Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Commutative Algebra). Showing records 31 – 60 of 131 total matches.

[1] [2] [3] [4] [5]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


University of Tennessee – Knoxville

31. Laska, Jason A. On Conjectures Concerning Nonassociate Factorizations.

Degree: 2010, University of Tennessee – Knoxville

 We consider and solve some open conjectures on the asymptotic behavior of the number of different numbers of the nonassociate factorizations of prescribed minimal length… (more)

Subjects/Keywords: commutative algebra; non-unique factorization; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laska, J. A. (2010). On Conjectures Concerning Nonassociate Factorizations. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/818

Chicago Manual of Style (16th Edition):

Laska, Jason A. “On Conjectures Concerning Nonassociate Factorizations.” 2010. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/818.

MLA Handbook (7th Edition):

Laska, Jason A. “On Conjectures Concerning Nonassociate Factorizations.” 2010. Web. 07 Jul 2020.

Vancouver:

Laska JA. On Conjectures Concerning Nonassociate Factorizations. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2010. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/818.

Council of Science Editors:

Laska JA. On Conjectures Concerning Nonassociate Factorizations. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2010. Available from: https://trace.tennessee.edu/utk_graddiss/818


University of California – Berkeley

32. Boocher, Adam Lee. Superflatness.

Degree: Mathematics, 2013, University of California – Berkeley

 One way to obtain geometric information about a homogeneous ideal is to pass to a monomial ideal via a flat degeneration. Flatness is strong enough… (more)

Subjects/Keywords: Mathematics; Algebraic Geometry; Combinatorics; Commutative Algebra; Free Resolutions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boocher, A. L. (2013). Superflatness. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/9xj6b7r2

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Boocher, Adam Lee. “Superflatness.” 2013. Thesis, University of California – Berkeley. Accessed July 07, 2020. http://www.escholarship.org/uc/item/9xj6b7r2.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Boocher, Adam Lee. “Superflatness.” 2013. Web. 07 Jul 2020.

Vancouver:

Boocher AL. Superflatness. [Internet] [Thesis]. University of California – Berkeley; 2013. [cited 2020 Jul 07]. Available from: http://www.escholarship.org/uc/item/9xj6b7r2.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Boocher AL. Superflatness. [Thesis]. University of California – Berkeley; 2013. Available from: http://www.escholarship.org/uc/item/9xj6b7r2

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rhodes University

33. Sekaran, Rajakrishnar. Fuzzy ideals in commutative rings.

Degree: MS, Faculty of Science, Mathematics, 1995, Rhodes University

 In this thesis, we are concerned with various aspects of fuzzy ideals of commutative rings. The central theorem is that of primary decomposition of a… (more)

Subjects/Keywords: Commutative rings; Fuzzy algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sekaran, R. (1995). Fuzzy ideals in commutative rings. (Masters Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005221

Chicago Manual of Style (16th Edition):

Sekaran, Rajakrishnar. “Fuzzy ideals in commutative rings.” 1995. Masters Thesis, Rhodes University. Accessed July 07, 2020. http://hdl.handle.net/10962/d1005221.

MLA Handbook (7th Edition):

Sekaran, Rajakrishnar. “Fuzzy ideals in commutative rings.” 1995. Web. 07 Jul 2020.

Vancouver:

Sekaran R. Fuzzy ideals in commutative rings. [Internet] [Masters thesis]. Rhodes University; 1995. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10962/d1005221.

Council of Science Editors:

Sekaran R. Fuzzy ideals in commutative rings. [Masters Thesis]. Rhodes University; 1995. Available from: http://hdl.handle.net/10962/d1005221


Montana Tech

34. White, Percy Daniel. PRUEFER RINGS.

Degree: PhD, 1978, Montana Tech

Subjects/Keywords: Commutative rings.; Rings (Algebra) History.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

White, P. D. (1978). PRUEFER RINGS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10022

Chicago Manual of Style (16th Edition):

White, Percy Daniel. “PRUEFER RINGS.” 1978. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/10022.

MLA Handbook (7th Edition):

White, Percy Daniel. “PRUEFER RINGS.” 1978. Web. 07 Jul 2020.

Vancouver:

White PD. PRUEFER RINGS. [Internet] [Doctoral dissertation]. Montana Tech; 1978. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/10022.

Council of Science Editors:

White PD. PRUEFER RINGS. [Doctoral Dissertation]. Montana Tech; 1978. Available from: https://scholarworks.umt.edu/etd/10022


Cornell University

35. Whieldon, Gwyneth. Betti Numbers Of Stanley-Reisner Ideals .

Degree: 2011, Cornell University

 This thesis compiles results in four related areas. • Jump Sequences of Edge Ideals: Given a graph G on n vertices with edge ideal IG… (more)

Subjects/Keywords: Commutative Algebra; Betti Numbers; Free Resolutions and Syzygies

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Whieldon, G. (2011). Betti Numbers Of Stanley-Reisner Ideals . (Thesis). Cornell University. Retrieved from http://hdl.handle.net/1813/30759

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Whieldon, Gwyneth. “Betti Numbers Of Stanley-Reisner Ideals .” 2011. Thesis, Cornell University. Accessed July 07, 2020. http://hdl.handle.net/1813/30759.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Whieldon, Gwyneth. “Betti Numbers Of Stanley-Reisner Ideals .” 2011. Web. 07 Jul 2020.

Vancouver:

Whieldon G. Betti Numbers Of Stanley-Reisner Ideals . [Internet] [Thesis]. Cornell University; 2011. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1813/30759.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Whieldon G. Betti Numbers Of Stanley-Reisner Ideals . [Thesis]. Cornell University; 2011. Available from: http://hdl.handle.net/1813/30759

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Sheffield

36. Vamos, Peter. Length function on modules.

Degree: PhD, 1968, University of Sheffield

Subjects/Keywords: 510; Commutative algebra, R-modules

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vamos, P. (1968). Length function on modules. (Doctoral Dissertation). University of Sheffield. Retrieved from http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352

Chicago Manual of Style (16th Edition):

Vamos, Peter. “Length function on modules.” 1968. Doctoral Dissertation, University of Sheffield. Accessed July 07, 2020. http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352.

MLA Handbook (7th Edition):

Vamos, Peter. “Length function on modules.” 1968. Web. 07 Jul 2020.

Vancouver:

Vamos P. Length function on modules. [Internet] [Doctoral dissertation]. University of Sheffield; 1968. [cited 2020 Jul 07]. Available from: http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352.

Council of Science Editors:

Vamos P. Length function on modules. [Doctoral Dissertation]. University of Sheffield; 1968. Available from: http://etheses.whiterose.ac.uk/15032/ ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644352


University of Edinburgh

37. Crawford, Simon Philip. Singularities of noncommutative surfaces.

Degree: PhD, 2018, University of Edinburgh

 The primary objects of study in this thesis are noncommutative surfaces; that is, noncommutative noetherian domains of GK dimension 2. Frequently these rings will also… (more)

Subjects/Keywords: ring theory; abstract algebra; commutative ring; singular points; noncommutative surfaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Crawford, S. P. (2018). Singularities of noncommutative surfaces. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/31543

Chicago Manual of Style (16th Edition):

Crawford, Simon Philip. “Singularities of noncommutative surfaces.” 2018. Doctoral Dissertation, University of Edinburgh. Accessed July 07, 2020. http://hdl.handle.net/1842/31543.

MLA Handbook (7th Edition):

Crawford, Simon Philip. “Singularities of noncommutative surfaces.” 2018. Web. 07 Jul 2020.

Vancouver:

Crawford SP. Singularities of noncommutative surfaces. [Internet] [Doctoral dissertation]. University of Edinburgh; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1842/31543.

Council of Science Editors:

Crawford SP. Singularities of noncommutative surfaces. [Doctoral Dissertation]. University of Edinburgh; 2018. Available from: http://hdl.handle.net/1842/31543


Texas Christian University

38. Aguirre, Luis G.,author. On linking multiple lines.

Degree: 2018, Texas Christian University

 We study non-reduced locally Cohen-Macaulay quasi-primitive curves supported on a line in three dimensional projective space over an algebraically closed field k. For an odd… (more)

Subjects/Keywords: Geometry, Algebraic.; Cohen-Macaulay rings.; Commutative algebra.; Forms, Quadratic.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aguirre, L. G. ,. (2018). On linking multiple lines. (Thesis). Texas Christian University. Retrieved from https://repository.tcu.edu/handle/116099117/21823

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Aguirre, Luis G ,author. “On linking multiple lines.” 2018. Thesis, Texas Christian University. Accessed July 07, 2020. https://repository.tcu.edu/handle/116099117/21823.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Aguirre, Luis G ,author. “On linking multiple lines.” 2018. Web. 07 Jul 2020.

Vancouver:

Aguirre LG,. On linking multiple lines. [Internet] [Thesis]. Texas Christian University; 2018. [cited 2020 Jul 07]. Available from: https://repository.tcu.edu/handle/116099117/21823.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aguirre LG,. On linking multiple lines. [Thesis]. Texas Christian University; 2018. Available from: https://repository.tcu.edu/handle/116099117/21823

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Louisville

39. Christensen, Katie C. Algebraic properties of neural codes.

Degree: PhD, 2019, University of Louisville

  The neural rings and ideals as algebraic tools for analyzing the intrinsic structure of neural codes were introduced by C. Curto, V. Itskov, A.… (more)

Subjects/Keywords: commutative algebra; neural code; partial code; monomial morphisms; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Christensen, K. C. (2019). Algebraic properties of neural codes. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

Chicago Manual of Style (16th Edition):

Christensen, Katie C. “Algebraic properties of neural codes.” 2019. Doctoral Dissertation, University of Louisville. Accessed July 07, 2020. 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295.

MLA Handbook (7th Edition):

Christensen, Katie C. “Algebraic properties of neural codes.” 2019. Web. 07 Jul 2020.

Vancouver:

Christensen KC. Algebraic properties of neural codes. [Internet] [Doctoral dissertation]. University of Louisville; 2019. [cited 2020 Jul 07]. Available from: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295.

Council of Science Editors:

Christensen KC. Algebraic properties of neural codes. [Doctoral Dissertation]. University of Louisville; 2019. Available from: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

40. Juett, Jason Robert. Some topics in abstract factorization.

Degree: PhD, Mathematics, 2013, University of Iowa

  Anderson and Frazier defined a generalization of factorization in integral domains called tau-factorization. If D is an integral domain and tau is a symmetric… (more)

Subjects/Keywords: commutative algebra; factorization; Mathematics

…will refer to a commutative multiplicative semigroup with 1 = 0 unless stated otherwise… …Similarly, all rings will be commutative with 1 = 0. 3 Let H be a monoid. We will use use H × to… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Juett, J. R. (2013). Some topics in abstract factorization. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/2534

Chicago Manual of Style (16th Edition):

Juett, Jason Robert. “Some topics in abstract factorization.” 2013. Doctoral Dissertation, University of Iowa. Accessed July 07, 2020. https://ir.uiowa.edu/etd/2534.

MLA Handbook (7th Edition):

Juett, Jason Robert. “Some topics in abstract factorization.” 2013. Web. 07 Jul 2020.

Vancouver:

Juett JR. Some topics in abstract factorization. [Internet] [Doctoral dissertation]. University of Iowa; 2013. [cited 2020 Jul 07]. Available from: https://ir.uiowa.edu/etd/2534.

Council of Science Editors:

Juett JR. Some topics in abstract factorization. [Doctoral Dissertation]. University of Iowa; 2013. Available from: https://ir.uiowa.edu/etd/2534


Georgia State University

41. Ng, Shuenn. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.

Degree: PhD, Mathematics and Statistics, 2018, Georgia State University

  This dissertation investigates the characterization of F-rationality. Much work has been done to characterize F-rationality. Here, we will assume that the underlying ring is… (more)

Subjects/Keywords: commutative algebra; test exponent; Frobenius; tight closure; test element; Matlis dual

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ng, S. (2018). Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/55

Chicago Manual of Style (16th Edition):

Ng, Shuenn. “Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.” 2018. Doctoral Dissertation, Georgia State University. Accessed July 07, 2020. https://scholarworks.gsu.edu/math_diss/55.

MLA Handbook (7th Edition):

Ng, Shuenn. “Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.” 2018. Web. 07 Jul 2020.

Vancouver:

Ng S. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. [Internet] [Doctoral dissertation]. Georgia State University; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.gsu.edu/math_diss/55.

Council of Science Editors:

Ng S. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. [Doctoral Dissertation]. Georgia State University; 2018. Available from: https://scholarworks.gsu.edu/math_diss/55


University of Washington

42. Dorfsman-Hopkins, Gabriel David. Projective Geometry for Perfectoid Spaces.

Degree: PhD, 2019, University of Washington

 To understand the structure of an algebraic variety we often embed it in various projective spaces. This develops the notion of projective geometry which has… (more)

Subjects/Keywords: Algebraic Geometry; Commutative Algebra; Number Theory; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dorfsman-Hopkins, G. D. (2019). Projective Geometry for Perfectoid Spaces. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/44374

Chicago Manual of Style (16th Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Doctoral Dissertation, University of Washington. Accessed July 07, 2020. http://hdl.handle.net/1773/44374.

MLA Handbook (7th Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Web. 07 Jul 2020.

Vancouver:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Internet] [Doctoral dissertation]. University of Washington; 2019. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1773/44374.

Council of Science Editors:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Doctoral Dissertation]. University of Washington; 2019. Available from: http://hdl.handle.net/1773/44374


Michigan State University

43. Curtis, Frank Judson III. Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type.

Degree: PhD, Department of Mathematics, 1990, Michigan State University

Subjects/Keywords: Geometry, Algebraic; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Curtis, F. J. I. (1990). Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:20982

Chicago Manual of Style (16th Edition):

Curtis, Frank Judson III. “Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type.” 1990. Doctoral Dissertation, Michigan State University. Accessed July 07, 2020. http://etd.lib.msu.edu/islandora/object/etd:20982.

MLA Handbook (7th Edition):

Curtis, Frank Judson III. “Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type.” 1990. Web. 07 Jul 2020.

Vancouver:

Curtis FJI. Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type. [Internet] [Doctoral dissertation]. Michigan State University; 1990. [cited 2020 Jul 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:20982.

Council of Science Editors:

Curtis FJI. Cohen-Macaulay unions of lines in P and the Cohen-Macaulay type. [Doctoral Dissertation]. Michigan State University; 1990. Available from: http://etd.lib.msu.edu/islandora/object/etd:20982


Michigan State University

44. Kirkman, Ellen Elizabeth, 1948-. On the characterization of inertial coefficient rings.

Degree: PhD, Department of Mathematics, 1975, Michigan State University

Subjects/Keywords: Commutative rings; Rings (Algebra)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kirkman, Ellen Elizabeth, 1. (1975). On the characterization of inertial coefficient rings. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:19110

Chicago Manual of Style (16th Edition):

Kirkman, Ellen Elizabeth, 1948-. “On the characterization of inertial coefficient rings.” 1975. Doctoral Dissertation, Michigan State University. Accessed July 07, 2020. http://etd.lib.msu.edu/islandora/object/etd:19110.

MLA Handbook (7th Edition):

Kirkman, Ellen Elizabeth, 1948-. “On the characterization of inertial coefficient rings.” 1975. Web. 07 Jul 2020.

Vancouver:

Kirkman, Ellen Elizabeth 1. On the characterization of inertial coefficient rings. [Internet] [Doctoral dissertation]. Michigan State University; 1975. [cited 2020 Jul 07]. Available from: http://etd.lib.msu.edu/islandora/object/etd:19110.

Council of Science Editors:

Kirkman, Ellen Elizabeth 1. On the characterization of inertial coefficient rings. [Doctoral Dissertation]. Michigan State University; 1975. Available from: http://etd.lib.msu.edu/islandora/object/etd:19110


University of Notre Dame

45. Michael Perlman. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.

Degree: Mathematics, 2020, University of Notre Dame

  Let G be a connected linear algebraic group acting on a smooth complex variety X with finitely many orbits. In this case, the category… (more)

Subjects/Keywords: Commutative Algebra; Algebraic Geometry; Local Cohomology; D-modules; Group Actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perlman, M. (2020). Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Web. 07 Jul 2020.

Vancouver:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Internet] [Thesis]. University of Notre Dame; 2020. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Thesis]. University of Notre Dame; 2020. Available from: https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

46. Erin Suzanne Bela. Numerical Macaulification in Arbitrary Codimension</h1>.

Degree: Mathematics, 2018, University of Notre Dame

  An ideal J is said to be numerically c-ACM (NACM) if R/J has the Hilbert function of some codimension c ACM subscheme of Pn.… (more)

Subjects/Keywords: Mathematics; Commutative Algebra; Liaison Theory; Hilbert Functions; Algebraic Geometry; Cohen-Macaulay

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bela, E. S. (2018). Numerical Macaulification in Arbitrary Codimension</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/h702q527g73

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bela, Erin Suzanne. “Numerical Macaulification in Arbitrary Codimension</h1>.” 2018. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/h702q527g73.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bela, Erin Suzanne. “Numerical Macaulification in Arbitrary Codimension</h1>.” 2018. Web. 07 Jul 2020.

Vancouver:

Bela ES. Numerical Macaulification in Arbitrary Codimension</h1>. [Internet] [Thesis]. University of Notre Dame; 2018. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/h702q527g73.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bela ES. Numerical Macaulification in Arbitrary Codimension</h1>. [Thesis]. University of Notre Dame; 2018. Available from: https://curate.nd.edu/show/h702q527g73

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arkansas

47. Taylor, William D. Interpolating Between Multiplicities and F-thresholds.

Degree: PhD, 2018, University of Arkansas

  We define a family of functions, called s-multiplicity for each s>0, that interpolates between Hilbert-Samuel multiplicity and Hilbert-Kunz multiplicity by comparing powers of ideals… (more)

Subjects/Keywords: Closures; Commutative Algebra; Hilbert-Kunz; Hilbert-Samuel; Multiplicity; Other Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, W. D. (2018). Interpolating Between Multiplicities and F-thresholds. (Doctoral Dissertation). University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/2842

Chicago Manual of Style (16th Edition):

Taylor, William D. “Interpolating Between Multiplicities and F-thresholds.” 2018. Doctoral Dissertation, University of Arkansas. Accessed July 07, 2020. https://scholarworks.uark.edu/etd/2842.

MLA Handbook (7th Edition):

Taylor, William D. “Interpolating Between Multiplicities and F-thresholds.” 2018. Web. 07 Jul 2020.

Vancouver:

Taylor WD. Interpolating Between Multiplicities and F-thresholds. [Internet] [Doctoral dissertation]. University of Arkansas; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.uark.edu/etd/2842.

Council of Science Editors:

Taylor WD. Interpolating Between Multiplicities and F-thresholds. [Doctoral Dissertation]. University of Arkansas; 2018. Available from: https://scholarworks.uark.edu/etd/2842

48. Weber, Darrin. Various Topics on Graphical Structures Placed on Commutative Rings.

Degree: 2017, University of Tennessee – Knoxville

 In this dissertation, we look at two types of graphs that can be placed on a commutative ring: the zero-divisor graph and the ideal-based zero-divisor… (more)

Subjects/Keywords: zero-divisor; graph; ideal; cut-set; commutative; ring; Algebra

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weber, D. (2017). Various Topics on Graphical Structures Placed on Commutative Rings. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/4666

Chicago Manual of Style (16th Edition):

Weber, Darrin. “Various Topics on Graphical Structures Placed on Commutative Rings.” 2017. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/4666.

MLA Handbook (7th Edition):

Weber, Darrin. “Various Topics on Graphical Structures Placed on Commutative Rings.” 2017. Web. 07 Jul 2020.

Vancouver:

Weber D. Various Topics on Graphical Structures Placed on Commutative Rings. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2017. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/4666.

Council of Science Editors:

Weber D. Various Topics on Graphical Structures Placed on Commutative Rings. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2017. Available from: https://trace.tennessee.edu/utk_graddiss/4666


University of Southampton

49. Zaris, Paul Marinos. A behavioural approach to the zero structure of multidimensional linear systems.

Degree: PhD, 2000, University of Southampton

 We use the behavioural approach and commutative algebra to define and characterize poles and zeros of multidimensional (nD) linear systems. In the case of a… (more)

Subjects/Keywords: 519; Commutative algebra; Poles; Zeros

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zaris, P. M. (2000). A behavioural approach to the zero structure of multidimensional linear systems. (Doctoral Dissertation). University of Southampton. Retrieved from https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856

Chicago Manual of Style (16th Edition):

Zaris, Paul Marinos. “A behavioural approach to the zero structure of multidimensional linear systems.” 2000. Doctoral Dissertation, University of Southampton. Accessed July 07, 2020. https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856.

MLA Handbook (7th Edition):

Zaris, Paul Marinos. “A behavioural approach to the zero structure of multidimensional linear systems.” 2000. Web. 07 Jul 2020.

Vancouver:

Zaris PM. A behavioural approach to the zero structure of multidimensional linear systems. [Internet] [Doctoral dissertation]. University of Southampton; 2000. [cited 2020 Jul 07]. Available from: https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856.

Council of Science Editors:

Zaris PM. A behavioural approach to the zero structure of multidimensional linear systems. [Doctoral Dissertation]. University of Southampton; 2000. Available from: https://eprints.soton.ac.uk/256195/ ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342856

50. Basson, Romain. Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic.

Degree: Docteur es, Mathématiques et applications, 2015, Rennes 1

L'objet de cette thèse est une description effective des espaces de modules des courbes hyper- elliptiques de genre 3 en caractéristiques positives. En caractéristique nulle… (more)

Subjects/Keywords: Géométrie algébrique; Courbes algébriques; Formes binaires; Calcul formel; Algèbre commutative; Algebraic Geometry; Algebraic curves; Binary forms; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Basson, R. (2015). Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2015REN1S019

Chicago Manual of Style (16th Edition):

Basson, Romain. “Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic.” 2015. Doctoral Dissertation, Rennes 1. Accessed July 07, 2020. http://www.theses.fr/2015REN1S019.

MLA Handbook (7th Edition):

Basson, Romain. “Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic.” 2015. Web. 07 Jul 2020.

Vancouver:

Basson R. Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic. [Internet] [Doctoral dissertation]. Rennes 1; 2015. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2015REN1S019.

Council of Science Editors:

Basson R. Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive : Arithmetic aspects of moduli spaces of genus 3 hyperelliptic curves in positive characteristic. [Doctoral Dissertation]. Rennes 1; 2015. Available from: http://www.theses.fr/2015REN1S019

51. Bignalet-Cazalet, Rémi. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.

Degree: Docteur es, Mathématiques, 2018, Bourgogne Franche-Comté

Dans cette thèse, nous interprétons géométriquement la torsion de l'algèbre symétrique d'un faisceau d'idéaux I_Z d'un schéma Z défini par n+1 équations dans une variété… (more)

Subjects/Keywords: Géométrie algébrique; Algèbre commutative; Singularités; Transformations birationelles; Hypersurfaces homaloïdes; Syzygies; Algebraic geometry; Commutative algebra; Singularities; Birational maps; Homaloidal hypersurfaces; Syzygies; 516

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bignalet-Cazalet, R. (2018). Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. (Doctoral Dissertation). Bourgogne Franche-Comté. Retrieved from http://www.theses.fr/2018UBFCK038

Chicago Manual of Style (16th Edition):

Bignalet-Cazalet, Rémi. “Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.” 2018. Doctoral Dissertation, Bourgogne Franche-Comté. Accessed July 07, 2020. http://www.theses.fr/2018UBFCK038.

MLA Handbook (7th Edition):

Bignalet-Cazalet, Rémi. “Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.” 2018. Web. 07 Jul 2020.

Vancouver:

Bignalet-Cazalet R. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. [Internet] [Doctoral dissertation]. Bourgogne Franche-Comté; 2018. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2018UBFCK038.

Council of Science Editors:

Bignalet-Cazalet R. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. [Doctoral Dissertation]. Bourgogne Franche-Comté; 2018. Available from: http://www.theses.fr/2018UBFCK038


The Ohio State University

52. Narang, Kamal. The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3.

Degree: PhD, Graduate School, 1985, The Ohio State University

Subjects/Keywords: Mathematics; Commutative algebra; Associative algebras; Automorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Narang, K. (1985). The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326

Chicago Manual of Style (16th Edition):

Narang, Kamal. “The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3.” 1985. Doctoral Dissertation, The Ohio State University. Accessed July 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326.

MLA Handbook (7th Edition):

Narang, Kamal. “The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3.” 1985. Web. 07 Jul 2020.

Vancouver:

Narang K. The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3. [Internet] [Doctoral dissertation]. The Ohio State University; 1985. [cited 2020 Jul 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326.

Council of Science Editors:

Narang K. The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3. [Doctoral Dissertation]. The Ohio State University; 1985. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260859494326


Montana Tech

53. Nguyen, Nhan Trong. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.

Degree: PhD, 2018, Montana Tech

  We separate this dissertation into three distinct but related parts. Chapter one focuses on p-Kummer subspaces of G-crossed products where G is an elementary… (more)

Subjects/Keywords: Brauer Group; Central Simple Algebras; Cyclic algebras; Essential Dimension; Kummer Subspaces; Non Commutative Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, N. T. (2018). CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/11258

Chicago Manual of Style (16th Edition):

Nguyen, Nhan Trong. “CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.” 2018. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/11258.

MLA Handbook (7th Edition):

Nguyen, Nhan Trong. “CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.” 2018. Web. 07 Jul 2020.

Vancouver:

Nguyen NT. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. [Internet] [Doctoral dissertation]. Montana Tech; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/11258.

Council of Science Editors:

Nguyen NT. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. [Doctoral Dissertation]. Montana Tech; 2018. Available from: https://scholarworks.umt.edu/etd/11258


Montana Tech

54. Mikhail, Adel Fahmy. RINGS WITH FIXING ELEMENTS.

Degree: PhD, 1987, Montana Tech

Subjects/Keywords: Rings (Algebra); Commutative rings.; Quotient rings.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mikhail, A. F. (1987). RINGS WITH FIXING ELEMENTS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/10249

Chicago Manual of Style (16th Edition):

Mikhail, Adel Fahmy. “RINGS WITH FIXING ELEMENTS.” 1987. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/10249.

MLA Handbook (7th Edition):

Mikhail, Adel Fahmy. “RINGS WITH FIXING ELEMENTS.” 1987. Web. 07 Jul 2020.

Vancouver:

Mikhail AF. RINGS WITH FIXING ELEMENTS. [Internet] [Doctoral dissertation]. Montana Tech; 1987. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/10249.

Council of Science Editors:

Mikhail AF. RINGS WITH FIXING ELEMENTS. [Doctoral Dissertation]. Montana Tech; 1987. Available from: https://scholarworks.umt.edu/etd/10249


Montana Tech

55. Irlbeck, Bernard William. VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS.

Degree: PhD, 1972, Montana Tech

Subjects/Keywords: Rings (Algebra); Homology theory.; Commutative rings.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Irlbeck, B. W. (1972). VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/9780

Chicago Manual of Style (16th Edition):

Irlbeck, Bernard William. “VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS.” 1972. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/9780.

MLA Handbook (7th Edition):

Irlbeck, Bernard William. “VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS.” 1972. Web. 07 Jul 2020.

Vancouver:

Irlbeck BW. VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS. [Internet] [Doctoral dissertation]. Montana Tech; 1972. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/9780.

Council of Science Editors:

Irlbeck BW. VALUATIONS AND PRUEFER-TYPE PROPERTIES FOR COMMUTATIVE RINGS. [Doctoral Dissertation]. Montana Tech; 1972. Available from: https://scholarworks.umt.edu/etd/9780


Kansas State University

56. Xiao, Xinli. The double of representations of Cohomological Hall algebras.

Degree: PhD, Department of Mathematics, 2016, Kansas State University

 Given a quiver Q with/without potential, one can construct an algebra structure on the cohomology of the moduli stacks of representations of Q. The algebra(more)

Subjects/Keywords: Cohomological Hall algebra; Quiver; Smooth model; Representations; Grassmannian; Non-commutative Hilbert scheme

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiao, X. (2016). The double of representations of Cohomological Hall algebras. (Doctoral Dissertation). Kansas State University. Retrieved from http://hdl.handle.net/2097/32900

Chicago Manual of Style (16th Edition):

Xiao, Xinli. “The double of representations of Cohomological Hall algebras.” 2016. Doctoral Dissertation, Kansas State University. Accessed July 07, 2020. http://hdl.handle.net/2097/32900.

MLA Handbook (7th Edition):

Xiao, Xinli. “The double of representations of Cohomological Hall algebras.” 2016. Web. 07 Jul 2020.

Vancouver:

Xiao X. The double of representations of Cohomological Hall algebras. [Internet] [Doctoral dissertation]. Kansas State University; 2016. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/2097/32900.

Council of Science Editors:

Xiao X. The double of representations of Cohomological Hall algebras. [Doctoral Dissertation]. Kansas State University; 2016. Available from: http://hdl.handle.net/2097/32900


Univerzitet u Beogradu

57. Николић, Биљана Д., 1982- 21704295. Суперсиметрична теорија поља на некомутативним просторима.

Degree: Fizički fakultet, 2019, Univerzitet u Beogradu

Физика - Теоријска физика високих енергија / Physics - Theoretical high energy physics

У раду је проучаван утицај деформације суперпростора на ренормализабилност Вес-Зумино модела формулисаног на њему...

Advisors/Committee Members: Radovanović, Voja, 1967- 12747623.

Subjects/Keywords: non(anti)commutative spaces; supersymmetry; deformed Wess-Zumino model; Hopf algebra; quantum field theory; renormalization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Николић, Биљана Д., 1. 2. (2019). Суперсиметрична теорија поља на некомутативним просторима. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Николић, Биљана Д., 1982- 21704295. “Суперсиметрична теорија поља на некомутативним просторима.” 2019. Thesis, Univerzitet u Beogradu. Accessed July 07, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Николић, Биљана Д., 1982- 21704295. “Суперсиметрична теорија поља на некомутативним просторима.” 2019. Web. 07 Jul 2020.

Vancouver:

Николић, Биљана Д. 12. Суперсиметрична теорија поља на некомутативним просторима. [Internet] [Thesis]. Univerzitet u Beogradu; 2019. [cited 2020 Jul 07]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Николић, Биљана Д. 12. Суперсиметрична теорија поља на некомутативним просторима. [Thesis]. Univerzitet u Beogradu; 2019. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

58. Wu, Min. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.

Degree: PhD, 2018, University of Washington

 Let \Bbbk be a field and A the non-commutative \Bbbk-algebra generated by x1, x2, x3 subject to the relations q xixj - q-1 xjxi ;… (more)

Subjects/Keywords: Finite dimensional simple module; Line module; Non-commutative algebra; Polynomial ring; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, M. (2018). Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/43093

Chicago Manual of Style (16th Edition):

Wu, Min. “Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.” 2018. Doctoral Dissertation, University of Washington. Accessed July 07, 2020. http://hdl.handle.net/1773/43093.

MLA Handbook (7th Edition):

Wu, Min. “Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.” 2018. Web. 07 Jul 2020.

Vancouver:

Wu M. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. [Internet] [Doctoral dissertation]. University of Washington; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1773/43093.

Council of Science Editors:

Wu M. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. [Doctoral Dissertation]. University of Washington; 2018. Available from: http://hdl.handle.net/1773/43093


University of Missouri – Columbia

59. Hulsizer, Heidi, 1982-. Minimal resolutions for a class of Gorenstein determinantal ideals.

Degree: 2010, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Let X = {x[subscript ij]} [subscript mxn] be a matrix with entries in a… (more)

Subjects/Keywords: Gorenstein rings; Geometry, Algebraic; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hulsizer, Heidi, 1. (2010). Minimal resolutions for a class of Gorenstein determinantal ideals. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Thesis, University of Missouri – Columbia. Accessed July 07, 2020. http://hdl.handle.net/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Web. 07 Jul 2020.

Vancouver:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Internet] [Thesis]. University of Missouri – Columbia; 2010. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Thesis]. University of Missouri – Columbia; 2010. Available from: http://hdl.handle.net/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

60. Megan Patnott. Arithmetically Gorenstein sets of points on general surfaces in P3</h1>.

Degree: Mathematics, 2013, University of Notre Dame

  This dissertation examines two questions. In the first two chapters, we study the minimal free resolution of a general set of points on a… (more)

Subjects/Keywords: Minimal Resolution Conjecture; graded Betti numbers; commutative algebra; Hilbert functions; algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Patnott, M. (2013). Arithmetically Gorenstein sets of points on general surfaces in P3</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/q237hq40706

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Patnott, Megan. “Arithmetically Gorenstein sets of points on general surfaces in P3</h1>.” 2013. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/q237hq40706.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Patnott, Megan. “Arithmetically Gorenstein sets of points on general surfaces in P3</h1>.” 2013. Web. 07 Jul 2020.

Vancouver:

Patnott M. Arithmetically Gorenstein sets of points on general surfaces in P3</h1>. [Internet] [Thesis]. University of Notre Dame; 2013. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/q237hq40706.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Patnott M. Arithmetically Gorenstein sets of points on general surfaces in P3</h1>. [Thesis]. University of Notre Dame; 2013. Available from: https://curate.nd.edu/show/q237hq40706

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5]

.