Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Commutative Algebra)`

.
Showing records 1 – 30 of
131 total matches.

Search Limiters

Dates

- 2016 – 2020 (44)
- 2011 – 2015 (42)
- 2006 – 2010 (25)

▼ Search Limiters

University of Notre Dame

1. Michael Perlman. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.

Degree: Mathematics, 2020, University of Notre Dame

URL: https://curate.nd.edu/show/g732d79512m

► Let G be a connected linear algebraic group acting on a smooth complex variety X with finitely many orbits. In this case, the category…
(more)

Subjects/Keywords: Commutative Algebra; Algebraic Geometry; Local Cohomology; D-modules; Group Actions

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Perlman, M. (2020). Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Web. 07 Jul 2020.

Vancouver:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Internet] [Thesis]. University of Notre Dame; 2020. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Thesis]. University of Notre Dame; 2020. Available from: https://curate.nd.edu/show/g732d79512m

Not specified: Masters Thesis or Doctoral Dissertation

Syracuse University

2. Ottman, Eric Jeffrey. Homology over a Complete Intersection Ring via the Generic Hypersurface.

Degree: PhD, Mathematics, 2019, Syracuse University

URL: https://surface.syr.edu/etd/1131

► We study homological properties and constructions for modules over a complete intersection ring Q/(f_{1},…,f_{c}) by way of the related generic hypersurface ring Q[T_{1},…,T_{c}]/(f_{1T}_{1+}∙s+f_{cT}_{c}). The…
(more)

Subjects/Keywords: Algebraic Geometry; Commutative Algebra; Homological Algebra; Physical Sciences and Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ottman, E. J. (2019). Homology over a Complete Intersection Ring via the Generic Hypersurface. (Doctoral Dissertation). Syracuse University. Retrieved from https://surface.syr.edu/etd/1131

Chicago Manual of Style (16^{th} Edition):

Ottman, Eric Jeffrey. “Homology over a Complete Intersection Ring via the Generic Hypersurface.” 2019. Doctoral Dissertation, Syracuse University. Accessed July 07, 2020. https://surface.syr.edu/etd/1131.

MLA Handbook (7^{th} Edition):

Ottman, Eric Jeffrey. “Homology over a Complete Intersection Ring via the Generic Hypersurface.” 2019. Web. 07 Jul 2020.

Vancouver:

Ottman EJ. Homology over a Complete Intersection Ring via the Generic Hypersurface. [Internet] [Doctoral dissertation]. Syracuse University; 2019. [cited 2020 Jul 07]. Available from: https://surface.syr.edu/etd/1131.

Council of Science Editors:

Ottman EJ. Homology over a Complete Intersection Ring via the Generic Hypersurface. [Doctoral Dissertation]. Syracuse University; 2019. Available from: https://surface.syr.edu/etd/1131

University of Toronto

3. Esentepe, Özgür. Annihilation of Cohomology over Gorenstein Rings.

Degree: PhD, 2019, University of Toronto

URL: http://hdl.handle.net/1807/97422

► One of the fundamental links between geometry and homological *algebra* is that smooth affine schemes have coordinate rings of finite global dimension. The roots of…
(more)

Subjects/Keywords: cohomology annihilator; commutative algebra; maximal cohen-macaulay modules; representation theory; stable annihilator; tate cohomology; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Esentepe, . (2019). Annihilation of Cohomology over Gorenstein Rings. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97422

Chicago Manual of Style (16^{th} Edition):

Esentepe, Özgür. “Annihilation of Cohomology over Gorenstein Rings.” 2019. Doctoral Dissertation, University of Toronto. Accessed July 07, 2020. http://hdl.handle.net/1807/97422.

MLA Handbook (7^{th} Edition):

Esentepe, Özgür. “Annihilation of Cohomology over Gorenstein Rings.” 2019. Web. 07 Jul 2020.

Vancouver:

Esentepe . Annihilation of Cohomology over Gorenstein Rings. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1807/97422.

Council of Science Editors:

Esentepe . Annihilation of Cohomology over Gorenstein Rings. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97422

University of Washington

4. Dorfsman-Hopkins, Gabriel David. Projective Geometry for Perfectoid Spaces.

Degree: PhD, 2019, University of Washington

URL: http://hdl.handle.net/1773/44374

► To understand the structure of an algebraic variety we often embed it in various projective spaces. This develops the notion of projective geometry which has…
(more)

Subjects/Keywords: Algebraic Geometry; Commutative Algebra; Number Theory; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dorfsman-Hopkins, G. D. (2019). Projective Geometry for Perfectoid Spaces. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/44374

Chicago Manual of Style (16^{th} Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Doctoral Dissertation, University of Washington. Accessed July 07, 2020. http://hdl.handle.net/1773/44374.

MLA Handbook (7^{th} Edition):

Dorfsman-Hopkins, Gabriel David. “Projective Geometry for Perfectoid Spaces.” 2019. Web. 07 Jul 2020.

Vancouver:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Internet] [Doctoral dissertation]. University of Washington; 2019. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1773/44374.

Council of Science Editors:

Dorfsman-Hopkins GD. Projective Geometry for Perfectoid Spaces. [Doctoral Dissertation]. University of Washington; 2019. Available from: http://hdl.handle.net/1773/44374

University of Louisville

5. Christensen, Katie C. Algebraic properties of neural codes.

Degree: PhD, 2019, University of Louisville

URL: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

► The neural rings and ideals as algebraic tools for analyzing the intrinsic structure of neural codes were introduced by C. Curto, V. Itskov, A.…
(more)

Subjects/Keywords: commutative algebra; neural code; partial code; monomial morphisms; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Christensen, K. C. (2019). Algebraic properties of neural codes. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

Chicago Manual of Style (16^{th} Edition):

Christensen, Katie C. “Algebraic properties of neural codes.” 2019. Doctoral Dissertation, University of Louisville. Accessed July 07, 2020. 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295.

MLA Handbook (7^{th} Edition):

Christensen, Katie C. “Algebraic properties of neural codes.” 2019. Web. 07 Jul 2020.

Vancouver:

Christensen KC. Algebraic properties of neural codes. [Internet] [Doctoral dissertation]. University of Louisville; 2019. [cited 2020 Jul 07]. Available from: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295.

Council of Science Editors:

Christensen KC. Algebraic properties of neural codes. [Doctoral Dissertation]. University of Louisville; 2019. Available from: 10.18297/etd/3295 ; https://ir.library.louisville.edu/etd/3295

Univerzitet u Beogradu

6. Николић, Биљана Д., 1982- 21704295. Суперсиметрична теорија поља на некомутативним просторима.

Degree: Fizički fakultet, 2019, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Физика - Теоријска физика високих енергија / Physics - Theoretical high energy physics

У раду је проучаван утицај деформације суперпростора на ренормализабилност Вес-Зумино модела формулисаног на њему...

Subjects/Keywords: non(anti)commutative spaces; supersymmetry; deformed Wess-Zumino model; Hopf algebra; quantum field theory; renormalization

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Николић, Биљана Д., 1. 2. (2019). Суперсиметрична теорија поља на некомутативним просторима. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Николић, Биљана Д., 1982- 21704295. “Суперсиметрична теорија поља на некомутативним просторима.” 2019. Thesis, Univerzitet u Beogradu. Accessed July 07, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Николић, Биљана Д., 1982- 21704295. “Суперсиметрична теорија поља на некомутативним просторима.” 2019. Web. 07 Jul 2020.

Vancouver:

Николић, Биљана Д. 12. Суперсиметрична теорија поља на некомутативним просторима. [Internet] [Thesis]. Univerzitet u Beogradu; 2019. [cited 2020 Jul 07]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Николић, Биљана Д. 12. Суперсиметрична теорија поља на некомутативним просторима. [Thesis]. Univerzitet u Beogradu; 2019. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:19907/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Universitat de Barcelona

7.
Cid Ruiz, Yairon.
Blow-up algebras in *Algebra*, Geometry and Combinatorics.

Degree: Departament de Matemàtiques i Informàtica, 2019, Universitat de Barcelona

URL: http://hdl.handle.net/10803/667768

► The primary topic of this thesis lies at the crossroads of *Commutative* *Algebra* and its interactions with Algebraic Geometry and Combinatorics. It is mainly focused…
(more)

Subjects/Keywords: Àlgebra commutativa; Álgebra conmutativa; Commutative algebra; Geometria algebraica; Geometría algebraica; Algebraic geometry; Combinatòria (Matemàtica); Combinatoria (Matemáticas); Combinations; Ciències Experimentals i Matemàtiques; 51

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cid Ruiz, Y. (2019). Blow-up algebras in Algebra, Geometry and Combinatorics. (Thesis). Universitat de Barcelona. Retrieved from http://hdl.handle.net/10803/667768

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cid Ruiz, Yairon. “Blow-up algebras in Algebra, Geometry and Combinatorics.” 2019. Thesis, Universitat de Barcelona. Accessed July 07, 2020. http://hdl.handle.net/10803/667768.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cid Ruiz, Yairon. “Blow-up algebras in Algebra, Geometry and Combinatorics.” 2019. Web. 07 Jul 2020.

Vancouver:

Cid Ruiz Y. Blow-up algebras in Algebra, Geometry and Combinatorics. [Internet] [Thesis]. Universitat de Barcelona; 2019. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10803/667768.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cid Ruiz Y. Blow-up algebras in Algebra, Geometry and Combinatorics. [Thesis]. Universitat de Barcelona; 2019. Available from: http://hdl.handle.net/10803/667768

Not specified: Masters Thesis or Doctoral Dissertation

8. Kodalen, Brian G. Cometric Association Schemes.

Degree: PhD, 2019, Worcester Polytechnic Institute

URL: etd-042219-125142 ; https://digitalcommons.wpi.edu/etd-dissertations/512

► The combinatorial objects known as association schemes arise in group theory, extremal graph theory, coding theory, the design of experiments, and even quantum information…
(more)

Subjects/Keywords: Association schemes; Commutative algebra; Graph theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kodalen, B. G. (2019). Cometric Association Schemes. (Doctoral Dissertation). Worcester Polytechnic Institute. Retrieved from etd-042219-125142 ; https://digitalcommons.wpi.edu/etd-dissertations/512

Chicago Manual of Style (16^{th} Edition):

Kodalen, Brian G. “Cometric Association Schemes.” 2019. Doctoral Dissertation, Worcester Polytechnic Institute. Accessed July 07, 2020. etd-042219-125142 ; https://digitalcommons.wpi.edu/etd-dissertations/512.

MLA Handbook (7^{th} Edition):

Kodalen, Brian G. “Cometric Association Schemes.” 2019. Web. 07 Jul 2020.

Vancouver:

Kodalen BG. Cometric Association Schemes. [Internet] [Doctoral dissertation]. Worcester Polytechnic Institute; 2019. [cited 2020 Jul 07]. Available from: etd-042219-125142 ; https://digitalcommons.wpi.edu/etd-dissertations/512.

Council of Science Editors:

Kodalen BG. Cometric Association Schemes. [Doctoral Dissertation]. Worcester Polytechnic Institute; 2019. Available from: etd-042219-125142 ; https://digitalcommons.wpi.edu/etd-dissertations/512

9. Holmes, Brent. Serre's Condition and Depth of Stanley-Reisner Rings.

Degree: PhD, Mathematics, 2018, University of Kansas

URL: http://hdl.handle.net/1808/28042

► The aim of this work is to garner a deeper understanding of the relationship between depth of a ring and connectivity properties of the spectrum…
(more)

Subjects/Keywords: Mathematics; Combinatorics; Commutative Algebra; Depth; Hirsch Conjecture; Homological Algebra; Serre's Condition

…Chapter 1
Introduction
The fields of Combinatorics and *Commutative* *Algebra* are closely… …Background
2.1
Historical Note
The study of *Commutative* *Algebra* began in the late nineteenth… …dimension, we shall be speaking of
this Krull dimension. *Commutative* *Algebra* flourished as Krull… …HTYZN11; MT09; PSFTY14; Ter07; Yan00).
Although *commutative* *algebra* has historically been… …properties of the complex’s associated ring.
2.3
*Commutative* *Algebra*
*Commutative* *Algebra* is the…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Holmes, B. (2018). Serre's Condition and Depth of Stanley-Reisner Rings. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/28042

Chicago Manual of Style (16^{th} Edition):

Holmes, Brent. “Serre's Condition and Depth of Stanley-Reisner Rings.” 2018. Doctoral Dissertation, University of Kansas. Accessed July 07, 2020. http://hdl.handle.net/1808/28042.

MLA Handbook (7^{th} Edition):

Holmes, Brent. “Serre's Condition and Depth of Stanley-Reisner Rings.” 2018. Web. 07 Jul 2020.

Vancouver:

Holmes B. Serre's Condition and Depth of Stanley-Reisner Rings. [Internet] [Doctoral dissertation]. University of Kansas; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1808/28042.

Council of Science Editors:

Holmes B. Serre's Condition and Depth of Stanley-Reisner Rings. [Doctoral Dissertation]. University of Kansas; 2018. Available from: http://hdl.handle.net/1808/28042

10. Taipe Huisa, Frank. Quantum transformation groupoids : an algebraic and analytical approach : Groupoïdes quantiques de transformations : une approche algébrique et analytique.

Degree: Docteur es, Mathématiques, 2018, Normandie

URL: http://www.theses.fr/2018NORMC258

►

Cette thèse porte sur la construction d'une famille de groupoïdes quantiques de transformations qui dans le cadre algébrique sont des algébroïdes de Hopf de multiplicateurs… (more)

Subjects/Keywords: Groupoïde de transformationss interactions; Algébroïde de Hopf de multiplicateurs; Algèbre de Yetter-Drinfeld; Tressée commutative; C*-bimodule de Hopf; Transformation groupoid; Quantum group; Quantum groupoid, Multiplier Hopf algebroid; Yetter-Drinfeld algebra; Braided commutative; Hopf C*-bimodule

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Taipe Huisa, F. (2018). Quantum transformation groupoids : an algebraic and analytical approach : Groupoïdes quantiques de transformations : une approche algébrique et analytique. (Doctoral Dissertation). Normandie. Retrieved from http://www.theses.fr/2018NORMC258

Chicago Manual of Style (16^{th} Edition):

Taipe Huisa, Frank. “Quantum transformation groupoids : an algebraic and analytical approach : Groupoïdes quantiques de transformations : une approche algébrique et analytique.” 2018. Doctoral Dissertation, Normandie. Accessed July 07, 2020. http://www.theses.fr/2018NORMC258.

MLA Handbook (7^{th} Edition):

Taipe Huisa, Frank. “Quantum transformation groupoids : an algebraic and analytical approach : Groupoïdes quantiques de transformations : une approche algébrique et analytique.” 2018. Web. 07 Jul 2020.

Vancouver:

Taipe Huisa F. Quantum transformation groupoids : an algebraic and analytical approach : Groupoïdes quantiques de transformations : une approche algébrique et analytique. [Internet] [Doctoral dissertation]. Normandie; 2018. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2018NORMC258.

Council of Science Editors:

Taipe Huisa F. Quantum transformation groupoids : an algebraic and analytical approach : Groupoïdes quantiques de transformations : une approche algébrique et analytique. [Doctoral Dissertation]. Normandie; 2018. Available from: http://www.theses.fr/2018NORMC258

11.
Morra, Todd Anthony.
An Introduction to Homological *Algebra* and its Applications.

Degree: MS, Mathematical Sciences, 2018, Clemson University

URL: https://tigerprints.clemson.edu/all_theses/3001

► Ext modules have a number of applications in homological *algebra* and *commutative* abstract *algebra* as a whole. In this document we prove Ext modules are…
(more)

Subjects/Keywords: clique; combinatorics; commutative algebra; homological algebra; simple graph; type

…The special case when M = R gives a *commutative* ring U −1 R with the following operations… …Mapping Property). Let R and S be *commutative* rings with identity.
Given any ring… …U −1 R −→ S such that φ̃ ◦ ψ = φ. This is summed up by a *commutative* diagram.
ψ
U ⊆R
S… …motivate our study of Ext modules by discussing three applications in
abstract *algebra*. We also… …homological *algebra* and the application from the title of this section. We will
prove this in…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Morra, T. A. (2018). An Introduction to Homological Algebra and its Applications. (Masters Thesis). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_theses/3001

Chicago Manual of Style (16^{th} Edition):

Morra, Todd Anthony. “An Introduction to Homological Algebra and its Applications.” 2018. Masters Thesis, Clemson University. Accessed July 07, 2020. https://tigerprints.clemson.edu/all_theses/3001.

MLA Handbook (7^{th} Edition):

Morra, Todd Anthony. “An Introduction to Homological Algebra and its Applications.” 2018. Web. 07 Jul 2020.

Vancouver:

Morra TA. An Introduction to Homological Algebra and its Applications. [Internet] [Masters thesis]. Clemson University; 2018. [cited 2020 Jul 07]. Available from: https://tigerprints.clemson.edu/all_theses/3001.

Council of Science Editors:

Morra TA. An Introduction to Homological Algebra and its Applications. [Masters Thesis]. Clemson University; 2018. Available from: https://tigerprints.clemson.edu/all_theses/3001

University of Washington

12. Wu, Min. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.

Degree: PhD, 2018, University of Washington

URL: http://hdl.handle.net/1773/43093

► Let \Bbbk be a field and A the non-*commutative* \Bbbk-*algebra* generated by x_{1}, x_{2}, x_{3} *subject* to the relations q x_{ix}_{j} - q^{-1} x_{jx}_{i} ;…
(more)

Subjects/Keywords: Finite dimensional simple module; Line module; Non-commutative algebra; Polynomial ring; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wu, M. (2018). Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/43093

Chicago Manual of Style (16^{th} Edition):

Wu, Min. “Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.” 2018. Doctoral Dissertation, University of Washington. Accessed July 07, 2020. http://hdl.handle.net/1773/43093.

MLA Handbook (7^{th} Edition):

Wu, Min. “Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables.” 2018. Web. 07 Jul 2020.

Vancouver:

Wu M. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. [Internet] [Doctoral dissertation]. University of Washington; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1773/43093.

Council of Science Editors:

Wu M. Classification of Line Modules and Finite Dimensional Simple Modules over a Deformation of the Polynomial Ring in Three Variables. [Doctoral Dissertation]. University of Washington; 2018. Available from: http://hdl.handle.net/1773/43093

13. Bignalet-Cazalet, Rémi. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.

Degree: Docteur es, Mathématiques, 2018, Bourgogne Franche-Comté

URL: http://www.theses.fr/2018UBFCK038

►

Dans cette thèse, nous interprétons géométriquement la torsion de l'algèbre symétrique d'un faisceau d'idéaux I_Z d'un schéma Z défini par n+1 équations dans une variété… (more)

Subjects/Keywords: Géométrie algébrique; Algèbre commutative; Singularités; Transformations birationelles; Hypersurfaces homaloïdes; Syzygies; Algebraic geometry; Commutative algebra; Singularities; Birational maps; Homaloidal hypersurfaces; Syzygies; 516

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bignalet-Cazalet, R. (2018). Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. (Doctoral Dissertation). Bourgogne Franche-Comté. Retrieved from http://www.theses.fr/2018UBFCK038

Chicago Manual of Style (16^{th} Edition):

Bignalet-Cazalet, Rémi. “Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.” 2018. Doctoral Dissertation, Bourgogne Franche-Comté. Accessed July 07, 2020. http://www.theses.fr/2018UBFCK038.

MLA Handbook (7^{th} Edition):

Bignalet-Cazalet, Rémi. “Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality.” 2018. Web. 07 Jul 2020.

Vancouver:

Bignalet-Cazalet R. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. [Internet] [Doctoral dissertation]. Bourgogne Franche-Comté; 2018. [cited 2020 Jul 07]. Available from: http://www.theses.fr/2018UBFCK038.

Council of Science Editors:

Bignalet-Cazalet R. Géométrie de la projectivisation des idéaux et applications aux problèmes de birationalité : Geometry of the projectivization of ideals and applications to problems of birationality. [Doctoral Dissertation]. Bourgogne Franche-Comté; 2018. Available from: http://www.theses.fr/2018UBFCK038

University of Louisville

14. Gipson, Ryan H. Factorization in integral domains.

Degree: PhD, 2018, University of Louisville

URL: 10.18297/etd/3056 ; https://ir.library.louisville.edu/etd/3056

► We investigate the atomicity and the AP property of the semigroup rings F[X; M], where F is a field, X is a variable and…
(more)

Subjects/Keywords: commutative algebra; integral domains; monoid domains; factorization; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gipson, R. H. (2018). Factorization in integral domains. (Doctoral Dissertation). University of Louisville. Retrieved from 10.18297/etd/3056 ; https://ir.library.louisville.edu/etd/3056

Chicago Manual of Style (16^{th} Edition):

Gipson, Ryan H. “Factorization in integral domains.” 2018. Doctoral Dissertation, University of Louisville. Accessed July 07, 2020. 10.18297/etd/3056 ; https://ir.library.louisville.edu/etd/3056.

MLA Handbook (7^{th} Edition):

Gipson, Ryan H. “Factorization in integral domains.” 2018. Web. 07 Jul 2020.

Vancouver:

Gipson RH. Factorization in integral domains. [Internet] [Doctoral dissertation]. University of Louisville; 2018. [cited 2020 Jul 07]. Available from: 10.18297/etd/3056 ; https://ir.library.louisville.edu/etd/3056.

Council of Science Editors:

Gipson RH. Factorization in integral domains. [Doctoral Dissertation]. University of Louisville; 2018. Available from: 10.18297/etd/3056 ; https://ir.library.louisville.edu/etd/3056

15.
Hasse, Erik Gregory.
Lowest terms in *commutative* rings.

Degree: PhD, Mathematics, 2018, University of Iowa

URL: https://ir.uiowa.edu/etd/6433

► Putting fractions in lowest terms is a common problem for basic *algebra* courses, but it is rarely discussed in abstract *algebra*. In a 1990…
(more)

Subjects/Keywords: Commutative Algebra; Lowest Terms; Ring Theory; Mathematics

…74
vi
1
CHAPTER 1
INTRODUCTION
1.1
Motivation
In basic *algebra* courses, reducing… …*algebra*. The usual definition of lowest terms is that the numerator and denominator of a… …field as well.
All rings are assumed to be *commutative* with identity unless otherwise noted.
A…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hasse, E. G. (2018). Lowest terms in commutative rings. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/6433

Chicago Manual of Style (16^{th} Edition):

Hasse, Erik Gregory. “Lowest terms in commutative rings.” 2018. Doctoral Dissertation, University of Iowa. Accessed July 07, 2020. https://ir.uiowa.edu/etd/6433.

MLA Handbook (7^{th} Edition):

Hasse, Erik Gregory. “Lowest terms in commutative rings.” 2018. Web. 07 Jul 2020.

Vancouver:

Hasse EG. Lowest terms in commutative rings. [Internet] [Doctoral dissertation]. University of Iowa; 2018. [cited 2020 Jul 07]. Available from: https://ir.uiowa.edu/etd/6433.

Council of Science Editors:

Hasse EG. Lowest terms in commutative rings. [Doctoral Dissertation]. University of Iowa; 2018. Available from: https://ir.uiowa.edu/etd/6433

University of Notre Dame

16. Erin Suzanne Bela. Numerical Macaulification in Arbitrary Codimension</h1>.

Degree: Mathematics, 2018, University of Notre Dame

URL: https://curate.nd.edu/show/h702q527g73

► An ideal J is said to be numerically c-ACM (NACM) if R/J has the Hilbert function of some codimension c ACM subscheme of P^{n}.…
(more)

Subjects/Keywords: Mathematics; Commutative Algebra; Liaison Theory; Hilbert Functions; Algebraic Geometry; Cohen-Macaulay

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bela, E. S. (2018). Numerical Macaulification in Arbitrary Codimension</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/h702q527g73

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bela, Erin Suzanne. “Numerical Macaulification in Arbitrary Codimension</h1>.” 2018. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/h702q527g73.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bela, Erin Suzanne. “Numerical Macaulification in Arbitrary Codimension</h1>.” 2018. Web. 07 Jul 2020.

Vancouver:

Bela ES. Numerical Macaulification in Arbitrary Codimension</h1>. [Internet] [Thesis]. University of Notre Dame; 2018. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/h702q527g73.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bela ES. Numerical Macaulification in Arbitrary Codimension</h1>. [Thesis]. University of Notre Dame; 2018. Available from: https://curate.nd.edu/show/h702q527g73

Not specified: Masters Thesis or Doctoral Dissertation

Georgia State University

17. Ng, Shuenn. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.

Degree: PhD, Mathematics and Statistics, 2018, Georgia State University

URL: https://scholarworks.gsu.edu/math_diss/55

► This dissertation investigates the characterization of F-rationality. Much work has been done to characterize F-rationality. Here, we will assume that the underlying ring is…
(more)

Subjects/Keywords: commutative algebra; test exponent; Frobenius; tight closure; test element; Matlis dual

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ng, S. (2018). Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/55

Chicago Manual of Style (16^{th} Edition):

Ng, Shuenn. “Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.” 2018. Doctoral Dissertation, Georgia State University. Accessed July 07, 2020. https://scholarworks.gsu.edu/math_diss/55.

MLA Handbook (7^{th} Edition):

Ng, Shuenn. “Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules.” 2018. Web. 07 Jul 2020.

Vancouver:

Ng S. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. [Internet] [Doctoral dissertation]. Georgia State University; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.gsu.edu/math_diss/55.

Council of Science Editors:

Ng S. Characterizing F-rationality of Cohen-Macaulay Rings via Canonical Modules. [Doctoral Dissertation]. Georgia State University; 2018. Available from: https://scholarworks.gsu.edu/math_diss/55

18. Baidya, Robin. Capacities and Cancellation.

Degree: PhD, Mathematics and Statistics, 2018, Georgia State University

URL: https://scholarworks.gsu.edu/math_diss/49

► This dissertation investigates the existence of surjective and split surjective maps between modules. A classic result in this direction is Serre's Splitting Theorem, which…
(more)

Subjects/Keywords: algebraic K-theory; cancellation; commutative algebra; direct sum; splitting; surjective

…precisely, we must first review some fundamentals from *commutative* *algebra*. For a *commutative* ring… …every p ∈ Spec(R).
Definition 1.1.1. Let R be a *commutative* ring, S an R-*algebra*… …*algebra* over a *commutative* ring R, where R has a finite-dimensional Noetherian j-spectrum… …conclusions:
Theorem 1.1.6. Let R be a *commutative* ring, S a module-finite R-*algebra*, M a direct… …Definition 1.1.7. Let R be a *commutative* ring, S an R-*algebra*, and M and N right Smodules. We let…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Baidya, R. (2018). Capacities and Cancellation. (Doctoral Dissertation). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_diss/49

Chicago Manual of Style (16^{th} Edition):

Baidya, Robin. “Capacities and Cancellation.” 2018. Doctoral Dissertation, Georgia State University. Accessed July 07, 2020. https://scholarworks.gsu.edu/math_diss/49.

MLA Handbook (7^{th} Edition):

Baidya, Robin. “Capacities and Cancellation.” 2018. Web. 07 Jul 2020.

Vancouver:

Baidya R. Capacities and Cancellation. [Internet] [Doctoral dissertation]. Georgia State University; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.gsu.edu/math_diss/49.

Council of Science Editors:

Baidya R. Capacities and Cancellation. [Doctoral Dissertation]. Georgia State University; 2018. Available from: https://scholarworks.gsu.edu/math_diss/49

Montana Tech

19. Nguyen, Nhan Trong. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.

Degree: PhD, 2018, Montana Tech

URL: https://scholarworks.umt.edu/etd/11258

► We separate this dissertation into three distinct but related parts. Chapter one focuses on p-Kummer subspaces of G-crossed products where G is an elementary…
(more)

Subjects/Keywords: Brauer Group; Central Simple Algebras; Cyclic algebras; Essential Dimension; Kummer Subspaces; Non Commutative Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, N. T. (2018). CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/11258

Chicago Manual of Style (16^{th} Edition):

Nguyen, Nhan Trong. “CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.” 2018. Doctoral Dissertation, Montana Tech. Accessed July 07, 2020. https://scholarworks.umt.edu/etd/11258.

MLA Handbook (7^{th} Edition):

Nguyen, Nhan Trong. “CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC.” 2018. Web. 07 Jul 2020.

Vancouver:

Nguyen NT. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. [Internet] [Doctoral dissertation]. Montana Tech; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.umt.edu/etd/11258.

Council of Science Editors:

Nguyen NT. CENTRAL SIMPLE ALGEBRAS AND RELATED OBJECTS IN BOTH ZERO AND POSITIVE CHARACTERISTIC. [Doctoral Dissertation]. Montana Tech; 2018. Available from: https://scholarworks.umt.edu/etd/11258

University of Vienna

20.
Bojko, Arkadij.
Stability conditions on quivers and semistable non-*commutative* curve counting.

Degree: 2018, University of Vienna

URL: http://othes.univie.ac.at/52820/

►

Der Begriff von Stabilitätkondizionen auf triangulierten Kategorien wurde von T. Bridgeland in "Stability conditions on triangulated categories" eingeführt. Zusätzlich haben wir mit den nicht-kommutativen Kurven,… (more)

Subjects/Keywords: 31.27 Kategorientheorie; 31.12 Kombinatorik, Graphentheorie; 31.29 Algebra: Sonstiges; 31.50 Geometrie: Allgemeines; 31.23 Ideale, Ringe, Moduln, Algebren; 31.60 Topologie: Allgemeines; 31.25 Lineare Algebra, multilineare Algebra; 31.61 Algebraische Topologie; triangulierte Kategorien / derivierte Kategorien / Stabilitätbedingungen / Stabilitätkondizionen / nicht-kommutative / Kurven / semistabil / Representationen von Köchern; triangulated categories / derived categories / stability conditions / non-commutative curve counting / non-commutative / semistable / representations of quivers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bojko, A. (2018). Stability conditions on quivers and semistable non-commutative curve counting. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/52820/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Thesis, University of Vienna. Accessed July 07, 2020. http://othes.univie.ac.at/52820/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Web. 07 Jul 2020.

Vancouver:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Internet] [Thesis]. University of Vienna; 2018. [cited 2020 Jul 07]. Available from: http://othes.univie.ac.at/52820/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/52820/

Not specified: Masters Thesis or Doctoral Dissertation

University of Edinburgh

21. Crawford, Simon Philip. Singularities of noncommutative surfaces.

Degree: PhD, 2018, University of Edinburgh

URL: http://hdl.handle.net/1842/31543

► The primary objects of study in this thesis are noncommutative surfaces; that is, noncommutative noetherian domains of GK dimension 2. Frequently these rings will also…
(more)

Subjects/Keywords: ring theory; abstract algebra; commutative ring; singular points; noncommutative surfaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Crawford, S. P. (2018). Singularities of noncommutative surfaces. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/31543

Chicago Manual of Style (16^{th} Edition):

Crawford, Simon Philip. “Singularities of noncommutative surfaces.” 2018. Doctoral Dissertation, University of Edinburgh. Accessed July 07, 2020. http://hdl.handle.net/1842/31543.

MLA Handbook (7^{th} Edition):

Crawford, Simon Philip. “Singularities of noncommutative surfaces.” 2018. Web. 07 Jul 2020.

Vancouver:

Crawford SP. Singularities of noncommutative surfaces. [Internet] [Doctoral dissertation]. University of Edinburgh; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1842/31543.

Council of Science Editors:

Crawford SP. Singularities of noncommutative surfaces. [Doctoral Dissertation]. University of Edinburgh; 2018. Available from: http://hdl.handle.net/1842/31543

Texas Christian University

22. Aguirre, Luis G.,author. On linking multiple lines.

Degree: 2018, Texas Christian University

URL: https://repository.tcu.edu/handle/116099117/21823

► We study non-reduced locally Cohen-Macaulay quasi-primitive curves supported on a line in three dimensional projective space over an algebraically closed field k. For an odd…
(more)

Subjects/Keywords: Geometry, Algebraic.; Cohen-Macaulay rings.; Commutative algebra.; Forms, Quadratic.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Aguirre, L. G. ,. (2018). On linking multiple lines. (Thesis). Texas Christian University. Retrieved from https://repository.tcu.edu/handle/116099117/21823

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Aguirre, Luis G ,author. “On linking multiple lines.” 2018. Thesis, Texas Christian University. Accessed July 07, 2020. https://repository.tcu.edu/handle/116099117/21823.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Aguirre, Luis G ,author. “On linking multiple lines.” 2018. Web. 07 Jul 2020.

Vancouver:

Aguirre LG,. On linking multiple lines. [Internet] [Thesis]. Texas Christian University; 2018. [cited 2020 Jul 07]. Available from: https://repository.tcu.edu/handle/116099117/21823.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Aguirre LG,. On linking multiple lines. [Thesis]. Texas Christian University; 2018. Available from: https://repository.tcu.edu/handle/116099117/21823

Not specified: Masters Thesis or Doctoral Dissertation

University of Michigan

23. Klein, Patricia. Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology.

Degree: PhD, Mathematics, 2018, University of Michigan

URL: http://hdl.handle.net/2027.42/145974

► We consider relationships among Hilbert-Samuel multiplicities, Koszul cohomology, and local cohomology. In particular, we investigate upper and lower bounds on the ratio e(I,M)/l(M/IM) for m-primary…
(more)

Subjects/Keywords: commutative algebra; homological algebra; Hilbert-Samuel multiplicities; Koszul homology; Lech's inequality; Mathematics; Science

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Klein, P. (2018). Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/145974

Chicago Manual of Style (16^{th} Edition):

Klein, Patricia. “Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology.” 2018. Doctoral Dissertation, University of Michigan. Accessed July 07, 2020. http://hdl.handle.net/2027.42/145974.

MLA Handbook (7^{th} Edition):

Klein, Patricia. “Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology.” 2018. Web. 07 Jul 2020.

Vancouver:

Klein P. Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology. [Internet] [Doctoral dissertation]. University of Michigan; 2018. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/2027.42/145974.

Council of Science Editors:

Klein P. Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology. [Doctoral Dissertation]. University of Michigan; 2018. Available from: http://hdl.handle.net/2027.42/145974

University of Arkansas

24. Taylor, William D. Interpolating Between Multiplicities and F-thresholds.

Degree: PhD, 2018, University of Arkansas

URL: https://scholarworks.uark.edu/etd/2842

► We define a family of functions, called s-multiplicity for each s>0, that interpolates between Hilbert-Samuel multiplicity and Hilbert-Kunz multiplicity by comparing powers of ideals…
(more)

Subjects/Keywords: Closures; Commutative Algebra; Hilbert-Kunz; Hilbert-Samuel; Multiplicity; Other Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Taylor, W. D. (2018). Interpolating Between Multiplicities and F-thresholds. (Doctoral Dissertation). University of Arkansas. Retrieved from https://scholarworks.uark.edu/etd/2842

Chicago Manual of Style (16^{th} Edition):

Taylor, William D. “Interpolating Between Multiplicities and F-thresholds.” 2018. Doctoral Dissertation, University of Arkansas. Accessed July 07, 2020. https://scholarworks.uark.edu/etd/2842.

MLA Handbook (7^{th} Edition):

Taylor, William D. “Interpolating Between Multiplicities and F-thresholds.” 2018. Web. 07 Jul 2020.

Vancouver:

Taylor WD. Interpolating Between Multiplicities and F-thresholds. [Internet] [Doctoral dissertation]. University of Arkansas; 2018. [cited 2020 Jul 07]. Available from: https://scholarworks.uark.edu/etd/2842.

Council of Science Editors:

Taylor WD. Interpolating Between Multiplicities and F-thresholds. [Doctoral Dissertation]. University of Arkansas; 2018. Available from: https://scholarworks.uark.edu/etd/2842

25. Steward, Michael. Extending the Skolem Property.

Degree: PhD, Mathematics, 2017, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

► Skolem properties describe how well ideals of rings of integer-valued polynomialsare characterized by their images under evaluation maps. They are usually definedonly for finitely generated…
(more)

Subjects/Keywords: Mathematics; algebra; commutative algebra; Skolem property; factorization; multiplicative ideal theory; semistar operation; star operation; evaluation; polynomial; rational function; ring; ring theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Steward, M. (2017). Extending the Skolem Property. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

Chicago Manual of Style (16^{th} Edition):

Steward, Michael. “Extending the Skolem Property.” 2017. Doctoral Dissertation, The Ohio State University. Accessed July 07, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202.

MLA Handbook (7^{th} Edition):

Steward, Michael. “Extending the Skolem Property.” 2017. Web. 07 Jul 2020.

Vancouver:

Steward M. Extending the Skolem Property. [Internet] [Doctoral dissertation]. The Ohio State University; 2017. [cited 2020 Jul 07]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202.

Council of Science Editors:

Steward M. Extending the Skolem Property. [Doctoral Dissertation]. The Ohio State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492517341492202

University of Wisconsin – Milwaukee

26. Yee, Daniel Owen. Extensions of Enveloping Algebras Via Anti-cocommutative Elements.

Degree: PhD, Mathematics, 2017, University of Wisconsin – Milwaukee

URL: https://dc.uwm.edu/etd/1728

► We know that given a connected Hopf *algebra* H, the universal enveloping *algebra* U(P(H)) embeds in H as a Hopf subalgebra. Depending on P(H),…
(more)

Subjects/Keywords: Anti-cocommutative; Connected Algebra; Enveloping Algebra; Global Dimension; HOPF Algebra; Non-commutative Algebra; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yee, D. O. (2017). Extensions of Enveloping Algebras Via Anti-cocommutative Elements. (Doctoral Dissertation). University of Wisconsin – Milwaukee. Retrieved from https://dc.uwm.edu/etd/1728

Chicago Manual of Style (16^{th} Edition):

Yee, Daniel Owen. “Extensions of Enveloping Algebras Via Anti-cocommutative Elements.” 2017. Doctoral Dissertation, University of Wisconsin – Milwaukee. Accessed July 07, 2020. https://dc.uwm.edu/etd/1728.

MLA Handbook (7^{th} Edition):

Yee, Daniel Owen. “Extensions of Enveloping Algebras Via Anti-cocommutative Elements.” 2017. Web. 07 Jul 2020.

Vancouver:

Yee DO. Extensions of Enveloping Algebras Via Anti-cocommutative Elements. [Internet] [Doctoral dissertation]. University of Wisconsin – Milwaukee; 2017. [cited 2020 Jul 07]. Available from: https://dc.uwm.edu/etd/1728.

Council of Science Editors:

Yee DO. Extensions of Enveloping Algebras Via Anti-cocommutative Elements. [Doctoral Dissertation]. University of Wisconsin – Milwaukee; 2017. Available from: https://dc.uwm.edu/etd/1728

27.
Weber, Darrin.
Various Topics on Graphical Structures Placed on *Commutative* Rings.

Degree: 2017, University of Tennessee – Knoxville

URL: https://trace.tennessee.edu/utk_graddiss/4666

► In this dissertation, we look at two types of graphs that can be placed on a *commutative* ring: the zero-divisor graph and the ideal-based zero-divisor…
(more)

Subjects/Keywords: zero-divisor; graph; ideal; cut-set; commutative; ring; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Weber, D. (2017). Various Topics on Graphical Structures Placed on Commutative Rings. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/4666

Chicago Manual of Style (16^{th} Edition):

Weber, Darrin. “Various Topics on Graphical Structures Placed on Commutative Rings.” 2017. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/4666.

MLA Handbook (7^{th} Edition):

Weber, Darrin. “Various Topics on Graphical Structures Placed on Commutative Rings.” 2017. Web. 07 Jul 2020.

Vancouver:

Weber D. Various Topics on Graphical Structures Placed on Commutative Rings. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2017. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/4666.

Council of Science Editors:

Weber D. Various Topics on Graphical Structures Placed on Commutative Rings. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2017. Available from: https://trace.tennessee.edu/utk_graddiss/4666

University of Tennessee – Knoxville

28. McClurkin, Grace Elizabeth. Generalizations and Variations of the Zero-Divisor Graph.

Degree: 2017, University of Tennessee – Knoxville

URL: https://trace.tennessee.edu/utk_graddiss/4701

► We explore generalizations and variations of the zero-divisor graph on *commutative* rings with identity. A zero-divisor graph is a graph whose vertex set is the…
(more)

Subjects/Keywords: Commutative Ring Theory; Zero-Divisor Graphs; Congruence-Based Zero-Divisor Graphs; Annihilator Graphs; Extended Zero-Divisor Graphs; Compressed Graphs; Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

McClurkin, G. E. (2017). Generalizations and Variations of the Zero-Divisor Graph. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/4701

Chicago Manual of Style (16^{th} Edition):

McClurkin, Grace Elizabeth. “Generalizations and Variations of the Zero-Divisor Graph.” 2017. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/4701.

MLA Handbook (7^{th} Edition):

McClurkin, Grace Elizabeth. “Generalizations and Variations of the Zero-Divisor Graph.” 2017. Web. 07 Jul 2020.

Vancouver:

McClurkin GE. Generalizations and Variations of the Zero-Divisor Graph. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2017. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/4701.

Council of Science Editors:

McClurkin GE. Generalizations and Variations of the Zero-Divisor Graph. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2017. Available from: https://trace.tennessee.edu/utk_graddiss/4701

29. Stangle, Josh John. Representation Theory of Orders over Cohen-Macaulay Rings.

Degree: PhD, Mathematics, 2017, Syracuse University

URL: https://surface.syr.edu/etd/678

► ABSTRACT Orders are a certain class of noncommutative algebras over *commutative* rings. Originally defined by Auslander and Bridger, an R-order is an R-*algebra* which…
(more)

Subjects/Keywords: Commutative Algebra; Representation Theory; Physical Sciences and Mathematics

…we will use the notion of a path *algebra* over a *commutative* local ring. Path
algebras of… …Proposition 2.2.6. Let R be an *algebra* over a *commutative* local ring S . Let Q a quiver,
CHAPTER 2… …Chapter 1
Introduction
1.1
*Commutative* Rings
Here we remind the reader of some… …definitions and facts from *commutative* ring theory.
Throughout, R will denote a *commutative*… …1.1.1. Let (R, m, k) be a *commutative* Noetherian local ring and M a finitely…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stangle, J. J. (2017). Representation Theory of Orders over Cohen-Macaulay Rings. (Doctoral Dissertation). Syracuse University. Retrieved from https://surface.syr.edu/etd/678

Chicago Manual of Style (16^{th} Edition):

Stangle, Josh John. “Representation Theory of Orders over Cohen-Macaulay Rings.” 2017. Doctoral Dissertation, Syracuse University. Accessed July 07, 2020. https://surface.syr.edu/etd/678.

MLA Handbook (7^{th} Edition):

Stangle, Josh John. “Representation Theory of Orders over Cohen-Macaulay Rings.” 2017. Web. 07 Jul 2020.

Vancouver:

Stangle JJ. Representation Theory of Orders over Cohen-Macaulay Rings. [Internet] [Doctoral dissertation]. Syracuse University; 2017. [cited 2020 Jul 07]. Available from: https://surface.syr.edu/etd/678.

Council of Science Editors:

Stangle JJ. Representation Theory of Orders over Cohen-Macaulay Rings. [Doctoral Dissertation]. Syracuse University; 2017. Available from: https://surface.syr.edu/etd/678

30. Papiu, Alexandru Ilarian. Connectivity Bounds and S-Partitions for Triangulated Manifolds.

Degree: PhD, Mathematics, 2017, Washington University in St. Louis

URL: https://openscholarship.wustl.edu/art_sci_etds/1137

► Two of the fundamental results in the theory of convex polytopes are Balinski’s Theorem on connectivity and Bruggesser and Mani’s theorem on shellability. Here we…
(more)

Subjects/Keywords: Combinatorics, Commutative Algebra, Simplicial Complexes, Topolgy; Mathematics

…from algebraic topology similar to ours but also *commutative* *algebra*. The results there are… …quotient k[∆]. Let R be an N k-*algebra*. We define the Hilbert series of
P
R by Hilb… …odd-dimensional manifolds was
first proved by Novik in [18] using *commutative*… …*algebra* techniques.
Lemma 2.24. [18] The f-UBC holds for odd-dimensional manifolds…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Papiu, A. I. (2017). Connectivity Bounds and S-Partitions for Triangulated Manifolds. (Doctoral Dissertation). Washington University in St. Louis. Retrieved from https://openscholarship.wustl.edu/art_sci_etds/1137

Chicago Manual of Style (16^{th} Edition):

Papiu, Alexandru Ilarian. “Connectivity Bounds and S-Partitions for Triangulated Manifolds.” 2017. Doctoral Dissertation, Washington University in St. Louis. Accessed July 07, 2020. https://openscholarship.wustl.edu/art_sci_etds/1137.

MLA Handbook (7^{th} Edition):

Papiu, Alexandru Ilarian. “Connectivity Bounds and S-Partitions for Triangulated Manifolds.” 2017. Web. 07 Jul 2020.

Vancouver:

Papiu AI. Connectivity Bounds and S-Partitions for Triangulated Manifolds. [Internet] [Doctoral dissertation]. Washington University in St. Louis; 2017. [cited 2020 Jul 07]. Available from: https://openscholarship.wustl.edu/art_sci_etds/1137.

Council of Science Editors:

Papiu AI. Connectivity Bounds and S-Partitions for Triangulated Manifolds. [Doctoral Dissertation]. Washington University in St. Louis; 2017. Available from: https://openscholarship.wustl.edu/art_sci_etds/1137