Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Commutative Algebra). Showing records 121 – 130 of 130 total matches.

[1] [2] [3] [4] [5]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


University of Michigan

121. Fields, J. Bruce. Length functions determined by killing powers of several ideals in a local ring.

Degree: PhD, Mathematics, 2000, University of Michigan

 Given a local ring R and n ideals whose sum is primary to the maximal ideal of R, one may define a function which takes… (more)

Subjects/Keywords: Commutative Algebra; Rings; Hilbert Functions; Hilbert-Kunz Functions; Intersection Multiplicities; Quasipolynomial Functions; Mathematics; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fields, J. B. (2000). Length functions determined by killing powers of several ideals in a local ring. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/57281

Chicago Manual of Style (16th Edition):

Fields, J Bruce. “Length functions determined by killing powers of several ideals in a local ring.” 2000. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/57281.

MLA Handbook (7th Edition):

Fields, J Bruce. “Length functions determined by killing powers of several ideals in a local ring.” 2000. Web. 10 Jul 2020.

Vancouver:

Fields JB. Length functions determined by killing powers of several ideals in a local ring. [Internet] [Doctoral dissertation]. University of Michigan; 2000. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/57281.

Council of Science Editors:

Fields JB. Length functions determined by killing powers of several ideals in a local ring. [Doctoral Dissertation]. University of Michigan; 2000. Available from: http://hdl.handle.net/2027.42/57281

122. Fei, Jiarui. General Presentations of Algebras.

Degree: PhD, Mathematics, 2010, University of Michigan

 For any finite dimensional basic associative algebra, we study the presentation spaces and their relation to the representation spaces. We prove two propositions about a… (more)

Subjects/Keywords: Representation Theory; Non-commutative Algebra; General Representation; Projective Presentation; Canonical Decomposition; Quiver; Mathematics; Science

…generated commutative k-algebra to the Sets. As a set, Repα (A) consists of all α… …generated commutative k-algebra and V is an α-dimensional R-module. So the tangent space TM Repα… …x28;f, f ) = 0. For a finite-dimensional path algebra, there are exactly two ways to… …governs the decomposition 6 of rigid presentations. In the case of path algebra (without… …associated to the cluster algebra of an acyclic quiver. Cluster algebras were introduced by Fomin… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fei, J. (2010). General Presentations of Algebras. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77740

Chicago Manual of Style (16th Edition):

Fei, Jiarui. “General Presentations of Algebras.” 2010. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/77740.

MLA Handbook (7th Edition):

Fei, Jiarui. “General Presentations of Algebras.” 2010. Web. 10 Jul 2020.

Vancouver:

Fei J. General Presentations of Algebras. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/77740.

Council of Science Editors:

Fei J. General Presentations of Algebras. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77740

123. Rebhuhn-Glanz, Rebecca. Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities.

Degree: PhD, Mathematics, 2016, University of Michigan

 Geoffrey Dietz introduced a set of axioms for a closure operation on a complete local domain such that the existence of a closure operation satisfying… (more)

Subjects/Keywords: commutative algebra; cohen-macaulay module; closure operation; tight closure; Mathematics; Science

…2 advantage of the connections between commutative algebra and algebraic geometry. My… …x28;xz, yz) is not a Cohen-Macaulay ring. Commutative algebra often involves proving… …to a family of conjectures fundamental to commutative algebra, including the Direct Summand… …algebra. Due to results on the existence of weakly functorial big 9 Cohen-Macaulay algebras… …question in the positive, by giving an Algebra Axiom, Axiom VII.1. We prove: Theorem 3 (… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rebhuhn-Glanz, R. (2016). Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/133408

Chicago Manual of Style (16th Edition):

Rebhuhn-Glanz, Rebecca. “Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities.” 2016. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/133408.

MLA Handbook (7th Edition):

Rebhuhn-Glanz, Rebecca. “Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities.” 2016. Web. 10 Jul 2020.

Vancouver:

Rebhuhn-Glanz R. Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/133408.

Council of Science Editors:

Rebhuhn-Glanz R. Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/133408

124. Kileel, Joseph David. Algebraic Geometry for Computer Vision.

Degree: Mathematics, 2017, University of California – Berkeley

 This thesis uses tools from algebraic geometry to solve problems about three-dimensional scene reconstruction. 3D reconstruction is a fundamental task in multiview geometry, a field… (more)

Subjects/Keywords: Mathematics; Algebraic geometry; Chow form; Commutative algebra; Computer vision; Homotopy continuation; Minimal problems

…and classmates from Berkeley, starting with Justin, for helping with commutative algebra so… …combinatorial commutative algebra, and we find equations cutting the space out (Theorem 5.6)… …under the hood: band-pass filters, nonlinear least squares optimization, sparse linear algebra… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kileel, J. D. (2017). Algebraic Geometry for Computer Vision. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1mj041cc

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kileel, Joseph David. “Algebraic Geometry for Computer Vision.” 2017. Thesis, University of California – Berkeley. Accessed July 10, 2020. http://www.escholarship.org/uc/item/1mj041cc.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kileel, Joseph David. “Algebraic Geometry for Computer Vision.” 2017. Web. 10 Jul 2020.

Vancouver:

Kileel JD. Algebraic Geometry for Computer Vision. [Internet] [Thesis]. University of California – Berkeley; 2017. [cited 2020 Jul 10]. Available from: http://www.escholarship.org/uc/item/1mj041cc.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kileel JD. Algebraic Geometry for Computer Vision. [Thesis]. University of California – Berkeley; 2017. Available from: http://www.escholarship.org/uc/item/1mj041cc

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Florida

125. Castillo-Gil, Miriam S. Functions of Positive Real Part of the Unit Ball of a Normed Space.

Degree: PhD, Mathematics, 2012, University of Florida

 We study some classes of holomorphic functions of positive real part on domains Omega that are the unit ball for some norm over C^d and… (more)

Subjects/Keywords: Algebra; Analytic functions; Commuting; Hilbert spaces; Inner products; Mathematical theorems; Mathematics; Matrices; Unit ball; Vector spaces; ball  – cauchy  – classes  – commutative  – contractions  – duality  – fantappie  – functional  – herglotz  – inequality  – kernel  – lie  – neumann  – operators  – pairing  – polydisk  – positive  – riesz  – schur  – transform  – unit

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Castillo-Gil, M. S. (2012). Functions of Positive Real Part of the Unit Ball of a Normed Space. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0044528

Chicago Manual of Style (16th Edition):

Castillo-Gil, Miriam S. “Functions of Positive Real Part of the Unit Ball of a Normed Space.” 2012. Doctoral Dissertation, University of Florida. Accessed July 10, 2020. https://ufdc.ufl.edu/UFE0044528.

MLA Handbook (7th Edition):

Castillo-Gil, Miriam S. “Functions of Positive Real Part of the Unit Ball of a Normed Space.” 2012. Web. 10 Jul 2020.

Vancouver:

Castillo-Gil MS. Functions of Positive Real Part of the Unit Ball of a Normed Space. [Internet] [Doctoral dissertation]. University of Florida; 2012. [cited 2020 Jul 10]. Available from: https://ufdc.ufl.edu/UFE0044528.

Council of Science Editors:

Castillo-Gil MS. Functions of Positive Real Part of the Unit Ball of a Normed Space. [Doctoral Dissertation]. University of Florida; 2012. Available from: https://ufdc.ufl.edu/UFE0044528


Université du Luxembourg

126. Gohr, Aron Samuel. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.

Degree: 2009, Université du Luxembourg

 The main topic under study in the present work is the deformation theory of color algebras. Color algebras are generalized analogues of associative superalgebras, where… (more)

Subjects/Keywords: Color-commutative algebra; Deformation theory; Hochschild cohomology; Harrison cohomology; Noncommutative deformations; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gohr, A. S. (2009). On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/15594

Chicago Manual of Style (16th Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Doctoral Dissertation, Université du Luxembourg. Accessed July 10, 2020. http://orbilu.uni.lu/handle/10993/15594.

MLA Handbook (7th Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Web. 10 Jul 2020.

Vancouver:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2009. [cited 2020 Jul 10]. Available from: http://orbilu.uni.lu/handle/10993/15594.

Council of Science Editors:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Doctoral Dissertation]. Université du Luxembourg; 2009. Available from: http://orbilu.uni.lu/handle/10993/15594

127. Steward, Michael. Extending the Skolem Property.

Degree: PhD, Mathematics, 2017, The Ohio State University

 Skolem properties describe how well ideals of rings of integer-valued polynomialsare characterized by their images under evaluation maps. They are usually definedonly for finitely generated… (more)

Subjects/Keywords: Mathematics; algebra; commutative algebra; Skolem property; factorization; multiplicative ideal theory; semistar operation; star operation; evaluation; polynomial; rational function; ring; ring theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Steward, M. (2017). Extending the Skolem Property. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

Chicago Manual of Style (16th Edition):

Steward, Michael. “Extending the Skolem Property.” 2017. Doctoral Dissertation, The Ohio State University. Accessed July 10, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202.

MLA Handbook (7th Edition):

Steward, Michael. “Extending the Skolem Property.” 2017. Web. 10 Jul 2020.

Vancouver:

Steward M. Extending the Skolem Property. [Internet] [Doctoral dissertation]. The Ohio State University; 2017. [cited 2020 Jul 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202.

Council of Science Editors:

Steward M. Extending the Skolem Property. [Doctoral Dissertation]. The Ohio State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202


ETH Zürich

128. Razavi, Seyed Mohammad Hadi Hedayatzadeh. Exterior powers of Barsotti-Tate groups.

Degree: 2010, ETH Zürich

Subjects/Keywords: MODULN (ALGEBRA); BEWERTUNGEN AUF KOMMUTATIVEN RINGEN UND TEILBARKEITSTHEORIE (ALGEBRAISCHE GEOMETRIE); HOMOMORPHISMENGRUPPEN (ALGEBRA); GRUPPENSCHEMATA (ALGEBRAISCHE GEOMETRIE); MODULES (ALGEBRA); VALUATIONS ON COMMUTATIVE RINGS AND THEORY OF DIVISIBILITY (ALGEBRAIC GEOMETRY); HOMOMORPHISM GROUPS (ALGEBRA); GROUP SCHEMES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Razavi, S. M. H. H. (2010). Exterior powers of Barsotti-Tate groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152468

Chicago Manual of Style (16th Edition):

Razavi, Seyed Mohammad Hadi Hedayatzadeh. “Exterior powers of Barsotti-Tate groups.” 2010. Doctoral Dissertation, ETH Zürich. Accessed July 10, 2020. http://hdl.handle.net/20.500.11850/152468.

MLA Handbook (7th Edition):

Razavi, Seyed Mohammad Hadi Hedayatzadeh. “Exterior powers of Barsotti-Tate groups.” 2010. Web. 10 Jul 2020.

Vancouver:

Razavi SMHH. Exterior powers of Barsotti-Tate groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/20.500.11850/152468.

Council of Science Editors:

Razavi SMHH. Exterior powers of Barsotti-Tate groups. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152468

129. Tête, Claire. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.

Degree: Docteur es, Mathématiques et leurs interactions, 2014, Poitiers

Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper… (more)

Subjects/Keywords: Algèbre commutative effective; (co)homologie de Koszul; Cohomologie de Cech; Suite exacte de Mayer-Vietoris; Cohomologie du totalisé d'un bicomplexe; Profondeur; Suite régulière; Complètement sécante; 1-Sécante; Quasi-Régulière; Dimension de Krull; Résolution libre finie; Construction de Tate; Calcul de l'anneau des entiers d'un corps de nombres; Effective commutative algebra; Koszul cohomology; Cech cohomology; Mayer-Vietoris exact sequence; Cohomology of the totalization of a bicomplex; Depth; Regular sequence; 1-Secant sequence; Quasi-Regular sequence; Krull dimension; Finite free resolution; Tate construction; Algorithm for computing the ring of integers of a number field; 512.44

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tête, C. (2014). Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2014POIT2288

Chicago Manual of Style (16th Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Doctoral Dissertation, Poitiers. Accessed July 10, 2020. http://www.theses.fr/2014POIT2288.

MLA Handbook (7th Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Web. 10 Jul 2020.

Vancouver:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Internet] [Doctoral dissertation]. Poitiers; 2014. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2014POIT2288.

Council of Science Editors:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Doctoral Dissertation]. Poitiers; 2014. Available from: http://www.theses.fr/2014POIT2288

130. Sáenz de Cabezón Irigaray, Eduardo. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.

Degree: 2008, Universidad de La Rioja

With a particular focus on explicit computations and applications of the Koszul homology and Betti numbers of monomial ideals, the main goals od this thesis… (more)

Subjects/Keywords: combinatorial commutative algebra; monomial ideals; Betti numbers; algebraic analysis of system reliability; formal theory of differential systems; homología de Koszul; álgebra conmutativa combinatoria; ideales monomiales; números de Betti; análisis algebráico de la fiabilidad de sistemas; teoría formal de sistemas diferenciales; Koszul homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sáenz de Cabezón Irigaray, E. (2008). Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. (Thesis). Universidad de La Rioja. Retrieved from https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Thesis, Universidad de La Rioja. Accessed July 10, 2020. https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Web. 10 Jul 2020.

Vancouver:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Internet] [Thesis]. Universidad de La Rioja; 2008. [cited 2020 Jul 10]. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Thesis]. Universidad de La Rioja; 2008. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5]

.