Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Chebyshev polynomial). Showing records 1 – 12 of 12 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Forisha, Donnie R. The Use of Chebyshev Polynomials in Numerical Analysis.

Degree: 1975, North Texas State University

 The purpose of this paper is to investigate the nature and practical uses of Chebyshev polynomials. Chapter I gives recognition to mathematicians responsible for studies… (more)

Subjects/Keywords: Chebyshev polynomials; polynomial approximations; Chebyshev polynomials.; Numerical analysis.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Forisha, D. R. (1975). The Use of Chebyshev Polynomials in Numerical Analysis. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc663496/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Forisha, Donnie R. “The Use of Chebyshev Polynomials in Numerical Analysis.” 1975. Thesis, North Texas State University. Accessed October 24, 2020. https://digital.library.unt.edu/ark:/67531/metadc663496/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Forisha, Donnie R. “The Use of Chebyshev Polynomials in Numerical Analysis.” 1975. Web. 24 Oct 2020.

Vancouver:

Forisha DR. The Use of Chebyshev Polynomials in Numerical Analysis. [Internet] [Thesis]. North Texas State University; 1975. [cited 2020 Oct 24]. Available from: https://digital.library.unt.edu/ark:/67531/metadc663496/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Forisha DR. The Use of Chebyshev Polynomials in Numerical Analysis. [Thesis]. North Texas State University; 1975. Available from: https://digital.library.unt.edu/ark:/67531/metadc663496/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Technology, Sydney

2. Wu, Jinglai. Uncertainty analysis and optimization by using the orthogonal polynomials.

Degree: 2015, University of Technology, Sydney

 Engineering problems are generally described by mathematic models, and the parameters in mathematic models are usually assumed to be deterministic when solving these models. However,… (more)

Subjects/Keywords: Uncertain parameters.; Aleatory (random) uncertainty.; Epistemic uncertainty.; Polynomial Chaos (PC) expansion theory.; Chebyshev polynomials approximation theory.; Hybrid uncertainty analysis.; Polynomial-Chaos-Chebyshev-Interval (PCCI) method.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, J. (2015). Uncertainty analysis and optimization by using the orthogonal polynomials. (Thesis). University of Technology, Sydney. Retrieved from http://hdl.handle.net/10453/43498

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wu, Jinglai. “Uncertainty analysis and optimization by using the orthogonal polynomials.” 2015. Thesis, University of Technology, Sydney. Accessed October 24, 2020. http://hdl.handle.net/10453/43498.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wu, Jinglai. “Uncertainty analysis and optimization by using the orthogonal polynomials.” 2015. Web. 24 Oct 2020.

Vancouver:

Wu J. Uncertainty analysis and optimization by using the orthogonal polynomials. [Internet] [Thesis]. University of Technology, Sydney; 2015. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10453/43498.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wu J. Uncertainty analysis and optimization by using the orthogonal polynomials. [Thesis]. University of Technology, Sydney; 2015. Available from: http://hdl.handle.net/10453/43498

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


RMIT University

3. Zhong, J. Enforcing privacy via access control and data perturbation.

Degree: 2013, RMIT University

 With the increasing availability of large collections of personal and sensitive information to a wide range of user communities, services should take more responsibility for… (more)

Subjects/Keywords: Fields of Research; privacy; access control; data perturbation; chaotic; fractal; Chebyshev polynomial

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhong, J. (2013). Enforcing privacy via access control and data perturbation. (Thesis). RMIT University. Retrieved from http://researchbank.rmit.edu.au/view/rmit:160673

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhong, J. “Enforcing privacy via access control and data perturbation.” 2013. Thesis, RMIT University. Accessed October 24, 2020. http://researchbank.rmit.edu.au/view/rmit:160673.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhong, J. “Enforcing privacy via access control and data perturbation.” 2013. Web. 24 Oct 2020.

Vancouver:

Zhong J. Enforcing privacy via access control and data perturbation. [Internet] [Thesis]. RMIT University; 2013. [cited 2020 Oct 24]. Available from: http://researchbank.rmit.edu.au/view/rmit:160673.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhong J. Enforcing privacy via access control and data perturbation. [Thesis]. RMIT University; 2013. Available from: http://researchbank.rmit.edu.au/view/rmit:160673

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

4. Lin, Yung-chia. An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression.

Degree: Master, Applied Mathematics, 2008, NSYSU

 Consider the minimally-supported D-optimal designs for dth degree polynomial regression with bounded and positive weight function on a compact interval. We show that the optimal… (more)

Subjects/Keywords: asymptotic design; arcsin distribution; D-Equivalence Theorem; Chebyshev polynomial of second kind; D-optimal arcsin support design; minimally-supported D-optimal design; Squeeze Theorem; D-efficiency; Legendre polynomial

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lin, Y. (2008). An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lin, Yung-chia. “An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression.” 2008. Thesis, NSYSU. Accessed October 24, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lin, Yung-chia. “An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression.” 2008. Web. 24 Oct 2020.

Vancouver:

Lin Y. An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression. [Internet] [Thesis]. NSYSU; 2008. [cited 2020 Oct 24]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin Y. An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression. [Thesis]. NSYSU; 2008. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Stoffel, Joshua David. Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations.

Degree: MS, Applied Mathematics, 2012, University of Akron

 Many numerical methods are the result of replacing a function by its interpolating polynomial; quadrature formulas are one such method. In this research a special… (more)

Subjects/Keywords: Applied Mathematics; quadrature formula; Lagrange polynomial; Chebyshev polynomial; differential equation

…polynomials. Definition 1.1.5. [3] The Chebyshev polynomial of degree N+1 is defined to be… …of the Chebyshev polynomial relative to the interval (a, b) as quadrature nodes… …polynomial that uses the Chebyshev points as nodes. Approximate f (xi ) using equation… …CHAPTER I INTRODUCTION In this chapter, the basic concepts of polynomial interpolation… …Chebyshev quadrature formula is presented as the central concept of this thesis. Two methods for… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stoffel, J. D. (2012). Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations. (Masters Thesis). University of Akron. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082

Chicago Manual of Style (16th Edition):

Stoffel, Joshua David. “Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations.” 2012. Masters Thesis, University of Akron. Accessed October 24, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082.

MLA Handbook (7th Edition):

Stoffel, Joshua David. “Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations.” 2012. Web. 24 Oct 2020.

Vancouver:

Stoffel JD. Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations. [Internet] [Masters thesis]. University of Akron; 2012. [cited 2020 Oct 24]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082.

Council of Science Editors:

Stoffel JD. Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations. [Masters Thesis]. University of Akron; 2012. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082


Virginia Tech

6. Park, Jae H. Chebyshev Approximation of Discrete polynomials and Splines.

Degree: PhD, Electrical and Computer Engineering, 1999, Virginia Tech

 The recent development of the impulse/summation approach for efficient B-spline computation in the discrete domain should increase the use of B-splines in many applications. Because… (more)

Subjects/Keywords: FIR Filter; Computer Graphics; Discrete Spline; Discrete Polynomial; Chebyshev Approximation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Park, J. H. (1999). Chebyshev Approximation of Discrete polynomials and Splines. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/30195

Chicago Manual of Style (16th Edition):

Park, Jae H. “Chebyshev Approximation of Discrete polynomials and Splines.” 1999. Doctoral Dissertation, Virginia Tech. Accessed October 24, 2020. http://hdl.handle.net/10919/30195.

MLA Handbook (7th Edition):

Park, Jae H. “Chebyshev Approximation of Discrete polynomials and Splines.” 1999. Web. 24 Oct 2020.

Vancouver:

Park JH. Chebyshev Approximation of Discrete polynomials and Splines. [Internet] [Doctoral dissertation]. Virginia Tech; 1999. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10919/30195.

Council of Science Editors:

Park JH. Chebyshev Approximation of Discrete polynomials and Splines. [Doctoral Dissertation]. Virginia Tech; 1999. Available from: http://hdl.handle.net/10919/30195

7. Joldes, Mioara Maria. Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications.

Degree: Docteur es, Informatique, 2011, Lyon, École normale supérieure

Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par une approximation polynomiale p. On le fait, par… (more)

Subjects/Keywords: Calcul rigoureux; Calculs validés; Erreur d'approximation; Approximations polynomiales rigoureuses; Series de Chebyshev; Modèles de Taylor; Modèles de Chebyshev –; Arithmétique Flottante; Fonctions D-finies; Méthodes d'encadrement; Évaluation des fonctions; Opérateurs Matériels; Field Programmable Gate Arrays; Rigorous Computing; Validated Numerics; Approximation Error; Rigorous Polynomial Approximation; Chebyshev Series; Taylor Models; Chebyshev Models; Floating-Point Arithmetic; D-finite functions; Enclosure Methods; Function Evaluation; Hardware Operators; Field Programmable Gate Arrays

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Joldes, M. M. (2011). Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2011ENSL0655

Chicago Manual of Style (16th Edition):

Joldes, Mioara Maria. “Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications.” 2011. Doctoral Dissertation, Lyon, École normale supérieure. Accessed October 24, 2020. http://www.theses.fr/2011ENSL0655.

MLA Handbook (7th Edition):

Joldes, Mioara Maria. “Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications.” 2011. Web. 24 Oct 2020.

Vancouver:

Joldes MM. Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2011. [cited 2020 Oct 24]. Available from: http://www.theses.fr/2011ENSL0655.

Council of Science Editors:

Joldes MM. Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications. [Doctoral Dissertation]. Lyon, École normale supérieure; 2011. Available from: http://www.theses.fr/2011ENSL0655


NSYSU

8. Mao, Chiang-Yuan. Ds-optimal designs for weighted polynomial regression.

Degree: Master, Applied Mathematics, 2007, NSYSU

 This paper is devoted to studying the problem of constructing Ds-optimal design for d-th degree polynomial regression with analytic weight function on the interval [m-a,m+a],m,a… (more)

Subjects/Keywords: weighted polynomial regression; recursive algorithm; Taylor expansion; Implicit Function Theorem; Ds-Equivalence Theorem; Ds-optimal design; Chebyshev polynomial

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mao, C. (2007). Ds-optimal designs for weighted polynomial regression. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mao, Chiang-Yuan. “Ds-optimal designs for weighted polynomial regression.” 2007. Thesis, NSYSU. Accessed October 24, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mao, Chiang-Yuan. “Ds-optimal designs for weighted polynomial regression.” 2007. Web. 24 Oct 2020.

Vancouver:

Mao C. Ds-optimal designs for weighted polynomial regression. [Internet] [Thesis]. NSYSU; 2007. [cited 2020 Oct 24]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mao C. Ds-optimal designs for weighted polynomial regression. [Thesis]. NSYSU; 2007. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

9. Bani Younes, Ahmad H. Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics.

Degree: PhD, Aerospace Engineering, 2013, Texas A&M University

 We propose novel methods to utilize orthogonal polynomial approximation in higher dimension spaces, which enable us to modify classical differential equation solvers to perform high… (more)

Subjects/Keywords: Chebyshev Polynomial; Orthogonal Polynomial; Picard Iteration; MCPI; Geopotential; Finite Element; Trajectory Propagation; Initial Value Problem

…Introduction . . . . . . . . . . . . . . . . . . . . . . IV.B. OCPI: Orthogonal Chebyshev Polynomial… …Iteration. When the zeros of Chebyshev polynomials are used as the nodes for polynomial… …56 58 67 74 75 78 80 82 PICARD ITERATION, CHEBYSHEV POLYNOMIALS AND CHEBYSHEV-PICARD… …Integrator IV.B.1. Example: Ballistic Projectile Problem . . . . . IV.C. MCPI: Modified Chebyshev… …IV.F. ACPI: Adaptive Chebyshev Picard Iteration . . . . . IV.F.1. VACPI: Vectorized Adaptive… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bani Younes, A. H. (2013). Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/151375

Chicago Manual of Style (16th Edition):

Bani Younes, Ahmad H. “Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics.” 2013. Doctoral Dissertation, Texas A&M University. Accessed October 24, 2020. http://hdl.handle.net/1969.1/151375.

MLA Handbook (7th Edition):

Bani Younes, Ahmad H. “Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics.” 2013. Web. 24 Oct 2020.

Vancouver:

Bani Younes AH. Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. [Internet] [Doctoral dissertation]. Texas A&M University; 2013. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1969.1/151375.

Council of Science Editors:

Bani Younes AH. Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. [Doctoral Dissertation]. Texas A&M University; 2013. Available from: http://hdl.handle.net/1969.1/151375

10. Chochol, Catherine. Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes.

Degree: Docteur es, Mécanique, 2013, INSA Lyon

La méthode d'identification développée dans cette thèse est inspirée des travaux de D. Rémond. On considérera les données d'entrée suivante : la réponse de la… (more)

Subjects/Keywords: Mécanique; Identification de structure; Identification à temps continu; Caractérisation structurale; Vieillissement; Détection de défaut; Polynôme de Tchebyshev; Mechanics; Structure identification; Continuous time; Structural analysis; Aging; Defect detection; Chebyshev polynomial; 624.171 072

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chochol, C. (2013). Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes. (Doctoral Dissertation). INSA Lyon. Retrieved from http://www.theses.fr/2013ISAL0095

Chicago Manual of Style (16th Edition):

Chochol, Catherine. “Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes.” 2013. Doctoral Dissertation, INSA Lyon. Accessed October 24, 2020. http://www.theses.fr/2013ISAL0095.

MLA Handbook (7th Edition):

Chochol, Catherine. “Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes.” 2013. Web. 24 Oct 2020.

Vancouver:

Chochol C. Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes. [Internet] [Doctoral dissertation]. INSA Lyon; 2013. [cited 2020 Oct 24]. Available from: http://www.theses.fr/2013ISAL0095.

Council of Science Editors:

Chochol C. Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes. [Doctoral Dissertation]. INSA Lyon; 2013. Available from: http://www.theses.fr/2013ISAL0095

11. Sorek, Nadav. Reservoir Flooding Optimization by Control Polynomial Approximations.

Degree: PhD, Petroleum Engineering, 2017, Texas A&M University

 In this dissertation, we provide novel parametrization procedures for water-flooding production optimization problems, using polynomial approximation techniques. The methods project the original infinite dimensional controls… (more)

Subjects/Keywords: Optimization; Optimal Control; Polynomial Approximation; Waterflooding; Reservoir Simulation; Reduced Order Modeling; Control Parameterization; Chebyshev; Spline Interpolation; Particle Swarm Optimization; Interior Point; LBFGS; BFGS; Adjoint Method; Optimization Under Uncertainty; Conditional Value at Risk; Conditional Value at Success

polynomial function approximation approaches, namely, natural polynomials and orthogonal Chebyshev… …degree 23 In Figure 2.5 and Figure 2.6 we perform polynomial fitting with Chebyshev… …Optimization Using Particle Swarm Optimization Adjoint Method for Polynomial Approximation… …Model Order Reduction with Polynomial Approximation . . . . . 4.3.1 Problem Description… …Example of piece-wise zero order polynomial approximation often used in the literature… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sorek, N. (2017). Reservoir Flooding Optimization by Control Polynomial Approximations. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/166003

Chicago Manual of Style (16th Edition):

Sorek, Nadav. “Reservoir Flooding Optimization by Control Polynomial Approximations.” 2017. Doctoral Dissertation, Texas A&M University. Accessed October 24, 2020. http://hdl.handle.net/1969.1/166003.

MLA Handbook (7th Edition):

Sorek, Nadav. “Reservoir Flooding Optimization by Control Polynomial Approximations.” 2017. Web. 24 Oct 2020.

Vancouver:

Sorek N. Reservoir Flooding Optimization by Control Polynomial Approximations. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1969.1/166003.

Council of Science Editors:

Sorek N. Reservoir Flooding Optimization by Control Polynomial Approximations. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/166003

12. Muševič, Sašo. Non-stationary sinusoidal analysis.

Degree: Departament de Tecnologies de la Informació i les Comunicacions, 2013, Universitat Pompeu Fabra

 Many types of everyday signals fall into the non-stationary sinusoids category. A large family of such signals represent audio, including acoustic/electronic, pitched/transient instrument sounds, human… (more)

Subjects/Keywords: Sinusoidal analysis; Non-stationary sinusoid; Amplitude modulation; Frequency modulation; Polynomial phase; Generalised sinusoid; Complex polynomial amplitude modulated complex sinusoid with exponential damping; cPACE, cPACED, PACE; Overapping sinusoids; Non-linear analysis; Kernel based analysis; Linear systems of equations; Non-linear systems of equations; Multivariate polynomial systems; Energy reallocation; Reassignment; Generalised reassignment; Distribution derivative; Derivative method; Sinusoidal parameter estimation; Sound analysis; High-resolution analysis; Transient analysis; Time-frequency distributions; Chebyshev polynomial; Adaptive signal analysis; Gamma function; 62

…cover two main sinusoidal models: a complex polynomial amplitude modulated complex sinusoid… …The fact that multivariate polynomial systems can many times have very simple solutions is… …5.2 Polynomial-phase Fourier kernel . . . . . . . . . 5.3 Tests and Results… …6.3 Complex polynomial amplitude estimator . . . . 6.4 Tests and Results… …85 86 88 91 91 94 7 Non-stationary sinusoidal analysis using Chebyshev polynomials and Gr… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Muševič, S. (2013). Non-stationary sinusoidal analysis. (Thesis). Universitat Pompeu Fabra. Retrieved from http://hdl.handle.net/10803/123809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Muševič, Sašo. “Non-stationary sinusoidal analysis.” 2013. Thesis, Universitat Pompeu Fabra. Accessed October 24, 2020. http://hdl.handle.net/10803/123809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Muševič, Sašo. “Non-stationary sinusoidal analysis.” 2013. Web. 24 Oct 2020.

Vancouver:

Muševič S. Non-stationary sinusoidal analysis. [Internet] [Thesis]. Universitat Pompeu Fabra; 2013. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10803/123809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Muševič S. Non-stationary sinusoidal analysis. [Thesis]. Universitat Pompeu Fabra; 2013. Available from: http://hdl.handle.net/10803/123809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.