Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Chow groups). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Alberta

1. Tuncer, Serhan. Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to Motives.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2010, University of Alberta

In 1990 James D. Lewis made a conjecture on the representability of algebraic Chow groups of projective algebraic manifolds. We prove that his conjecture holds for smooth complex complete intersections satisfying a numerical condition and consider some applications to motives.

Subjects/Keywords: Chow Groups; Complete Intersections; Algebraic Cycles

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tuncer, S. (2010). Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to Motives. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/c821gk67k

Chicago Manual of Style (16th Edition):

Tuncer, Serhan. “Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to Motives.” 2010. Doctoral Dissertation, University of Alberta. Accessed October 16, 2019. https://era.library.ualberta.ca/files/c821gk67k.

MLA Handbook (7th Edition):

Tuncer, Serhan. “Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to Motives.” 2010. Web. 16 Oct 2019.

Vancouver:

Tuncer S. Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to Motives. [Internet] [Doctoral dissertation]. University of Alberta; 2010. [cited 2019 Oct 16]. Available from: https://era.library.ualberta.ca/files/c821gk67k.

Council of Science Editors:

Tuncer S. Representability of Algebraic CHOW Groups of Complex Projective Complete Intersections and Applications to Motives. [Doctoral Dissertation]. University of Alberta; 2010. Available from: https://era.library.ualberta.ca/files/c821gk67k


University of Alberta

2. Méndez Dávila, Héctor Damián. Normal Functions and the Bloch-Beilinson Filtration.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2015, University of Alberta

 Let X/k be a smooth projective geometrically irreducible variety over a field k, and \CHr(X;\Q) := \CHr(X)\otimes\Q the Chow group of codimension r cycles, modulo… (more)

Subjects/Keywords: hodge theory; Bloch-Beilinson Filtration; chow groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Méndez Dávila, H. D. (2015). Normal Functions and the Bloch-Beilinson Filtration. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/c41687h53b

Chicago Manual of Style (16th Edition):

Méndez Dávila, Héctor Damián. “Normal Functions and the Bloch-Beilinson Filtration.” 2015. Doctoral Dissertation, University of Alberta. Accessed October 16, 2019. https://era.library.ualberta.ca/files/c41687h53b.

MLA Handbook (7th Edition):

Méndez Dávila, Héctor Damián. “Normal Functions and the Bloch-Beilinson Filtration.” 2015. Web. 16 Oct 2019.

Vancouver:

Méndez Dávila HD. Normal Functions and the Bloch-Beilinson Filtration. [Internet] [Doctoral dissertation]. University of Alberta; 2015. [cited 2019 Oct 16]. Available from: https://era.library.ualberta.ca/files/c41687h53b.

Council of Science Editors:

Méndez Dávila HD. Normal Functions and the Bloch-Beilinson Filtration. [Doctoral Dissertation]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/c41687h53b


Louisiana State University

3. Dribus, Benjamin F. On the infinitesimal theory of Chow groups.

Degree: PhD, Applied Mathematics, 2014, Louisiana State University

 The Chow groups of codimension-p algebraic cycles modulo rational equivalence on a smooth algebraic variety X have steadfastly resisted the efforts of algebraic geometers to… (more)

Subjects/Keywords: algebraic geometry; algebraic cycles; Chow groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dribus, B. F. (2014). On the infinitesimal theory of Chow groups. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-04062014-182723 ; https://digitalcommons.lsu.edu/gradschool_dissertations/821

Chicago Manual of Style (16th Edition):

Dribus, Benjamin F. “On the infinitesimal theory of Chow groups.” 2014. Doctoral Dissertation, Louisiana State University. Accessed October 16, 2019. etd-04062014-182723 ; https://digitalcommons.lsu.edu/gradschool_dissertations/821.

MLA Handbook (7th Edition):

Dribus, Benjamin F. “On the infinitesimal theory of Chow groups.” 2014. Web. 16 Oct 2019.

Vancouver:

Dribus BF. On the infinitesimal theory of Chow groups. [Internet] [Doctoral dissertation]. Louisiana State University; 2014. [cited 2019 Oct 16]. Available from: etd-04062014-182723 ; https://digitalcommons.lsu.edu/gradschool_dissertations/821.

Council of Science Editors:

Dribus BF. On the infinitesimal theory of Chow groups. [Doctoral Dissertation]. Louisiana State University; 2014. Available from: etd-04062014-182723 ; https://digitalcommons.lsu.edu/gradschool_dissertations/821


Université Paris-Sud – Paris XI

4. Pirutka, Alena. Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology.

Degree: Docteur es, Mathématiques, 2011, Université Paris-Sud – Paris XI

Dans cette thèse, on s'intéresse à des propriétés arithmétiques de variétés algébriques. Elle contient deux parties et huit chapitres que l'on peut lire indépendamment. Dans… (more)

Subjects/Keywords: R-équivalence; Variétés rationnellement connexes; Groupes de Chow; Cohomologie non ramifiée; R-equivalence; Rationally connected varieties; Chow groups; Unramified cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pirutka, A. (2011). Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112197

Chicago Manual of Style (16th Edition):

Pirutka, Alena. “Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 16, 2019. http://www.theses.fr/2011PA112197.

MLA Handbook (7th Edition):

Pirutka, Alena. “Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology.” 2011. Web. 16 Oct 2019.

Vancouver:

Pirutka A. Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2019 Oct 16]. Available from: http://www.theses.fr/2011PA112197.

Council of Science Editors:

Pirutka A. Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée : Two contributions to the arithmetic of varieties : R-equivalence and unramified cohomology. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112197

5. Fino, Raphaël. Around rationality of algebraic cycles : De la rationalité des cycles algébriques.

Degree: Docteur es, Mathématiques, 2014, Université Pierre et Marie Curie – Paris VI

Soient X et Y des variétés au dessus d’un corps F. Dans de nombreuses situations, il s’avère important de savoir si un cycle algébrique modulo… (more)

Subjects/Keywords: Groupes de Chow; Quadriques; Opérations de Steenrod; Variétés projectives homogènes exceptionnelles; Motifs de Chow; Espaces principaux homogènes associés à une algèbre centrale simple; Chow groups; Quadrics; 512.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fino, R. (2014). Around rationality of algebraic cycles : De la rationalité des cycles algébriques. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2014PA066231

Chicago Manual of Style (16th Edition):

Fino, Raphaël. “Around rationality of algebraic cycles : De la rationalité des cycles algébriques.” 2014. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 16, 2019. http://www.theses.fr/2014PA066231.

MLA Handbook (7th Edition):

Fino, Raphaël. “Around rationality of algebraic cycles : De la rationalité des cycles algébriques.” 2014. Web. 16 Oct 2019.

Vancouver:

Fino R. Around rationality of algebraic cycles : De la rationalité des cycles algébriques. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2014. [cited 2019 Oct 16]. Available from: http://www.theses.fr/2014PA066231.

Council of Science Editors:

Fino R. Around rationality of algebraic cycles : De la rationalité des cycles algébriques. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2014. Available from: http://www.theses.fr/2014PA066231


Johannes Gutenberg Universität Mainz

6. Petras, Oliver. Functional equations of polylogarithms in motivic cohomology.

Degree: 2008, Johannes Gutenberg Universität Mainz

For an infinite field F, we study the integral relationship between the Bloch group B2(F) and the higher Chow group CH2(F,3) by proving some relations… (more)

Subjects/Keywords: Polylogarithmen, motivische Kohomologie, höhere Chowgruppen; polylogarithms, motivic cohomology higher Chow groups; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Petras, O. (2008). Functional equations of polylogarithms in motivic cohomology. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2008/1652/

Chicago Manual of Style (16th Edition):

Petras, Oliver. “Functional equations of polylogarithms in motivic cohomology.” 2008. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed October 16, 2019. http://ubm.opus.hbz-nrw.de/volltexte/2008/1652/.

MLA Handbook (7th Edition):

Petras, Oliver. “Functional equations of polylogarithms in motivic cohomology.” 2008. Web. 16 Oct 2019.

Vancouver:

Petras O. Functional equations of polylogarithms in motivic cohomology. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2008. [cited 2019 Oct 16]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2008/1652/.

Council of Science Editors:

Petras O. Functional equations of polylogarithms in motivic cohomology. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2008. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2008/1652/


Louisiana State University

7. Yang, Sen. Higher algebraic K-theory and tangent spaces to Chow groups.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

 In this work, using higher algebraic K-theory, we provide an answer to the following question asked by Green-Griffiths in [13]: Can one define the Bloch-Gersten-Quillen… (more)

Subjects/Keywords: Chow groups; K-theory; Goodwillie isomorphism.; effacement theorem; Chern character; tangent spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, S. (2013). Higher algebraic K-theory and tangent spaces to Chow groups. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07082013-142038 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2245

Chicago Manual of Style (16th Edition):

Yang, Sen. “Higher algebraic K-theory and tangent spaces to Chow groups.” 2013. Doctoral Dissertation, Louisiana State University. Accessed October 16, 2019. etd-07082013-142038 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2245.

MLA Handbook (7th Edition):

Yang, Sen. “Higher algebraic K-theory and tangent spaces to Chow groups.” 2013. Web. 16 Oct 2019.

Vancouver:

Yang S. Higher algebraic K-theory and tangent spaces to Chow groups. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2019 Oct 16]. Available from: etd-07082013-142038 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2245.

Council of Science Editors:

Yang S. Higher algebraic K-theory and tangent spaces to Chow groups. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-07082013-142038 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2245

8. Bazhov, Ivan. Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler.

Degree: Docteur es, Mathématiques, 2017, Université Pierre et Marie Curie – Paris VI

Nous présentons trois résultats dans cette thèse. Dans le chapitre 2 nous montrons l’existence d’un zéro-cycle cx sur une hypersurface X de type Calabi–Yau dans… (more)

Subjects/Keywords: Cycles algébriques; Anneaux de Chow; Zéro-Cycle; Variétés de type Calabi-Yau; Variétés hyper-Kählériennes; Chow groups; Constant cycles subvarieties; Zero-cycles; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bazhov, I. (2017). Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066387

Chicago Manual of Style (16th Edition):

Bazhov, Ivan. “Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 16, 2019. http://www.theses.fr/2017PA066387.

MLA Handbook (7th Edition):

Bazhov, Ivan. “Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler.” 2017. Web. 16 Oct 2019.

Vancouver:

Bazhov I. Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2019 Oct 16]. Available from: http://www.theses.fr/2017PA066387.

Council of Science Editors:

Bazhov I. Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties : Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066387


Johannes Gutenberg Universität Mainz

9. Weißschuh, Thomas. A commutative higher cycle map into Deligne-Beilinson cohomology.

Degree: 2015, Johannes Gutenberg Universität Mainz

Das Ziel dieser Arbeit ist die Konstruktion eines Homomorphismus von partiell definierten, graduiert-kommutativen Algebren, der nach Ubergang zu rationalen Kohomologiegruppen mit der Regulatorabbildung reg zwischen… (more)

Subjects/Keywords: Höhere Chowgruppen, Deligne-Beilinson Kohomologie, algebraische Zykel, Regulatorabbildung; Higher Chow groups, Deligne-Beilinson cohomology, algebraic cycles, regulator; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weißschuh, T. (2015). A commutative higher cycle map into Deligne-Beilinson cohomology. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2015/4207/

Chicago Manual of Style (16th Edition):

Weißschuh, Thomas. “A commutative higher cycle map into Deligne-Beilinson cohomology.” 2015. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed October 16, 2019. http://ubm.opus.hbz-nrw.de/volltexte/2015/4207/.

MLA Handbook (7th Edition):

Weißschuh, Thomas. “A commutative higher cycle map into Deligne-Beilinson cohomology.” 2015. Web. 16 Oct 2019.

Vancouver:

Weißschuh T. A commutative higher cycle map into Deligne-Beilinson cohomology. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2015. [cited 2019 Oct 16]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2015/4207/.

Council of Science Editors:

Weißschuh T. A commutative higher cycle map into Deligne-Beilinson cohomology. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2015. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2015/4207/

.