Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Cobordism groups). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Columbia University

1. Venkatesh, Saraswathi. Completed Symplectic Cohomology and Liouville Cobordisms.

Degree: 2018, Columbia University

 Symplectic cohomology is an algebraic invariant of filled symplectic cobordisms that encodes dynamical information. In this thesis we define a modified symplectic cohomology theory, called… (more)

Subjects/Keywords: Mathematics; Cohomology operations; Symplectic groups; Cobordism theory; Invariants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Venkatesh, S. (2018). Completed Symplectic Cohomology and Liouville Cobordisms. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8FJ3ZWZ

Chicago Manual of Style (16th Edition):

Venkatesh, Saraswathi. “Completed Symplectic Cohomology and Liouville Cobordisms.” 2018. Doctoral Dissertation, Columbia University. Accessed March 05, 2021. https://doi.org/10.7916/D8FJ3ZWZ.

MLA Handbook (7th Edition):

Venkatesh, Saraswathi. “Completed Symplectic Cohomology and Liouville Cobordisms.” 2018. Web. 05 Mar 2021.

Vancouver:

Venkatesh S. Completed Symplectic Cohomology and Liouville Cobordisms. [Internet] [Doctoral dissertation]. Columbia University; 2018. [cited 2021 Mar 05]. Available from: https://doi.org/10.7916/D8FJ3ZWZ.

Council of Science Editors:

Venkatesh S. Completed Symplectic Cohomology and Liouville Cobordisms. [Doctoral Dissertation]. Columbia University; 2018. Available from: https://doi.org/10.7916/D8FJ3ZWZ


University of Michigan

2. Lee, Kevin Philip. Complex cobordism, classifying spaces of finite groups, and generalized characters.

Degree: PhD, Pure Sciences, 1998, University of Michigan

 In this paper, we explore various methods for calculating the Brown-Peterson cohomology of a classifying space of a finite group. The first method uses the… (more)

Subjects/Keywords: Characters; Classifying Spaces; Complex Cobordism; Finite Groups; Generalized

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, K. P. (1998). Complex cobordism, classifying spaces of finite groups, and generalized characters. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/131257

Chicago Manual of Style (16th Edition):

Lee, Kevin Philip. “Complex cobordism, classifying spaces of finite groups, and generalized characters.” 1998. Doctoral Dissertation, University of Michigan. Accessed March 05, 2021. http://hdl.handle.net/2027.42/131257.

MLA Handbook (7th Edition):

Lee, Kevin Philip. “Complex cobordism, classifying spaces of finite groups, and generalized characters.” 1998. Web. 05 Mar 2021.

Vancouver:

Lee KP. Complex cobordism, classifying spaces of finite groups, and generalized characters. [Internet] [Doctoral dissertation]. University of Michigan; 1998. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/2027.42/131257.

Council of Science Editors:

Lee KP. Complex cobordism, classifying spaces of finite groups, and generalized characters. [Doctoral Dissertation]. University of Michigan; 1998. Available from: http://hdl.handle.net/2027.42/131257

3. Perrier, Alexandre. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.

Degree: 2019, Université de Montréal

Subjects/Keywords: Immersions lagrangiennes; Polygones holomorphes; Cobordismes Lagrangiens; Groupes de cobordisme; Homologie de Floer; Catégories de Fukaya; Sous-variétés lagrangiennes; Lagrangian submanifolds; Lagrangian immersions; Holomorphic polygons; Lagrangian cobordisms; Cobordism groups; Floer homology; Fukaya categories; Mathematics / Mathématiques (UMI : 0405)

…2.1.2. Floer theory and cobordism groups… …85 85 87 89 89 90 2.2. Computation of the immersed cobordism group… …90 2.2.1. Properties of the immersed cobordism group… …90 2.2.2. Computation of the cobordism group… …122 2.5. Computation of the unobstructed Lagrangian Cobordism Group . . . . . . . . . . 123… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perrier, A. (2019). Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21747

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Thesis, Université de Montréal. Accessed March 05, 2021. http://hdl.handle.net/1866/21747.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Web. 05 Mar 2021.

Vancouver:

Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1866/21747.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21747

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

4. Scheimbauer, Claudia Isabella. Factorization Homology as a Fully Extended Topological Field Theory.

Degree: 2014, ETH Zürich

Subjects/Keywords: QUANTENFELDTHEORIE; TOPOLOGISCHE INVARIANTEN; TOPOLOGISCHE KATEGORIEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGISCHE ALGEBRA IN ABELSCHEN KATEGORIEN; HOMOTOPIEGRUPPEN IN KATEGORIEN (ALGEBRA); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); QUANTUM FIELD THEORY; TOPOLOGICAL INVARIANTS; TOPOLOGICAL CATEGORIES (ALGEBRAIC TOPOLOGY); HOMOLOGICAL ALGEBRA IN ABELIAN CATEGORIES; HOMOTOPY GROUPS IN CATEGORIES (ALGEBRA); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scheimbauer, C. I. (2014). Factorization Homology as a Fully Extended Topological Field Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154981

Chicago Manual of Style (16th Edition):

Scheimbauer, Claudia Isabella. “Factorization Homology as a Fully Extended Topological Field Theory.” 2014. Doctoral Dissertation, ETH Zürich. Accessed March 05, 2021. http://hdl.handle.net/20.500.11850/154981.

MLA Handbook (7th Edition):

Scheimbauer, Claudia Isabella. “Factorization Homology as a Fully Extended Topological Field Theory.” 2014. Web. 05 Mar 2021.

Vancouver:

Scheimbauer CI. Factorization Homology as a Fully Extended Topological Field Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/20.500.11850/154981.

Council of Science Editors:

Scheimbauer CI. Factorization Homology as a Fully Extended Topological Field Theory. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154981

.