 2018, Bourgogne Franche-Comté

URL: http://www.theses.fr/2018UBFCK038

►

Dans cette thèse, nous interprétons géométriquement la torsion de l'algèbre symétrique d'un faisceau d'idéaux I_Z d'un schéma Z défini par n+1 équations dans une variété… (more)

Subjects/Keywords: Géométrie algébrique; Algèbre commutative; Singularités; Transformations birationelles; Hypersurfaces homaloïdes; Syzygies; Algebraic geometry; Commutative algebra; Singularities; Birational maps; Homaloidal hypersurfaces; Syzygies; 516

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bignalet-Cazalet, R. (2018). Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. (Doctoral Dissertation). Bourgogne Franche-Comté. Retrieved from http://www.theses.fr/2018UBFCK038

Chicago Manual of Style (16^{th} Edition):

Bignalet-Cazalet, Rémi. “Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.” 2018. Doctoral Dissertation, Bourgogne Franche-Comté. Accessed July 07, 2020. http://www.theses.fr/2018UBFCK038.

MLA Handbook (7^{th} Edition):

Bignalet-Cazalet, Rémi. “Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.” 2018. Web. 07 Jul 2020.

Vancouver:

Bignalet-Cazalet R. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. [Internet] [Doctoral dissertation]. Bourgogne Franche-Comté; 2018. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2018UBFCK038.

Council of Science Editors:

Bignalet-Cazalet R. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. [Doctoral Dissertation]. Bourgogne Franche-Comté; 2018. Available from: http://www.theses.fr/2018UBFCK038

The Ohio State University

52.
Narang, Kamal.
The group of automorphisms of non-associative *commutative*
algebras associated with PSL(m,q), m>=3.

Degree: PhD, Graduate School, 1985, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326

Subjects/Keywords: Mathematics; Commutative algebra; Associative algebras; Automorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Narang, K. (1985). The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326

Chicago Manual of Style (16^{th} Edition):

Narang, Kamal. “The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3.” 1985. Doctoral Dissertation, The Ohio State University. Accessed July 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326.

MLA Handbook (7^{th} Edition):

Narang, Kamal. “The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3.” 1985. Web. 07 Jul 2020.

Vancouver:

Narang K. The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3. [Internet] [Doctoral dissertation]. The Ohio State University; 1985. [cited 2020 Jul 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326.

Council of Science Editors:

Narang K. The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3. [Doctoral Dissertation]. The Ohio State University; 1985. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326

Montana Tech

53. Nguyen, Nhan Trong. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.

Degree: PhD, 2018, Montana Tech

URL: https://scholarworks.umt.edu/etd/11258

► We separate this dissertation into three distinct but related parts. Chapter one focuses on p-Kummer subspaces of G-crossed products where G is an elementary…
(more)

Subjects/Keywords: Brauer Group; Central Simple Algebras; Cyclic algebras; Essential Dimension; Kummer Subspaces; Non Commutative Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, N. T. (2018). CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/11258

Chicago Manual of Style (16^{th} Edition):

Nguyen, Nhan Trong. “CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.” 2018. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/11258.

MLA Handbook (7^{th} Edition):

Nguyen, Nhan Trong. “CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.” 2018. Web. 07 Jul 2020.

Vancouver:

Nguyen NT. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. [Internet] [Doctoral dissertation]. Montana Tech; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/11258.

Council of Science Editors:

Nguyen NT. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. [Doctoral Dissertation]. Montana Tech; 2018. Available from: https://scholarworks.umt.edu/etd/11258

Montana Tech

54. Mikhail, Adel Fahmy. RINGS WITH FIXING ELEMENTS.

Degree: PhD, 1987, Montana Tech

URL: https://scholarworks.umt.edu/etd/10249

Subjects/Keywords: Rings (Algebra); Commutative rings.; Quotient rings.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mikhail, A. F. (1987). RINGS WITH FIXING ELEMENTS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10249

Chicago Manual of Style (16^{th} Edition):

Mikhail, Adel Fahmy. “RINGS WITH FIXING ELEMENTS.” 1987. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/10249.

MLA Handbook (7^{th} Edition):

Mikhail, Adel Fahmy. “RINGS WITH FIXING ELEMENTS.” 1987. Web. 07 Jul 2020.

Vancouver:

Mikhail AF. RINGS WITH FIXING ELEMENTS. [Internet] [Doctoral dissertation]. Montana Tech; 1987. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/10249.

Council of Science Editors:

Mikhail AF. RINGS WITH FIXING ELEMENTS. [Doctoral Dissertation]. Montana Tech; 1987. Available from: https://scholarworks.umt.edu/etd/10249

Montana Tech

55.
Irlbeck, Bernard William.
VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR *COMMUTATIVE* RINGS.

Degree: PhD, 1972, Montana Tech

URL: https://scholarworks.umt.edu/etd/9780

Subjects/Keywords: Rings (Algebra); Homology theory.; Commutative rings.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Irlbeck, B. W. (1972). VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/9780

Chicago Manual of Style (16^{th} Edition):

Irlbeck, Bernard William. “VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS.” 1972. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/9780.

MLA Handbook (7^{th} Edition):

Irlbeck, Bernard William. “VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS.” 1972. Web. 07 Jul 2020.

Vancouver:

Irlbeck BW. VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS. [Internet] [Doctoral dissertation]. Montana Tech; 1972. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/9780.

Council of Science Editors:

Irlbeck BW. VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS. [Doctoral Dissertation]. Montana Tech; 1972. Available from: https://scholarworks.umt.edu/etd/9780

Kansas State University

56. Xiao, Xinli. The double of representations of Cohomological Hall algebras.

Degree: PhD, Department of Mathematics, 2016, Kansas State University

URL: http://hdl.handle.net/2097/32900

► Given a quiver Q with/without potential, one can construct an *algebra* structure on the cohomology of the moduli stacks of representations of Q. The *algebra*…
(more)

Subjects/Keywords: Cohomological Hall algebra; Quiver; Smooth model; Representations; Grassmannian; Non-commutative Hilbert scheme

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xiao, X. (2016). The double of representations of Cohomological Hall algebras. (Doctoral Dissertation). Kansas State University. Retrieved from http://hdl.handle.net/2097/32900

Chicago Manual of Style (16^{th} Edition):

Xiao, Xinli. “The double of representations of Cohomological Hall algebras.” 2016. Doctoral Dissertation, Kansas State University. Accessed July 07, 2020. http://hdl.handle.net/2097/32900.

MLA Handbook (7^{th} Edition):

Xiao, Xinli. “The double of representations of Cohomological Hall algebras.” 2016. Web. 07 Jul 2020.

Vancouver:

Xiao X. The double of representations of Cohomological Hall algebras. [Internet] [Doctoral dissertation]. Kansas State University; 2016. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/2097/32900.

Council of Science Editors:

Xiao X. The double of representations of Cohomological Hall algebras. [Doctoral Dissertation]. Kansas State University; 2016. Available from: http://hdl.handle.net/2097/32900

Univerzitet u Beogradu

57. Николић, Биљана Д., 1982- 21704295. Суперсиметрична теорија поља на некомутативним просторима.

Degree: Fizički fakultet, 2019, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Физика - Теоријска физика високих енергија / Physics - Theoretical high energy physics

У раду је проучаван утицај деформације суперпростора на ренормализабилност Вес-Зумино модела формулисаног на њему...

Subjects/Keywords: non(anti)commutative spaces; supersymmetry; deformed Wess-Zumino model; Hopf algebra; quantum field theory; renormalization

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Николић, Биљана Д., 1. 2. (2019). Суперсиметрична теорија поља на некомутативним просторима. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Николић, Биљана Д., 1982- 21704295. “Суперсиметрична теорија поља на некомутативним просторима.” 2019. Thesis, Univerzitet u Beogradu. Accessed July 07, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Николић, Биљана Д., 1982- 21704295. “Суперсиметрична теорија поља на некомутативним просторима.” 2019. Web. 07 Jul 2020.

Vancouver:

Николић, Биљана Д. 12. Суперсиметрична теорија поља на некомутативним просторима. [Internet] [Thesis]. Univerzitet u Beogradu; 2019. [cited 2020 Jul 07]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Николић, Биљана Д. 12. Суперсиметрична теорија поља на некомутативним просторима. [Thesis]. Univerzitet u Beogradu; 2019. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

University of Washington

58. Wu, Min. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.

Degree: PhD, 2018, University of Washington

URL: http://hdl.handle.net/1773/43093

► Let \Bbbk be a field and A the non-*commutative* \Bbbk-*algebra* generated by x_{1}, x_{2}, x_{3} *subject* to the relations q x_{ix}_{j} - q^{-1} x_{jx}_{i} ;…
(more)

Subjects/Keywords: Finite dimensional simple module; Line module; Non-commutative algebra; Polynomial ring; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wu, M. (2018). Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/43093

Chicago Manual of Style (16^{th} Edition):

Wu, Min. “Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.” 2018. Doctoral Dissertation, University of Washington. Accessed July 07, 2020. http://hdl.handle.net/1773/43093.

MLA Handbook (7^{th} Edition):

Wu, Min. “Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.” 2018. Web. 07 Jul 2020.

Vancouver:

Wu M. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. [Internet] [Doctoral dissertation]. University of Washington; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1773/43093.

Council of Science Editors:

Wu M. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. [Doctoral Dissertation]. University of Washington; 2018. Available from: http://hdl.handle.net/1773/43093

University of Missouri – Columbia

59. Hulsizer, Heidi, 1982-. Minimal resolutions for a class of Gorenstein determinantal ideals.

Degree: 2010, University of Missouri – Columbia

URL: http://hdl.handle.net/10355/9022

► [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Let X = {x[subscript ij]} [subscript mxn] be a matrix with entries in a…
(more)

Subjects/Keywords: Gorenstein rings; Geometry, Algebraic; Commutative algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hulsizer, Heidi, 1. (2010). Minimal resolutions for a class of Gorenstein determinantal ideals. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/9022

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Thesis, University of Missouri – Columbia. Accessed July 07, 2020. http://hdl.handle.net/10355/9022.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Web. 07 Jul 2020.

Vancouver:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Internet] [Thesis]. University of Missouri – Columbia; 2010. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10355/9022.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Thesis]. University of Missouri – Columbia; 2010. Available from: http://hdl.handle.net/10355/9022

Not specified: Masters Thesis or Doctoral Dissertation

University of Notre Dame

60. Megan Patnott. Arithmetically Gorenstein sets of points on general surfaces in P3</h1>.

Degree: Mathematics, 2013, University of Notre Dame

URL: https://curate.nd.edu/show/q237hq40706

► This dissertation examines two questions. In the first two chapters, we study the minimal free resolution of a general set of points on a…
(more)

Subjects/Keywords: Minimal Resolution Conjecture; graded Betti numbers; commutative algebra; Hilbert functions; algebraic geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Patnott, M. (2013). Arithmetically Gorenstein sets of points on general surfaces in P3</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/q237hq40706

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Patnott, Megan. “Arithmetically Gorenstein sets of points on general surfaces in P3</h1>.” 2013. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/q237hq40706.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Patnott, Megan. “Arithmetically Gorenstein sets of points on general surfaces in P3</h1>.” 2013. Web. 07 Jul 2020.

Vancouver:

Patnott M. Arithmetically Gorenstein sets of points on general surfaces in P3</h1>. [Internet] [Thesis]. University of Notre Dame; 2013. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/q237hq40706.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Patnott M. Arithmetically Gorenstein sets of points on general surfaces in P3</h1>. [Thesis]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/q237hq40706

Not specified: Masters Thesis or Doctoral Dissertation