Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Commutative Algebra)`

.
Showing records 121 – 130 of
130 total matches.

Search Limiters

Dates

- 2016 – 2020 (44)
- 2011 – 2015 (42)
- 2006 – 2010 (25)

▼ Search Limiters

University of Michigan

121. Fields, J. Bruce. Length functions determined by killing powers of several ideals in a local ring.

Degree: PhD, Mathematics, 2000, University of Michigan

URL: http://hdl.handle.net/2027.42/57281

► Given a local ring R and n ideals whose sum is primary to the maximal ideal of R, one may define a function which takes…
(more)

Subjects/Keywords: Commutative Algebra; Rings; Hilbert Functions; Hilbert-Kunz Functions; Intersection Multiplicities; Quasipolynomial Functions; Mathematics; Mathematics; Science

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fields, J. B. (2000). Length functions determined by killing powers of several ideals in a local ring. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/57281

Chicago Manual of Style (16^{th} Edition):

Fields, J Bruce. “Length functions determined by killing powers of several ideals in a local ring.” 2000. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/57281.

MLA Handbook (7^{th} Edition):

Fields, J Bruce. “Length functions determined by killing powers of several ideals in a local ring.” 2000. Web. 10 Jul 2020.

Vancouver:

Fields JB. Length functions determined by killing powers of several ideals in a local ring. [Internet] [Doctoral dissertation]. University of Michigan; 2000. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/57281.

Council of Science Editors:

Fields JB. Length functions determined by killing powers of several ideals in a local ring. [Doctoral Dissertation]. University of Michigan; 2000. Available from: http://hdl.handle.net/2027.42/57281

122. Fei, Jiarui. General Presentations of Algebras.

Degree: PhD, Mathematics, 2010, University of Michigan

URL: http://hdl.handle.net/2027.42/77740

► For any finite dimensional basic associative *algebra*, we study the presentation spaces and their relation to the representation spaces. We prove two propositions about a…
(more)

Subjects/Keywords: Representation Theory; Non-commutative Algebra; General Representation; Projective Presentation; Canonical Decomposition; Quiver; Mathematics; Science

…generated
*commutative* k-*algebra* to the Sets. As a set, Repα (A) consists of all α… …generated *commutative* k-*algebra* and V is an α-dimensional
R-module. So the tangent space TM Repα… …x28;f, f ) = 0. For a finite-dimensional path *algebra*,
there are exactly two ways to… …governs the decomposition
6
of rigid presentations. In the case of path *algebra* (without… …associated to the cluster *algebra* of
an acyclic quiver. Cluster algebras were introduced by Fomin…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fei, J. (2010). General Presentations of Algebras. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77740

Chicago Manual of Style (16^{th} Edition):

Fei, Jiarui. “General Presentations of Algebras.” 2010. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/77740.

MLA Handbook (7^{th} Edition):

Fei, Jiarui. “General Presentations of Algebras.” 2010. Web. 10 Jul 2020.

Vancouver:

Fei J. General Presentations of Algebras. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/77740.

Council of Science Editors:

Fei J. General Presentations of Algebras. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77740

123. Rebhuhn-Glanz, Rebecca. Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities.

Degree: PhD, Mathematics, 2016, University of Michigan

URL: http://hdl.handle.net/2027.42/133408

► Geoffrey Dietz introduced a set of axioms for a closure operation on a complete local domain such that the existence of a closure operation satisfying…
(more)

Subjects/Keywords: commutative algebra; cohen-macaulay module; closure operation; tight closure; Mathematics; Science

…2
advantage of the connections between *commutative* *algebra* and algebraic geometry.
My… …x28;xz, yz) is
not a Cohen-Macaulay ring.
*Commutative* *algebra* often involves proving… …to a family of conjectures fundamental
to *commutative* *algebra*, including the Direct Summand… …*algebra*. Due to results on the existence of weakly functorial big
9
Cohen-Macaulay algebras… …question in the positive, by giving an *Algebra*
Axiom, Axiom VII.1. We prove:
Theorem 3 (…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rebhuhn-Glanz, R. (2016). Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/133408

Chicago Manual of Style (16^{th} Edition):

Rebhuhn-Glanz, Rebecca. “Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities.” 2016. Doctoral Dissertation, University of Michigan. Accessed July 10, 2020. http://hdl.handle.net/2027.42/133408.

MLA Handbook (7^{th} Edition):

Rebhuhn-Glanz, Rebecca. “Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities.” 2016. Web. 10 Jul 2020.

Vancouver:

Rebhuhn-Glanz R. Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities. [Internet] [Doctoral dissertation]. University of Michigan; 2016. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/2027.42/133408.

Council of Science Editors:

Rebhuhn-Glanz R. Closure Operations that Induce Big Cohen-Macaulay Modules and Algebras, and Classification of Singularities. [Doctoral Dissertation]. University of Michigan; 2016. Available from: http://hdl.handle.net/2027.42/133408

124. Kileel, Joseph David. Algebraic Geometry for Computer Vision.

Degree: Mathematics, 2017, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/1mj041cc

► This thesis uses tools from algebraic geometry to solve problems about three-dimensional scene reconstruction. 3D reconstruction is a fundamental task in multiview geometry, a field…
(more)

Subjects/Keywords: Mathematics; Algebraic geometry; Chow form; Commutative algebra; Computer vision; Homotopy continuation; Minimal problems

…and classmates from Berkeley, starting with Justin, for helping
with *commutative* *algebra* so… …combinatorial *commutative* *algebra*, and we
find equations cutting the space out (Theorem 5.6)… …under the hood: band-pass filters, nonlinear least squares optimization, sparse linear *algebra*…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kileel, J. D. (2017). Algebraic Geometry for Computer Vision. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1mj041cc

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kileel, Joseph David. “Algebraic Geometry for Computer Vision.” 2017. Thesis, University of California – Berkeley. Accessed July 10, 2020. http://www.escholarship.org/uc/item/1mj041cc.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kileel, Joseph David. “Algebraic Geometry for Computer Vision.” 2017. Web. 10 Jul 2020.

Vancouver:

Kileel JD. Algebraic Geometry for Computer Vision. [Internet] [Thesis]. University of California – Berkeley; 2017. [cited 2020 Jul 10]. Available from: http://www.escholarship.org/uc/item/1mj041cc.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kileel JD. Algebraic Geometry for Computer Vision. [Thesis]. University of California – Berkeley; 2017. Available from: http://www.escholarship.org/uc/item/1mj041cc

Not specified: Masters Thesis or Doctoral Dissertation

University of Florida

125. Castillo-Gil, Miriam S. Functions of Positive Real Part of the Unit Ball of a Normed Space.

Degree: PhD, Mathematics, 2012, University of Florida

URL: https://ufdc.ufl.edu/UFE0044528

► We study some classes of holomorphic functions of positive real part on domains Omega that are the unit ball for some norm over C^d and…
(more)

Subjects/Keywords: Algebra; Analytic functions; Commuting; Hilbert spaces; Inner products; Mathematical theorems; Mathematics; Matrices; Unit ball; Vector spaces; ball – cauchy – classes – commutative – contractions – duality – fantappie – functional – herglotz – inequality – kernel – lie – neumann – operators – pairing – polydisk – positive – riesz – schur – transform – unit

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Castillo-Gil, M. S. (2012). Functions of Positive Real Part of the Unit Ball of a Normed Space. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0044528

Chicago Manual of Style (16^{th} Edition):

Castillo-Gil, Miriam S. “Functions of Positive Real Part of the Unit Ball of a Normed Space.” 2012. Doctoral Dissertation, University of Florida. Accessed July 10, 2020. https://ufdc.ufl.edu/UFE0044528.

MLA Handbook (7^{th} Edition):

Castillo-Gil, Miriam S. “Functions of Positive Real Part of the Unit Ball of a Normed Space.” 2012. Web. 10 Jul 2020.

Vancouver:

Castillo-Gil MS. Functions of Positive Real Part of the Unit Ball of a Normed Space. [Internet] [Doctoral dissertation]. University of Florida; 2012. [cited 2020 Jul 10]. Available from: https://ufdc.ufl.edu/UFE0044528.

Council of Science Editors:

Castillo-Gil MS. Functions of Positive Real Part of the Unit Ball of a Normed Space. [Doctoral Dissertation]. University of Florida; 2012. Available from: https://ufdc.ufl.edu/UFE0044528

Université du Luxembourg

126.
Gohr, Aron Samuel.
On noncommutative deformations, cohomology of color-*commutative* algebras and formal smoothness.

Degree: 2009, Université du Luxembourg

URL: http://orbilu.uni.lu/handle/10993/15594

► The main topic under study in the present work is the deformation theory of color algebras. Color algebras are generalized analogues of associative superalgebras, where…
(more)

Subjects/Keywords: Color-commutative algebra; Deformation theory; Hochschild cohomology; Harrison cohomology; Noncommutative deformations; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gohr, A. S. (2009). On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/15594

Chicago Manual of Style (16^{th} Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Doctoral Dissertation, Université du Luxembourg. Accessed July 10, 2020. http://orbilu.uni.lu/handle/10993/15594.

MLA Handbook (7^{th} Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Web. 10 Jul 2020.

Vancouver:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2009. [cited 2020 Jul 10]. Available from: http://orbilu.uni.lu/handle/10993/15594.

Council of Science Editors:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Doctoral Dissertation]. Université du Luxembourg; 2009. Available from: http://orbilu.uni.lu/handle/10993/15594

127. Steward, Michael. Extending the Skolem Property.

Degree: PhD, Mathematics, 2017, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

► Skolem properties describe how well ideals of rings of integer-valued polynomialsare characterized by their images under evaluation maps. They are usually definedonly for finitely generated…
(more)

Subjects/Keywords: Mathematics; algebra; commutative algebra; Skolem property; factorization; multiplicative ideal theory; semistar operation; star operation; evaluation; polynomial; rational function; ring; ring theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Steward, M. (2017). Extending the Skolem Property. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

Chicago Manual of Style (16^{th} Edition):

Steward, Michael. “Extending the Skolem Property.” 2017. Doctoral Dissertation, The Ohio State University. Accessed July 10, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202.

MLA Handbook (7^{th} Edition):

Steward, Michael. “Extending the Skolem Property.” 2017. Web. 10 Jul 2020.

Vancouver:

Steward M. Extending the Skolem Property. [Internet] [Doctoral dissertation]. The Ohio State University; 2017. [cited 2020 Jul 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202.

Council of Science Editors:

Steward M. Extending the Skolem Property. [Doctoral Dissertation]. The Ohio State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

ETH Zürich

128. Razavi, Seyed Mohammad Hadi Hedayatzadeh. Exterior powers of Barsotti-Tate groups.

Degree: 2010, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/152468

Subjects/Keywords: MODULN (ALGEBRA); BEWERTUNGEN AUF KOMMUTATIVEN RINGEN UND TEILBARKEITSTHEORIE (ALGEBRAISCHE GEOMETRIE); HOMOMORPHISMENGRUPPEN (ALGEBRA); GRUPPENSCHEMATA (ALGEBRAISCHE GEOMETRIE); MODULES (ALGEBRA); VALUATIONS ON COMMUTATIVE RINGS AND THEORY OF DIVISIBILITY (ALGEBRAIC GEOMETRY); HOMOMORPHISM GROUPS (ALGEBRA); GROUP SCHEMES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Razavi, S. M. H. H. (2010). Exterior powers of Barsotti-Tate groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152468

Chicago Manual of Style (16^{th} Edition):

Razavi, Seyed Mohammad Hadi Hedayatzadeh. “Exterior powers of Barsotti-Tate groups.” 2010. Doctoral Dissertation, ETH Zürich. Accessed July 10, 2020. http://hdl.handle.net/20.500.11850/152468.

MLA Handbook (7^{th} Edition):

Razavi, Seyed Mohammad Hadi Hedayatzadeh. “Exterior powers of Barsotti-Tate groups.” 2010. Web. 10 Jul 2020.

Vancouver:

Razavi SMHH. Exterior powers of Barsotti-Tate groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/20.500.11850/152468.

Council of Science Editors:

Razavi SMHH. Exterior powers of Barsotti-Tate groups. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152468

129.
Tête, Claire.
Profondeur, dimension et résolutions en algèbre *commutative* : quelques aspects effectifs : Depth, dimension and resolutions in *commutative* *algebra* : some effective aspects.

Degree: Docteur es, Mathématiques et leurs interactions, 2014, Poitiers

URL: http://www.theses.fr/2014POIT2288

►

Cette thèse d'algèbre *commutative* porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper…
(more)

Subjects/Keywords: Algèbre commutative effective; (co)homologie de Koszul; Cohomologie de Cech; Suite exacte de Mayer-Vietoris; Cohomologie du totalisé d'un bicomplexe; Profondeur; Suite régulière; Complètement sécante; 1-Sécante; Quasi-Régulière; Dimension de Krull; Résolution libre finie; Construction de Tate; Calcul de l'anneau des entiers d'un corps de nombres; Effective commutative algebra; Koszul cohomology; Cech cohomology; Mayer-Vietoris exact sequence; Cohomology of the totalization of a bicomplex; Depth; Regular sequence; 1-Secant sequence; Quasi-Regular sequence; Krull dimension; Finite free resolution; Tate construction; Algorithm for computing the ring of integers of a number field; 512.44

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Tête, C. (2014). Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2014POIT2288

Chicago Manual of Style (16^{th} Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Doctoral Dissertation, Poitiers. Accessed July 10, 2020. http://www.theses.fr/2014POIT2288.

MLA Handbook (7^{th} Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Web. 10 Jul 2020.

Vancouver:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Internet] [Doctoral dissertation]. Poitiers; 2014. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2014POIT2288.

Council of Science Editors:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Doctoral Dissertation]. Poitiers; 2014. Available from: http://www.theses.fr/2014POIT2288

130. Sáenz de Cabezón Irigaray, Eduardo. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.

Degree: 2008, Universidad de La Rioja

URL: https://dialnet.unirioja.es/servlet/oaites?codigo=13745

►

With a particular focus on explicit computations and applications of the Koszul homology and Betti numbers of monomial ideals, the main goals od this thesis… (more)

Subjects/Keywords: combinatorial commutative algebra; monomial ideals; Betti numbers; algebraic analysis of system reliability; formal theory of differential systems; homología de Koszul; álgebra conmutativa combinatoria; ideales monomiales; números de Betti; análisis algebráico de la fiabilidad de sistemas; teoría formal de sistemas diferenciales; Koszul homology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sáenz de Cabezón Irigaray, E. (2008). Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. (Thesis). Universidad de La Rioja. Retrieved from https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Thesis, Universidad de La Rioja. Accessed July 10, 2020. https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Web. 10 Jul 2020.

Vancouver:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Internet] [Thesis]. Universidad de La Rioja; 2008. [cited 2020 Jul 10]. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Thesis]. Universidad de La Rioja; 2008. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Not specified: Masters Thesis or Doctoral Dissertation