Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Dates: 2006 – 2010

You searched for subject:(Commutative Algebra). Showing records 1 – 24 of 24 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Missouri – Columbia

1. Hulsizer, Heidi, 1982-. Minimal resolutions for a class of Gorenstein determinantal ideals.

Degree: 2010, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Let X = {x[subscript ij]} [subscript mxn] be a matrix with entries in a noetherian… (more)

Subjects/Keywords: Gorenstein rings; Geometry, Algebraic; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hulsizer, Heidi, 1. (2010). Minimal resolutions for a class of Gorenstein determinantal ideals. (Thesis). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Thesis, University of Missouri – Columbia. Accessed July 07, 2020. https://doi.org/10.32469/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Web. 07 Jul 2020.

Vancouver:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Internet] [Thesis]. University of Missouri – Columbia; 2010. [cited 2020 Jul 07]. Available from: https://doi.org/10.32469/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Thesis]. University of Missouri – Columbia; 2010. Available from: https://doi.org/10.32469/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queens University

2. Grieve, Nathan. Betti numbers and regularity of projective monomial curves .

Degree: Mathematics and Statistics, 2008, Queens University

 In this thesis we describe how the balancing of the \operatorname{Tor} functor can be used to compute the minimal free resolution of a graded module… (more)

Subjects/Keywords: Commutative Algebra; Combinatorics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grieve, N. (2008). Betti numbers and regularity of projective monomial curves . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/1474

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grieve, Nathan. “Betti numbers and regularity of projective monomial curves .” 2008. Thesis, Queens University. Accessed July 07, 2020. http://hdl.handle.net/1974/1474.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grieve, Nathan. “Betti numbers and regularity of projective monomial curves .” 2008. Web. 07 Jul 2020.

Vancouver:

Grieve N. Betti numbers and regularity of projective monomial curves . [Internet] [Thesis]. Queens University; 2008. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1974/1474.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grieve N. Betti numbers and regularity of projective monomial curves . [Thesis]. Queens University; 2008. Available from: http://hdl.handle.net/1974/1474

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kentucky

3. Petrovic, Sonja. ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS.

Degree: 2008, University of Kentucky

 This work focuses on commutative algebra, its combinatorial and computational aspects, and its interactions with statistics. The main objects of interest are projective varieties in… (more)

Subjects/Keywords: Mathematics; Commutative Algebra; Algebra; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Petrovic, S. (2008). ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/gradschool_diss/606

Chicago Manual of Style (16th Edition):

Petrovic, Sonja. “ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS.” 2008. Doctoral Dissertation, University of Kentucky. Accessed July 07, 2020. https://uknowledge.uky.edu/gradschool_diss/606.

MLA Handbook (7th Edition):

Petrovic, Sonja. “ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS.” 2008. Web. 07 Jul 2020.

Vancouver:

Petrovic S. ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS. [Internet] [Doctoral dissertation]. University of Kentucky; 2008. [cited 2020 Jul 07]. Available from: https://uknowledge.uky.edu/gradschool_diss/606.

Council of Science Editors:

Petrovic S. ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS. [Doctoral Dissertation]. University of Kentucky; 2008. Available from: https://uknowledge.uky.edu/gradschool_diss/606


University of Tennessee – Knoxville

4. Laska, Jason A. On Conjectures Concerning Nonassociate Factorizations.

Degree: 2010, University of Tennessee – Knoxville

 We consider and solve some open conjectures on the asymptotic behavior of the number of different numbers of the nonassociate factorizations of prescribed minimal length… (more)

Subjects/Keywords: commutative algebra; non-unique factorization; Algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laska, J. A. (2010). On Conjectures Concerning Nonassociate Factorizations. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/818

Chicago Manual of Style (16th Edition):

Laska, Jason A. “On Conjectures Concerning Nonassociate Factorizations.” 2010. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 07, 2020. https://trace.tennessee.edu/utk_graddiss/818.

MLA Handbook (7th Edition):

Laska, Jason A. “On Conjectures Concerning Nonassociate Factorizations.” 2010. Web. 07 Jul 2020.

Vancouver:

Laska JA. On Conjectures Concerning Nonassociate Factorizations. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2010. [cited 2020 Jul 07]. Available from: https://trace.tennessee.edu/utk_graddiss/818.

Council of Science Editors:

Laska JA. On Conjectures Concerning Nonassociate Factorizations. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2010. Available from: https://trace.tennessee.edu/utk_graddiss/818


University of Missouri – Columbia

5. Hulsizer, Heidi, 1982-. Minimal resolutions for a class of Gorenstein determinantal ideals.

Degree: 2010, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Let X = {x[subscript ij]} [subscript mxn] be a matrix with entries in a… (more)

Subjects/Keywords: Gorenstein rings; Geometry, Algebraic; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hulsizer, Heidi, 1. (2010). Minimal resolutions for a class of Gorenstein determinantal ideals. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Thesis, University of Missouri – Columbia. Accessed July 07, 2020. http://hdl.handle.net/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Web. 07 Jul 2020.

Vancouver:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Internet] [Thesis]. University of Missouri – Columbia; 2010. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Thesis]. University of Missouri – Columbia; 2010. Available from: http://hdl.handle.net/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

6. Angela Kohlhaas. The core of an ideal and its relationship to the adjoint and coefficient ideals</h1>.

Degree: Mathematics, 2010, University of Notre Dame

  Given an ideal I in a Noetherian ring R, the core of I is the intersection of all ideals contained in I with the… (more)

Subjects/Keywords: exponent set; commutative algebra; birational geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kohlhaas, A. (2010). The core of an ideal and its relationship to the adjoint and coefficient ideals</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/bv73bz62h3d

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kohlhaas, Angela. “The core of an ideal and its relationship to the adjoint and coefficient ideals</h1>.” 2010. Thesis, University of Notre Dame. Accessed July 07, 2020. https://curate.nd.edu/show/bv73bz62h3d.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kohlhaas, Angela. “The core of an ideal and its relationship to the adjoint and coefficient ideals</h1>.” 2010. Web. 07 Jul 2020.

Vancouver:

Kohlhaas A. The core of an ideal and its relationship to the adjoint and coefficient ideals</h1>. [Internet] [Thesis]. University of Notre Dame; 2010. [cited 2020 Jul 07]. Available from: https://curate.nd.edu/show/bv73bz62h3d.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kohlhaas A. The core of an ideal and its relationship to the adjoint and coefficient ideals</h1>. [Thesis]. University of Notre Dame; 2010. Available from: https://curate.nd.edu/show/bv73bz62h3d

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

7. Oyinsan, Sola. Primary decomposition of ideals in a ring.

Degree: MAin Mathematics, Mathematics, 2007, California State University – San Bernardino

 The concept of unique factorization was first recognized in the 1840s, but even then, it was still fairly believed to be automatic. The error of… (more)

Subjects/Keywords: Decomposition (Mathematics); Ideals (Algebra); Rings (Algebra); Factorization (Mathematics); Commutative algebra; Commutative algebra; Decomposition (Mathematics); Factorization (Mathematics); Ideals (Algebra); Rings (Algebra); Algebraic Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oyinsan, S. (2007). Primary decomposition of ideals in a ring. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/3289

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Oyinsan, Sola. “Primary decomposition of ideals in a ring.” 2007. Thesis, California State University – San Bernardino. Accessed July 07, 2020. https://scholarworks.lib.csusb.edu/etd-project/3289.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Oyinsan, Sola. “Primary decomposition of ideals in a ring.” 2007. Web. 07 Jul 2020.

Vancouver:

Oyinsan S. Primary decomposition of ideals in a ring. [Internet] [Thesis]. California State University – San Bernardino; 2007. [cited 2020 Jul 07]. Available from: https://scholarworks.lib.csusb.edu/etd-project/3289.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Oyinsan S. Primary decomposition of ideals in a ring. [Thesis]. California State University – San Bernardino; 2007. Available from: https://scholarworks.lib.csusb.edu/etd-project/3289

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Kummini, Neelakandhan Manoj. Homological Invariants of Monomial and Binomial Ideals.

Degree: PH.D., Mathematics, 2008, University of Kansas

 In this dissertation, we study numerical invariants of minimal graded free resolutions of homogeneous ideals in a polynomial ring R. Chapters 2, 3 and 4… (more)

Subjects/Keywords: Mathematics; Commutative algebra; Homological invariants; Free resolutions

…R1 as a k-algebra. R i∈N We will refer to this as the standard grading of R. Let M be an… …algebra: the maximum length of a regular sequence in the set of monomial minimal generators of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kummini, N. M. (2008). Homological Invariants of Monomial and Binomial Ideals. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/4199

Chicago Manual of Style (16th Edition):

Kummini, Neelakandhan Manoj. “Homological Invariants of Monomial and Binomial Ideals.” 2008. Doctoral Dissertation, University of Kansas. Accessed July 07, 2020. http://hdl.handle.net/1808/4199.

MLA Handbook (7th Edition):

Kummini, Neelakandhan Manoj. “Homological Invariants of Monomial and Binomial Ideals.” 2008. Web. 07 Jul 2020.

Vancouver:

Kummini NM. Homological Invariants of Monomial and Binomial Ideals. [Internet] [Doctoral dissertation]. University of Kansas; 2008. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1808/4199.

Council of Science Editors:

Kummini NM. Homological Invariants of Monomial and Binomial Ideals. [Doctoral Dissertation]. University of Kansas; 2008. Available from: http://hdl.handle.net/1808/4199


Georgia State University

9. Zagrodny, Christopher Michael. Algebraic Concepts in the Study of Graphs and Simplicial Complexes.

Degree: MS, Mathematics and Statistics, 2006, Georgia State University

 This paper presents a survey of concepts in commutative algebra that have applications to topology and graph theory. The primary algebraic focus will be on… (more)

Subjects/Keywords: Commutative Algebra; Graph Theory; Stanley-Reisner Rings; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zagrodny, C. M. (2006). Algebraic Concepts in the Study of Graphs and Simplicial Complexes. (Thesis). Georgia State University. Retrieved from https://scholarworks.gsu.edu/math_theses/7

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zagrodny, Christopher Michael. “Algebraic Concepts in the Study of Graphs and Simplicial Complexes.” 2006. Thesis, Georgia State University. Accessed July 07, 2020. https://scholarworks.gsu.edu/math_theses/7.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zagrodny, Christopher Michael. “Algebraic Concepts in the Study of Graphs and Simplicial Complexes.” 2006. Web. 07 Jul 2020.

Vancouver:

Zagrodny CM. Algebraic Concepts in the Study of Graphs and Simplicial Complexes. [Internet] [Thesis]. Georgia State University; 2006. [cited 2020 Jul 07]. Available from: https://scholarworks.gsu.edu/math_theses/7.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zagrodny CM. Algebraic Concepts in the Study of Graphs and Simplicial Complexes. [Thesis]. Georgia State University; 2006. Available from: https://scholarworks.gsu.edu/math_theses/7

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Clemson University

10. Park, Jang-woo. Discrete Dynamics over Finite Fields.

Degree: PhD, Mathematics, 2009, Clemson University

 A dynamical system consists of a set V and a map f : V → V . The primary goal is to characterize points in… (more)

Subjects/Keywords: commutative algebra; discrete dynamics; finite fields; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Park, J. (2009). Discrete Dynamics over Finite Fields. (Doctoral Dissertation). Clemson University. Retrieved from https://tigerprints.clemson.edu/all_dissertations/422

Chicago Manual of Style (16th Edition):

Park, Jang-woo. “Discrete Dynamics over Finite Fields.” 2009. Doctoral Dissertation, Clemson University. Accessed July 07, 2020. https://tigerprints.clemson.edu/all_dissertations/422.

MLA Handbook (7th Edition):

Park, Jang-woo. “Discrete Dynamics over Finite Fields.” 2009. Web. 07 Jul 2020.

Vancouver:

Park J. Discrete Dynamics over Finite Fields. [Internet] [Doctoral dissertation]. Clemson University; 2009. [cited 2020 Jul 07]. Available from: https://tigerprints.clemson.edu/all_dissertations/422.

Council of Science Editors:

Park J. Discrete Dynamics over Finite Fields. [Doctoral Dissertation]. Clemson University; 2009. Available from: https://tigerprints.clemson.edu/all_dissertations/422


University of Kentucky

11. Brown, Tricia Muldoon. Rees Products of Posets and Inequalities.

Degree: 2009, University of Kentucky

 In this dissertation we will look at properties of two different posets from different perspectives. The first poset is the Rees product of the face… (more)

Subjects/Keywords: algebraic combinatorics|commutative algebra|Möbius function|poset topology|representation theory; Algebra; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, T. M. (2009). Rees Products of Posets and Inequalities. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/gradschool_diss/722

Chicago Manual of Style (16th Edition):

Brown, Tricia Muldoon. “Rees Products of Posets and Inequalities.” 2009. Doctoral Dissertation, University of Kentucky. Accessed July 07, 2020. https://uknowledge.uky.edu/gradschool_diss/722.

MLA Handbook (7th Edition):

Brown, Tricia Muldoon. “Rees Products of Posets and Inequalities.” 2009. Web. 07 Jul 2020.

Vancouver:

Brown TM. Rees Products of Posets and Inequalities. [Internet] [Doctoral dissertation]. University of Kentucky; 2009. [cited 2020 Jul 07]. Available from: https://uknowledge.uky.edu/gradschool_diss/722.

Council of Science Editors:

Brown TM. Rees Products of Posets and Inequalities. [Doctoral Dissertation]. University of Kentucky; 2009. Available from: https://uknowledge.uky.edu/gradschool_diss/722


Florida Atlantic University

12. Ay, Basak. Unique decomposition of direct sums of ideals.

Degree: PhD, 2010, Florida Atlantic University

Summary: We say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a finite… (more)

Subjects/Keywords: Algebraic number theory; Modules (Algebra); Noetherian rings; Commutative rings; Algebra, Abstract

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ay, B. (2010). Unique decomposition of direct sums of ideals. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/2683133

Chicago Manual of Style (16th Edition):

Ay, Basak. “Unique decomposition of direct sums of ideals.” 2010. Doctoral Dissertation, Florida Atlantic University. Accessed July 07, 2020. http://purl.flvc.org/FAU/2683133.

MLA Handbook (7th Edition):

Ay, Basak. “Unique decomposition of direct sums of ideals.” 2010. Web. 07 Jul 2020.

Vancouver:

Ay B. Unique decomposition of direct sums of ideals. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2010. [cited 2020 Jul 07]. Available from: http://purl.flvc.org/FAU/2683133.

Council of Science Editors:

Ay B. Unique decomposition of direct sums of ideals. [Doctoral Dissertation]. Florida Atlantic University; 2010. Available from: http://purl.flvc.org/FAU/2683133


Florida Atlantic University

13. Chiorescu, Marcela. Minimal zero-dimensional extensions.

Degree: PhD, 2009, Florida Atlantic University

Summary: The structure of minimal zero-dimensional extension of rings with Noetherian spectrum in which zero is a primary ideal and with at most one prime… (more)

Subjects/Keywords: Algebra, Abstract; Noetherian rings; Commutative rings; Modules (Algebra); Algebraic number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chiorescu, M. (2009). Minimal zero-dimensional extensions. (Doctoral Dissertation). Florida Atlantic University. Retrieved from http://purl.flvc.org/FAU/210447

Chicago Manual of Style (16th Edition):

Chiorescu, Marcela. “Minimal zero-dimensional extensions.” 2009. Doctoral Dissertation, Florida Atlantic University. Accessed July 07, 2020. http://purl.flvc.org/FAU/210447.

MLA Handbook (7th Edition):

Chiorescu, Marcela. “Minimal zero-dimensional extensions.” 2009. Web. 07 Jul 2020.

Vancouver:

Chiorescu M. Minimal zero-dimensional extensions. [Internet] [Doctoral dissertation]. Florida Atlantic University; 2009. [cited 2020 Jul 07]. Available from: http://purl.flvc.org/FAU/210447.

Council of Science Editors:

Chiorescu M. Minimal zero-dimensional extensions. [Doctoral Dissertation]. Florida Atlantic University; 2009. Available from: http://purl.flvc.org/FAU/210447


University of Toronto

14. Hovinen, Bradford. Matrix Factorizations of the Classical Discriminant.

Degree: 2009, University of Toronto

The classical discriminant Dn of degree n polynomials detects whether a given univariate polynomial f has a repeated root. It is itself a polynomial in… (more)

Subjects/Keywords: commutative algebra; algebraic geometry; discriminants; singularities; matrix factorizations; homological algebra; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hovinen, B. (2009). Matrix Factorizations of the Classical Discriminant. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/17466

Chicago Manual of Style (16th Edition):

Hovinen, Bradford. “Matrix Factorizations of the Classical Discriminant.” 2009. Doctoral Dissertation, University of Toronto. Accessed July 07, 2020. http://hdl.handle.net/1807/17466.

MLA Handbook (7th Edition):

Hovinen, Bradford. “Matrix Factorizations of the Classical Discriminant.” 2009. Web. 07 Jul 2020.

Vancouver:

Hovinen B. Matrix Factorizations of the Classical Discriminant. [Internet] [Doctoral dissertation]. University of Toronto; 2009. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1807/17466.

Council of Science Editors:

Hovinen B. Matrix Factorizations of the Classical Discriminant. [Doctoral Dissertation]. University of Toronto; 2009. Available from: http://hdl.handle.net/1807/17466


Texas A&M University

15. McDonald, Terry Lynn. Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions.

Degree: 2006, Texas A&M University

 Splines are piecewise polynomial functions of a given order of smoothness r on a triangulated region (or polyhedrally subdivided region) of Rd. The set of… (more)

Subjects/Keywords: splines; approximation theory; homological algebra; commutative algebra; simplicial complexes; piecewise polynomial functions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McDonald, T. L. (2006). Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/3915

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McDonald, Terry Lynn. “Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions.” 2006. Thesis, Texas A&M University. Accessed July 07, 2020. http://hdl.handle.net/1969.1/3915.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McDonald, Terry Lynn. “Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions.” 2006. Web. 07 Jul 2020.

Vancouver:

McDonald TL. Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions. [Internet] [Thesis]. Texas A&M University; 2006. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1969.1/3915.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McDonald TL. Piecewise polynomial functions on a planar region: boundary constraints and polyhedral subdivisions. [Thesis]. Texas A&M University; 2006. Available from: http://hdl.handle.net/1969.1/3915

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Colorado State University

16. Lynn, Rebecca E. Multiplicities and equivariant cohomology.

Degree: PhD, Mathematics, 2007, Colorado State University

 The aim of this paper is to address the following problem: how to relate the algebraic definitions and computations of multiplicity from commutative algebra to… (more)

Subjects/Keywords: multiplicity; graded ring; fiber bundle; equivariant cohomology; commutative algebra; algebraic topology; Multiplicity (Mathematics); Commutative algebra; Local rings; Graded rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lynn, R. E. (2007). Multiplicities and equivariant cohomology. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/39043

Chicago Manual of Style (16th Edition):

Lynn, Rebecca E. “Multiplicities and equivariant cohomology.” 2007. Doctoral Dissertation, Colorado State University. Accessed July 07, 2020. http://hdl.handle.net/10217/39043.

MLA Handbook (7th Edition):

Lynn, Rebecca E. “Multiplicities and equivariant cohomology.” 2007. Web. 07 Jul 2020.

Vancouver:

Lynn RE. Multiplicities and equivariant cohomology. [Internet] [Doctoral dissertation]. Colorado State University; 2007. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/10217/39043.

Council of Science Editors:

Lynn RE. Multiplicities and equivariant cohomology. [Doctoral Dissertation]. Colorado State University; 2007. Available from: http://hdl.handle.net/10217/39043


Leiden University

17. Svensson, P.C. Crossed product algebras associated with topological dynamical systems.

Degree: 2009, Leiden University

 We study connections between topological dynamical systems and associated algebras of crossed product type. We derive equivalences between structural properties of a crossed product and… (more)

Subjects/Keywords: Banach algebra; C*-algebra; Commutant; Crossed product algebra; Ideals; Maximal commutative subalgebra; Topological dynamical system; Banach algebra; C*-algebra; Commutant; Crossed product algebra; Ideals; Maximal commutative subalgebra; Topological dynamical system

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Svensson, P. C. (2009). Crossed product algebras associated with topological dynamical systems. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/13699

Chicago Manual of Style (16th Edition):

Svensson, P C. “Crossed product algebras associated with topological dynamical systems.” 2009. Doctoral Dissertation, Leiden University. Accessed July 07, 2020. http://hdl.handle.net/1887/13699.

MLA Handbook (7th Edition):

Svensson, P C. “Crossed product algebras associated with topological dynamical systems.” 2009. Web. 07 Jul 2020.

Vancouver:

Svensson PC. Crossed product algebras associated with topological dynamical systems. [Internet] [Doctoral dissertation]. Leiden University; 2009. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/1887/13699.

Council of Science Editors:

Svensson PC. Crossed product algebras associated with topological dynamical systems. [Doctoral Dissertation]. Leiden University; 2009. Available from: http://hdl.handle.net/1887/13699


University of Pretoria

18. De Wet, P.O. (Pieter Oloff). The division theorem for smooth functions.

Degree: Mathematics and Applied Mathematics, 2006, University of Pretoria

 We discuss Lojasiewicz's beautiful proof of the division theorem for smooth functions. The standard proofs are based on the Weierstrass preparation theorem for analytic functions… (more)

Subjects/Keywords: Differential equations partial; Analytic functions; Commutative algebra; Smoothness of functions; UCTD

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

De Wet, P. O. (. (2006). The division theorem for smooth functions. (Masters Thesis). University of Pretoria. Retrieved from http://hdl.handle.net/2263/26530

Chicago Manual of Style (16th Edition):

De Wet, P O (Pieter. “The division theorem for smooth functions.” 2006. Masters Thesis, University of Pretoria. Accessed July 07, 2020. http://hdl.handle.net/2263/26530.

MLA Handbook (7th Edition):

De Wet, P O (Pieter. “The division theorem for smooth functions.” 2006. Web. 07 Jul 2020.

Vancouver:

De Wet PO(. The division theorem for smooth functions. [Internet] [Masters thesis]. University of Pretoria; 2006. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/2263/26530.

Council of Science Editors:

De Wet PO(. The division theorem for smooth functions. [Masters Thesis]. University of Pretoria; 2006. Available from: http://hdl.handle.net/2263/26530


University of Pretoria

19. [No author]. The division theorem for smooth functions .

Degree: 2006, University of Pretoria

 We discuss Lojasiewicz's beautiful proof of the division theorem for smooth functions. The standard proofs are based on the Weierstrass preparation theorem for analytic functions… (more)

Subjects/Keywords: Differential equations partial; Analytic functions; Commutative algebra; Smoothness of functions; UCTD

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2006). The division theorem for smooth functions . (Masters Thesis). University of Pretoria. Retrieved from http://upetd.up.ac.za/thesis/available/etd-07222005-122154/

Chicago Manual of Style (16th Edition):

author], [No. “The division theorem for smooth functions .” 2006. Masters Thesis, University of Pretoria. Accessed July 07, 2020. http://upetd.up.ac.za/thesis/available/etd-07222005-122154/.

MLA Handbook (7th Edition):

author], [No. “The division theorem for smooth functions .” 2006. Web. 07 Jul 2020.

Vancouver:

author] [. The division theorem for smooth functions . [Internet] [Masters thesis]. University of Pretoria; 2006. [cited 2020 Jul 07]. Available from: http://upetd.up.ac.za/thesis/available/etd-07222005-122154/.

Council of Science Editors:

author] [. The division theorem for smooth functions . [Masters Thesis]. University of Pretoria; 2006. Available from: http://upetd.up.ac.za/thesis/available/etd-07222005-122154/

20. VU KHAC KIEN. Deployable tension-strut structures: Concept, structural behaviour and implementation.

Degree: 2007, National University of Singapore

Subjects/Keywords: deployable structures; cable-strut; pre-tensioning; advanced analysis; commutative algebra; generative design

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

KIEN, V. K. (2007). Deployable tension-strut structures: Concept, structural behaviour and implementation. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/16251

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

KIEN, VU KHAC. “Deployable tension-strut structures: Concept, structural behaviour and implementation.” 2007. Thesis, National University of Singapore. Accessed July 07, 2020. http://scholarbank.nus.edu.sg/handle/10635/16251.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

KIEN, VU KHAC. “Deployable tension-strut structures: Concept, structural behaviour and implementation.” 2007. Web. 07 Jul 2020.

Vancouver:

KIEN VK. Deployable tension-strut structures: Concept, structural behaviour and implementation. [Internet] [Thesis]. National University of Singapore; 2007. [cited 2020 Jul 07]. Available from: http://scholarbank.nus.edu.sg/handle/10635/16251.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

KIEN VK. Deployable tension-strut structures: Concept, structural behaviour and implementation. [Thesis]. National University of Singapore; 2007. Available from: http://scholarbank.nus.edu.sg/handle/10635/16251

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

21. Fei, Jiarui. General Presentations of Algebras.

Degree: PhD, Mathematics, 2010, University of Michigan

 For any finite dimensional basic associative algebra, we study the presentation spaces and their relation to the representation spaces. We prove two propositions about a… (more)

Subjects/Keywords: Representation Theory; Non-commutative Algebra; General Representation; Projective Presentation; Canonical Decomposition; Quiver; Mathematics; Science

…generated commutative k-algebra to the Sets. As a set, Repα (A) consists of all α… …generated commutative k-algebra and V is an α-dimensional R-module. So the tangent space TM Repα… …x28;f, f ) = 0. For a finite-dimensional path algebra, there are exactly two ways to… …governs the decomposition 6 of rigid presentations. In the case of path algebra (without… …associated to the cluster algebra of an acyclic quiver. Cluster algebras were introduced by Fomin… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fei, J. (2010). General Presentations of Algebras. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/77740

Chicago Manual of Style (16th Edition):

Fei, Jiarui. “General Presentations of Algebras.” 2010. Doctoral Dissertation, University of Michigan. Accessed July 07, 2020. http://hdl.handle.net/2027.42/77740.

MLA Handbook (7th Edition):

Fei, Jiarui. “General Presentations of Algebras.” 2010. Web. 07 Jul 2020.

Vancouver:

Fei J. General Presentations of Algebras. [Internet] [Doctoral dissertation]. University of Michigan; 2010. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/2027.42/77740.

Council of Science Editors:

Fei J. General Presentations of Algebras. [Doctoral Dissertation]. University of Michigan; 2010. Available from: http://hdl.handle.net/2027.42/77740


Université du Luxembourg

22. Gohr, Aron Samuel. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.

Degree: 2009, Université du Luxembourg

 The main topic under study in the present work is the deformation theory of color algebras. Color algebras are generalized analogues of associative superalgebras, where… (more)

Subjects/Keywords: Color-commutative algebra; Deformation theory; Hochschild cohomology; Harrison cohomology; Noncommutative deformations; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gohr, A. S. (2009). On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/15594

Chicago Manual of Style (16th Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Doctoral Dissertation, Université du Luxembourg. Accessed July 07, 2020. http://orbilu.uni.lu/handle/10993/15594.

MLA Handbook (7th Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Web. 07 Jul 2020.

Vancouver:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2009. [cited 2020 Jul 07]. Available from: http://orbilu.uni.lu/handle/10993/15594.

Council of Science Editors:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Doctoral Dissertation]. Université du Luxembourg; 2009. Available from: http://orbilu.uni.lu/handle/10993/15594


ETH Zürich

23. Razavi, Seyed Mohammad Hadi Hedayatzadeh. Exterior powers of Barsotti-Tate groups.

Degree: 2010, ETH Zürich

Subjects/Keywords: MODULN (ALGEBRA); BEWERTUNGEN AUF KOMMUTATIVEN RINGEN UND TEILBARKEITSTHEORIE (ALGEBRAISCHE GEOMETRIE); HOMOMORPHISMENGRUPPEN (ALGEBRA); GRUPPENSCHEMATA (ALGEBRAISCHE GEOMETRIE); MODULES (ALGEBRA); VALUATIONS ON COMMUTATIVE RINGS AND THEORY OF DIVISIBILITY (ALGEBRAIC GEOMETRY); HOMOMORPHISM GROUPS (ALGEBRA); GROUP SCHEMES (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Razavi, S. M. H. H. (2010). Exterior powers of Barsotti-Tate groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/152468

Chicago Manual of Style (16th Edition):

Razavi, Seyed Mohammad Hadi Hedayatzadeh. “Exterior powers of Barsotti-Tate groups.” 2010. Doctoral Dissertation, ETH Zürich. Accessed July 07, 2020. http://hdl.handle.net/20.500.11850/152468.

MLA Handbook (7th Edition):

Razavi, Seyed Mohammad Hadi Hedayatzadeh. “Exterior powers of Barsotti-Tate groups.” 2010. Web. 07 Jul 2020.

Vancouver:

Razavi SMHH. Exterior powers of Barsotti-Tate groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2010. [cited 2020 Jul 07]. Available from: http://hdl.handle.net/20.500.11850/152468.

Council of Science Editors:

Razavi SMHH. Exterior powers of Barsotti-Tate groups. [Doctoral Dissertation]. ETH Zürich; 2010. Available from: http://hdl.handle.net/20.500.11850/152468

24. Sáenz de Cabezón Irigaray, Eduardo. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.

Degree: 2008, Universidad de La Rioja

With a particular focus on explicit computations and applications of the Koszul homology and Betti numbers of monomial ideals, the main goals od this thesis… (more)

Subjects/Keywords: combinatorial commutative algebra; monomial ideals; Betti numbers; algebraic analysis of system reliability; formal theory of differential systems; homología de Koszul; álgebra conmutativa combinatoria; ideales monomiales; números de Betti; análisis algebráico de la fiabilidad de sistemas; teoría formal de sistemas diferenciales; Koszul homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sáenz de Cabezón Irigaray, E. (2008). Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. (Thesis). Universidad de La Rioja. Retrieved from https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Thesis, Universidad de La Rioja. Accessed July 07, 2020. https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Web. 07 Jul 2020.

Vancouver:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Internet] [Thesis]. Universidad de La Rioja; 2008. [cited 2020 Jul 07]. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Thesis]. Universidad de La Rioja; 2008. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.