Advanced search options
You searched for subject:(Cobordisms)
.
Showing records 1 – 9 of
9 total matches.
▼ Search Limiters
Université de Montréal
1. Campling, Emily. Fukaya categories of Lagrangian cobordisms and duality.
Degree: 2019, Université de Montréal
URL: http://hdl.handle.net/1866/21746
Subjects/Keywords: symplectic topology; Lagrangian submanifolds; Floer homology; Fukaya categories; derived Fukaya categories; Lagrangian cobordisms; Lagrangian surgery; weak Calabi- Yau structures; Topologie symplectique; Sous-variétés lagrangiennes; Homologie de Floer; Catégories de Fukaya; Catégories de Fukaya dérivées; Cobordismes lagrangiens; Chirurgie lagrangienne; Structures de Calabi-Yau faibles; Mathematics / Mathématiques (UMI : 0405)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Campling, E. (2019). Fukaya categories of Lagrangian cobordisms and duality. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21746
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/21746.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Web. 08 Mar 2021.
Vancouver:
Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/21746.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21746
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
2. Courte, Sylvain. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.
Degree: Docteur es, Mathématiques, 2015, Lyon, École normale supérieure
URL: http://www.theses.fr/2015ENSL0991
Subjects/Keywords: Variétés de contact; Variétés symplectiques; Symplectisation; Cobordismes de Weinstein; H-principe; H-cobordismes; Torsion de Whitehead; Contact manifolds; Symplectic manifolds; Symplectization; Weinstein cobordisms; H-principle; H-cobordisms; Whitehead torsion
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Courte, S. (2015). H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL0991
Chicago Manual of Style (16th Edition):
Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 08, 2021. http://www.theses.fr/2015ENSL0991.
MLA Handbook (7th Edition):
Courte, Sylvain. “H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry.” 2015. Web. 08 Mar 2021.
Vancouver:
Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015ENSL0991.
Council of Science Editors:
Courte S. H-cobordismes en géométrie symplectique : H-cobordisms in symplectic geometry. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL0991
3. Hensel, Felix. Stability Conditions and Lagrangian Cobordisms.
Degree: 2018, ETH Zürich
URL: http://hdl.handle.net/20.500.11850/281401
Subjects/Keywords: Symplectic geometry; Lagrangian cobordisms; info:eu-repo/classification/ddc/510; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hensel, F. (2018). Stability Conditions and Lagrangian Cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/281401
Chicago Manual of Style (16th Edition):
Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/281401.
MLA Handbook (7th Edition):
Hensel, Felix. “Stability Conditions and Lagrangian Cobordisms.” 2018. Web. 08 Mar 2021.
Vancouver:
Hensel F. Stability Conditions and Lagrangian Cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/281401.
Council of Science Editors:
Hensel F. Stability Conditions and Lagrangian Cobordisms. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/281401
University of Michigan
4. Korpas, Levente. Quantization of symplectic cobordisms.
Degree: PhD, Pure Sciences, 1999, University of Michigan
URL: http://hdl.handle.net/2027.42/131922
Subjects/Keywords: Cobordisms; Dirac Operators; Quantization; Symplectic Manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Korpas, L. (1999). Quantization of symplectic cobordisms. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131922
Chicago Manual of Style (16th Edition):
Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Doctoral Dissertation, University of Michigan. Accessed March 08, 2021. http://hdl.handle.net/2027.42/131922.
MLA Handbook (7th Edition):
Korpas, Levente. “Quantization of symplectic cobordisms.” 1999. Web. 08 Mar 2021.
Vancouver:
Korpas L. Quantization of symplectic cobordisms. [Internet] [Doctoral dissertation]. University of Michigan; 1999. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2027.42/131922.
Council of Science Editors:
Korpas L. Quantization of symplectic cobordisms. [Doctoral Dissertation]. University of Michigan; 1999. Available from: http://hdl.handle.net/2027.42/131922
Université de Montréal
5. Medvedev, Vladimir. Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants.
Degree: 2020, Université de Montréal
URL: http://hdl.handle.net/1866/24805
Subjects/Keywords: spectral geometry; branched minimal immersions; maximal metrics; metrics with conical singularities; conformal spectrum; the Friedlander-Nadirashvili invariants; cobordisms; conformal Steklov spectrum; upper bounds; géométrie spectrale; immersions minimales ramifiées; métriques à singularités coniques; métriques maximales; spectre conforme; invariants de Friedlander-Nadirashvili; espace des modules; cobordismes; spectre de Steklov conforme; bornes supérieures; Mathematics / Mathématiques (UMI : 0405)
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Medvedev, V. (2020). Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/24805
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Medvedev, Vladimir. “Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants.” 2020. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/24805.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Medvedev, Vladimir. “Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants.” 2020. Web. 08 Mar 2021.
Vancouver:
Medvedev V. Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants. [Internet] [Thesis]. Université de Montréal; 2020. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/24805.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Medvedev V. Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariants. [Thesis]. Université de Montréal; 2020. Available from: http://hdl.handle.net/1866/24805
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
6. Pan, YU. Augmentations and exact Lagrangian cobordisms .
Degree: 2017, Duke University
URL: http://hdl.handle.net/10161/14398
Subjects/Keywords: Mathematics; Augmentations; Contact Topology; Lagrangian cobordisms; Lengendrian knots
…relation among cobordisms Σ` , Σ´ , and Σ. . . . . . . . . . . . . 32 2.9 3.1 3.2 4.1 4.2 4.3… …Pair of Lagrangian cobordisms in R ˆ R3 , dpet αq . . . . . . . . . . . 45 A sketch of the… …If we forget about the exact Lagrangian condition and consider topological cobordisms, this… …this way, we can give obstructions to the existence of exact Lagrangian cobordisms. Several… …Cornwell, Ng and Sivek [CNS16] based on a key property of exact Lagrangian cobordisms…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pan, Y. (2017). Augmentations and exact Lagrangian cobordisms . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/14398
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Pan, YU. “Augmentations and exact Lagrangian cobordisms .” 2017. Thesis, Duke University. Accessed March 08, 2021. http://hdl.handle.net/10161/14398.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Pan, YU. “Augmentations and exact Lagrangian cobordisms .” 2017. Web. 08 Mar 2021.
Vancouver:
Pan Y. Augmentations and exact Lagrangian cobordisms . [Internet] [Thesis]. Duke University; 2017. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10161/14398.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Pan Y. Augmentations and exact Lagrangian cobordisms . [Thesis]. Duke University; 2017. Available from: http://hdl.handle.net/10161/14398
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
7. Perrier, Alexandre. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.
Degree: 2019, Université de Montréal
URL: http://hdl.handle.net/1866/21747
Subjects/Keywords: Immersions lagrangiennes; Polygones holomorphes; Cobordismes Lagrangiens; Groupes de cobordisme; Homologie de Floer; Catégories de Fukaya; Sous-variétés lagrangiennes; Lagrangian submanifolds; Lagrangian immersions; Holomorphic polygons; Lagrangian cobordisms; Cobordism groups; Floer homology; Fukaya categories; Mathematics / Mathématiques (UMI : 0405)
…2.1.1. Immersed Lagrangians and cobordisms… …120 2.4. Immersed Lagrangian cobordisms and iterated cones… …130 2.5.3. Obstruction of the surgery cobordisms…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Perrier, A. (2019). Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21747
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/21747.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Web. 08 Mar 2021.
Vancouver:
Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/21747.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21747
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
8. Vera Arboleda, Anderson Arley. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.
Degree: Docteur es, Mathématiques, 2019, Université de Strasbourg
URL: http://www.theses.fr/2019STRAD009
Subjects/Keywords: Variétés de dimension trois; Cobordismes d’homologie; Groupe d’homéotopie; Homomorphismes de Johnson; Homomorphismes de Johnson-Levine; Homomorphismes de Johnson alternatifs; Invariant LMO; Foncteur LMO; 3-manifolds; Homology cobordisms; Mapping class group; Johnson homomorphisms; Johnson-Levine homomorphisms; Alternative Johnson homomorphisms; LMO invariant; LMO functor; 512.6; 514.2
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Vera Arboleda, A. A. (2019). Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2019STRAD009
Chicago Manual of Style (16th Edition):
Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Doctoral Dissertation, Université de Strasbourg. Accessed March 08, 2021. http://www.theses.fr/2019STRAD009.
MLA Handbook (7th Edition):
Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Web. 08 Mar 2021.
Vancouver:
Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2019. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2019STRAD009.
Council of Science Editors:
Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Doctoral Dissertation]. Université de Strasbourg; 2019. Available from: http://www.theses.fr/2019STRAD009
9. Vérine, Alexandre. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.
Degree: Docteur es, Mathématiques, 2018, Lyon
URL: http://www.theses.fr/2018LYSEN038
Subjects/Keywords: Fonctions plurisousharmoniques; Domaines de Stein; Cycles évanescents; Cobordismes de Weinstein; Sections hyperplanes; Constantes de Seshadri; Variétés symplectiques; Plurisubharmonic functions; Vanishing cycles; Stein domains; Weinstein cobordisms; Hyperplane sections; Seshadri constants; Symplectic manifolds
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Vérine, A. (2018). Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2018LYSEN038
Chicago Manual of Style (16th Edition):
Vérine, Alexandre. “Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.” 2018. Doctoral Dissertation, Lyon. Accessed March 08, 2021. http://www.theses.fr/2018LYSEN038.
MLA Handbook (7th Edition):
Vérine, Alexandre. “Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds.” 2018. Web. 08 Mar 2021.
Vancouver:
Vérine A. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. [Internet] [Doctoral dissertation]. Lyon; 2018. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2018LYSEN038.
Council of Science Editors:
Vérine A. Quelques propriétés symplectiques des variétés Kählériennes : Some symplectic properties of Kähler manifolds. [Doctoral Dissertation]. Lyon; 2018. Available from: http://www.theses.fr/2018LYSEN038