Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Cobordisms). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Pan, YU. Augmentations and exact Lagrangian cobordisms .

Degree: 2017, Duke University

  To a Legendrian knot, one can associate an A category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor… (more)

Subjects/Keywords: Mathematics; Augmentations; Contact Topology; Lagrangian cobordisms; Lengendrian knots

…relation among cobordisms Σ` , Σ´ , and Σ. . . . . . . . . . . . . 32 2.9 3.1 3.2 4.1 4.2 4.3… …Pair of Lagrangian cobordisms in R ˆ R3 , dpet αq . . . . . . . . . . . 45 A sketch of the… …If we forget about the exact Lagrangian condition and consider topological cobordisms, this… …this way, we can give obstructions to the existence of exact Lagrangian cobordisms. Several… …Cornwell, Ng and Sivek [CNS16] based on a key property of exact Lagrangian cobordisms… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pan, Y. (2017). Augmentations and exact Lagrangian cobordisms . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/14398

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pan, YU. “Augmentations and exact Lagrangian cobordisms .” 2017. Thesis, Duke University. Accessed March 08, 2021. http://hdl.handle.net/10161/14398.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pan, YU. “Augmentations and exact Lagrangian cobordisms .” 2017. Web. 08 Mar 2021.

Vancouver:

Pan Y. Augmentations and exact Lagrangian cobordisms . [Internet] [Thesis]. Duke University; 2017. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10161/14398.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pan Y. Augmentations and exact Lagrangian cobordisms . [Thesis]. Duke University; 2017. Available from: http://hdl.handle.net/10161/14398

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Hensel, Felix. Stability Conditions and Lagrangian Cobordisms.

Degree: 2018, ETH Zürich

Subjects/Keywords: Symplectic geometry; Lagrangian cobordisms; info:eu-repo/classification/ddc/510; Mathematics

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hensel, F. (2018). Stability Conditions and Lagrangian Cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281401

Chicago Manual of Style (16th Edition):

Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/281401.

MLA Handbook (7th Edition):

Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Web. 08 Mar 2021.

Vancouver:

Hensel F. Stability Conditions and Lagrangian Cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/281401.

Council of Science Editors:

Hensel F. Stability Conditions and Lagrangian Cobordisms. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281401

3. Vérine, Alexandre. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.

Degree: Docteur es, Mathématiques, 2018, Lyon

La géométrie symplectique et la géométrie complexe sont intimement liées, en particulier par les techniques asymptotiquement holomorphes de Donaldson et Auroux d'une part et par… (more)

Subjects/Keywords: Fonctions plurisousharmoniques; Domaines de Stein; Cycles évanescents; Cobordismes de Weinstein; Sections hyperplanes; Constantes de Seshadri; Variétés symplectiques; Plurisubharmonic functions; Vanishing cycles; Stein domains; Weinstein cobordisms; Hyperplane sections; Seshadri constants; Symplectic manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vérine, A. (2018). Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2018LYSEN038

Chicago Manual of Style (16th Edition):

Vérine, Alexandre. “Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.” 2018. Doctoral Dissertation, Lyon. Accessed March 08, 2021. http://www.theses.fr/2018LYSEN038.

MLA Handbook (7th Edition):

Vérine, Alexandre. “Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.” 2018. Web. 08 Mar 2021.

Vancouver:

Vérine A. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. [Internet] [Doctoral dissertation]. Lyon; 2018. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2018LYSEN038.

Council of Science Editors:

Vérine A. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. [Doctoral Dissertation]. Lyon; 2018. Available from: http://www.theses.fr/2018LYSEN038

4. Courte, Sylvain. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.

Degree: Docteur es, Mathématiques, 2015, Lyon, École normale supérieure

À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler… (more)

Subjects/Keywords: Variétés de contact; Variétés symplectiques; Symplectisation; Cobordismes de Weinstein; H-principe; H-cobordismes; Torsion de Whitehead; Contact manifolds; Symplectic manifolds; Symplectization; Weinstein cobordisms; H-principle; H-cobordisms; Whitehead torsion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Courte, S. (2015). H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL0991

Chicago Manual of Style (16th Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 08, 2021. http://www.theses.fr/2015ENSL0991.

MLA Handbook (7th Edition):

Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Web. 08 Mar 2021.

Vancouver:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015ENSL0991.

Council of Science Editors:

Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL0991


Université de Montréal

5. Campling, Emily. Fukaya categories of Lagrangian cobordisms and duality.

Degree: 2019, Université de Montréal

Subjects/Keywords: symplectic topology; Lagrangian submanifolds; Floer homology; Fukaya categories; derived Fukaya categories; Lagrangian cobordisms; Lagrangian surgery; weak Calabi- Yau structures; Topologie symplectique; Sous-variétés lagrangiennes; Homologie de Floer; Catégories de Fukaya; Catégories de Fukaya dérivées; Cobordismes lagrangiens; Chirurgie lagrangienne; Structures de Calabi-Yau faibles; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campling, E. (2019). Fukaya categories of Lagrangian cobordisms and duality. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/21746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Web. 08 Mar 2021.

Vancouver:

Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/21746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Perrier, Alexandre. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.

Degree: 2019, Université de Montréal

Subjects/Keywords: Immersions lagrangiennes; Polygones holomorphes; Cobordismes Lagrangiens; Groupes de cobordisme; Homologie de Floer; Catégories de Fukaya; Sous-variétés lagrangiennes; Lagrangian submanifolds; Lagrangian immersions; Holomorphic polygons; Lagrangian cobordisms; Cobordism groups; Floer homology; Fukaya categories; Mathematics / Mathématiques (UMI : 0405)

…2.1.1. Immersed Lagrangians and cobordisms… …120 2.4. Immersed Lagrangian cobordisms and iterated cones… …130 2.5.3. Obstruction of the surgery cobordisms… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perrier, A. (2019). Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21747

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/21747.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Web. 08 Mar 2021.

Vancouver:

Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/21747.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21747

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

7. Medvedev, Vladimir. Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants.

Degree: 2020, Université de Montréal

Subjects/Keywords: spectral geometry; branched minimal immersions; maximal metrics; metrics with conical singularities; conformal spectrum; the Friedlander-Nadirashvili invariants; cobordisms; conformal Steklov spectrum; upper bounds; géométrie spectrale; immersions minimales ramifiées; métriques à singularités coniques; métriques maximales; spectre conforme; invariants de Friedlander-Nadirashvili; espace des modules; cobordismes; spectre de Steklov conforme; bornes supérieures; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medvedev, V. (2020). Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/24805

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Medvedev, Vladimir. “Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants.” 2020. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/24805.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Medvedev, Vladimir. “Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants.” 2020. Web. 08 Mar 2021.

Vancouver:

Medvedev V. Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants. [Internet] [Thesis]. Université de Montréal; 2020. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/24805.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Medvedev V. Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants. [Thesis]. Université de Montréal; 2020. Available from: http://hdl.handle.net/1866/24805

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Vera Arboleda, Anderson Arley. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.

Degree: Docteur es, Mathématiques, 2019, Université de Strasbourg

Soit Σ une surface compacte connexe orientée avec une seule composante du bord. Notons par M le groupe d'homéotopie de Σ. En considérant l'action de… (more)

Subjects/Keywords: Variétés de dimension trois; Cobordismes d’homologie; Groupe d’homéotopie; Homomorphismes de Johnson; Homomorphismes de Johnson-Levine; Homomorphismes de Johnson alternatifs; Invariant LMO; Foncteur LMO; 3-manifolds; Homology cobordisms; Mapping class group; Johnson homomorphisms; Johnson-Levine homomorphisms; Alternative Johnson homomorphisms; LMO invariant; LMO functor; 512.6; 514.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vera Arboleda, A. A. (2019). Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2019STRAD009

Chicago Manual of Style (16th Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Doctoral Dissertation, Université de Strasbourg. Accessed March 08, 2021. http://www.theses.fr/2019STRAD009.

MLA Handbook (7th Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Web. 08 Mar 2021.

Vancouver:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2019. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2019STRAD009.

Council of Science Editors:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Doctoral Dissertation]. Université de Strasbourg; 2019. Available from: http://www.theses.fr/2019STRAD009


University of Michigan

9. Korpas, Levente. Quantization of symplectic cobordisms.

Degree: PhD, Pure Sciences, 1999, University of Michigan

 In this work we construct a unitary operator acting between Spin c quantizations of compact integral symplectic manifolds which are symplectically cobordant. The construction is… (more)

Subjects/Keywords: Cobordisms; Dirac Operators; Quantization; Symplectic Manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Korpas, L. (1999). Quantization of symplectic cobordisms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131922

Chicago Manual of Style (16th Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Doctoral Dissertation, University of Michigan. Accessed March 08, 2021. http://hdl.handle.net/2027.42/131922.

MLA Handbook (7th Edition):

Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Web. 08 Mar 2021.

Vancouver:

Korpas L. Quantization of symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2027.42/131922.

Council of Science Editors:

Korpas L. Quantization of symplectic cobordisms. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131922

.