Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Chebyshev polynomial)`

.
Showing records 1 – 12 of
12 total matches.

▼ Search Limiters

1.
Forisha, Donnie R.
The Use of *Chebyshev* Polynomials in Numerical Analysis.

Degree: 1975, North Texas State University

URL: https://digital.library.unt.edu/ark:/67531/metadc663496/

► The purpose of this paper is to investigate the nature and practical uses of *Chebyshev* polynomials. Chapter I gives recognition to mathematicians responsible for studies…
(more)

Subjects/Keywords: Chebyshev polynomials; polynomial approximations; Chebyshev polynomials.; Numerical analysis.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Forisha, D. R. (1975). The Use of Chebyshev Polynomials in Numerical Analysis. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc663496/

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Forisha, Donnie R. “The Use of Chebyshev Polynomials in Numerical Analysis.” 1975. Thesis, North Texas State University. Accessed October 24, 2020. https://digital.library.unt.edu/ark:/67531/metadc663496/.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Forisha, Donnie R. “The Use of Chebyshev Polynomials in Numerical Analysis.” 1975. Web. 24 Oct 2020.

Vancouver:

Forisha DR. The Use of Chebyshev Polynomials in Numerical Analysis. [Internet] [Thesis]. North Texas State University; 1975. [cited 2020 Oct 24]. Available from: https://digital.library.unt.edu/ark:/67531/metadc663496/.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Forisha DR. The Use of Chebyshev Polynomials in Numerical Analysis. [Thesis]. North Texas State University; 1975. Available from: https://digital.library.unt.edu/ark:/67531/metadc663496/

Not specified: Masters Thesis or Doctoral Dissertation

University of Technology, Sydney

2. Wu, Jinglai. Uncertainty analysis and optimization by using the orthogonal polynomials.

Degree: 2015, University of Technology, Sydney

URL: http://hdl.handle.net/10453/43498

► Engineering problems are generally described by mathematic models, and the parameters in mathematic models are usually assumed to be deterministic when solving these models. However,…
(more)

Subjects/Keywords: Uncertain parameters.; Aleatory (random) uncertainty.; Epistemic uncertainty.; Polynomial Chaos (PC) expansion theory.; Chebyshev polynomials approximation theory.; Hybrid uncertainty analysis.; Polynomial-Chaos-Chebyshev-Interval (PCCI) method.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wu, J. (2015). Uncertainty analysis and optimization by using the orthogonal polynomials. (Thesis). University of Technology, Sydney. Retrieved from http://hdl.handle.net/10453/43498

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wu, Jinglai. “Uncertainty analysis and optimization by using the orthogonal polynomials.” 2015. Thesis, University of Technology, Sydney. Accessed October 24, 2020. http://hdl.handle.net/10453/43498.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wu, Jinglai. “Uncertainty analysis and optimization by using the orthogonal polynomials.” 2015. Web. 24 Oct 2020.

Vancouver:

Wu J. Uncertainty analysis and optimization by using the orthogonal polynomials. [Internet] [Thesis]. University of Technology, Sydney; 2015. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10453/43498.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wu J. Uncertainty analysis and optimization by using the orthogonal polynomials. [Thesis]. University of Technology, Sydney; 2015. Available from: http://hdl.handle.net/10453/43498

Not specified: Masters Thesis or Doctoral Dissertation

RMIT University

3. Zhong, J. Enforcing privacy via access control and data perturbation.

Degree: 2013, RMIT University

URL: http://researchbank.rmit.edu.au/view/rmit:160673

► With the increasing availability of large collections of personal and sensitive information to a wide range of user communities, services should take more responsibility for…
(more)

Subjects/Keywords: Fields of Research; privacy; access control; data perturbation; chaotic; fractal; Chebyshev polynomial

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhong, J. (2013). Enforcing privacy via access control and data perturbation. (Thesis). RMIT University. Retrieved from http://researchbank.rmit.edu.au/view/rmit:160673

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zhong, J. “Enforcing privacy via access control and data perturbation.” 2013. Thesis, RMIT University. Accessed October 24, 2020. http://researchbank.rmit.edu.au/view/rmit:160673.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zhong, J. “Enforcing privacy via access control and data perturbation.” 2013. Web. 24 Oct 2020.

Vancouver:

Zhong J. Enforcing privacy via access control and data perturbation. [Internet] [Thesis]. RMIT University; 2013. [cited 2020 Oct 24]. Available from: http://researchbank.rmit.edu.au/view/rmit:160673.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhong J. Enforcing privacy via access control and data perturbation. [Thesis]. RMIT University; 2013. Available from: http://researchbank.rmit.edu.au/view/rmit:160673

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

4.
Lin, Yung-chia.
An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted *Polynomial* Regression.

Degree: Master, Applied Mathematics, 2008, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055

► Consider the minimally-supported D-optimal designs for dth degree *polynomial* regression with bounded and positive weight function on a compact interval. We show that the optimal…
(more)

Subjects/Keywords: asymptotic design; arcsin distribution; D-Equivalence Theorem; Chebyshev polynomial of second kind; D-optimal arcsin support design; minimally-supported D-optimal design; Squeeze Theorem; D-efficiency; Legendre polynomial

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lin, Y. (2008). An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lin, Yung-chia. “An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression.” 2008. Thesis, NSYSU. Accessed October 24, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lin, Yung-chia. “An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression.” 2008. Web. 24 Oct 2020.

Vancouver:

Lin Y. An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression. [Internet] [Thesis]. NSYSU; 2008. [cited 2020 Oct 24]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lin Y. An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression. [Thesis]. NSYSU; 2008. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0623108-130055

Not specified: Masters Thesis or Doctoral Dissertation

5.
Stoffel, Joshua David.
Lagrange-*Chebyshev* Based Single Step Methods for Solving
Differential Equations.

Degree: MS, Applied Mathematics, 2012, University of Akron

URL: http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082

► Many numerical methods are the result of replacing a function by its interpolating *polynomial*; quadrature formulas are one such method. In this research a special…
(more)

Subjects/Keywords: Applied Mathematics; quadrature formula; Lagrange polynomial; Chebyshev polynomial; differential equation

…polynomials.
Definition 1.1.5. [3] The *Chebyshev* *polynomial* of degree N+1 is defined to be… …of
the *Chebyshev* *polynomial* relative to the interval (a, b) as quadrature nodes… …*polynomial* that uses the *Chebyshev* points as
nodes. Approximate f (xi ) using equation… …CHAPTER I
INTRODUCTION
In this chapter, the basic concepts of *polynomial* interpolation… …*Chebyshev* quadrature
formula is presented as the central concept of this thesis. Two methods for…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stoffel, J. D. (2012). Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations. (Masters Thesis). University of Akron. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082

Chicago Manual of Style (16^{th} Edition):

Stoffel, Joshua David. “Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations.” 2012. Masters Thesis, University of Akron. Accessed October 24, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082.

MLA Handbook (7^{th} Edition):

Stoffel, Joshua David. “Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations.” 2012. Web. 24 Oct 2020.

Vancouver:

Stoffel JD. Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations. [Internet] [Masters thesis]. University of Akron; 2012. [cited 2020 Oct 24]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082.

Council of Science Editors:

Stoffel JD. Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations. [Masters Thesis]. University of Akron; 2012. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=akron1335299082

Virginia Tech

6.
Park, Jae H.
* Chebyshev* Approximation of Discrete polynomials and Splines.

Degree: PhD, Electrical and Computer Engineering, 1999, Virginia Tech

URL: http://hdl.handle.net/10919/30195

► The recent development of the impulse/summation approach for efficient B-spline computation in the discrete domain should increase the use of B-splines in many applications. Because…
(more)

Subjects/Keywords: FIR Filter; Computer Graphics; Discrete Spline; Discrete Polynomial; Chebyshev Approximation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Park, J. H. (1999). Chebyshev Approximation of Discrete polynomials and Splines. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/30195

Chicago Manual of Style (16^{th} Edition):

Park, Jae H. “Chebyshev Approximation of Discrete polynomials and Splines.” 1999. Doctoral Dissertation, Virginia Tech. Accessed October 24, 2020. http://hdl.handle.net/10919/30195.

MLA Handbook (7^{th} Edition):

Park, Jae H. “Chebyshev Approximation of Discrete polynomials and Splines.” 1999. Web. 24 Oct 2020.

Vancouver:

Park JH. Chebyshev Approximation of Discrete polynomials and Splines. [Internet] [Doctoral dissertation]. Virginia Tech; 1999. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10919/30195.

Council of Science Editors:

Park JH. Chebyshev Approximation of Discrete polynomials and Splines. [Doctoral Dissertation]. Virginia Tech; 1999. Available from: http://hdl.handle.net/10919/30195

7.
Joldes, Mioara Maria.
Approximations polynomiales rigoureuses et applications : Rigorous *Polynomial* Approximations and Applications.

Degree: Docteur es, Informatique, 2011, Lyon, École normale supérieure

URL: http://www.theses.fr/2011ENSL0655

►

Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par une approximation polynomiale p. On le fait, par… (more)

Subjects/Keywords: Calcul rigoureux; Calculs validés; Erreur d'approximation; Approximations polynomiales rigoureuses; Series de Chebyshev; Modèles de Taylor; Modèles de Chebyshev –; Arithmétique Flottante; Fonctions D-finies; Méthodes d'encadrement; Évaluation des fonctions; Opérateurs Matériels; Field Programmable Gate Arrays; Rigorous Computing; Validated Numerics; Approximation Error; Rigorous Polynomial Approximation; Chebyshev Series; Taylor Models; Chebyshev Models; Floating-Point Arithmetic; D-finite functions; Enclosure Methods; Function Evaluation; Hardware Operators; Field Programmable Gate Arrays

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Joldes, M. M. (2011). Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2011ENSL0655

Chicago Manual of Style (16^{th} Edition):

Joldes, Mioara Maria. “Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications.” 2011. Doctoral Dissertation, Lyon, École normale supérieure. Accessed October 24, 2020. http://www.theses.fr/2011ENSL0655.

MLA Handbook (7^{th} Edition):

Joldes, Mioara Maria. “Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications.” 2011. Web. 24 Oct 2020.

Vancouver:

Joldes MM. Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2011. [cited 2020 Oct 24]. Available from: http://www.theses.fr/2011ENSL0655.

Council of Science Editors:

Joldes MM. Approximations polynomiales rigoureuses et applications : Rigorous Polynomial Approximations and Applications. [Doctoral Dissertation]. Lyon, École normale supérieure; 2011. Available from: http://www.theses.fr/2011ENSL0655

NSYSU

8.
Mao, Chiang-Yuan.
Ds-optimal designs for weighted *polynomial* regression.

Degree: Master, Applied Mathematics, 2007, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501

► This paper is devoted to studying the problem of constructing Ds-optimal design for d-th degree *polynomial* regression with analytic weight function on the interval [m-a,m+a],m,a…
(more)

Subjects/Keywords: weighted polynomial regression; recursive algorithm; Taylor expansion; Implicit Function Theorem; Ds-Equivalence Theorem; Ds-optimal design; Chebyshev polynomial

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mao, C. (2007). Ds-optimal designs for weighted polynomial regression. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mao, Chiang-Yuan. “Ds-optimal designs for weighted polynomial regression.” 2007. Thesis, NSYSU. Accessed October 24, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mao, Chiang-Yuan. “Ds-optimal designs for weighted polynomial regression.” 2007. Web. 24 Oct 2020.

Vancouver:

Mao C. Ds-optimal designs for weighted polynomial regression. [Internet] [Thesis]. NSYSU; 2007. [cited 2020 Oct 24]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mao C. Ds-optimal designs for weighted polynomial regression. [Thesis]. NSYSU; 2007. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0621107-164501

Not specified: Masters Thesis or Doctoral Dissertation

9.
Bani Younes, Ahmad H.
Orthogonal *Polynomial* Approximation in Higher Dimensions: Applications in Astrodynamics.

Degree: PhD, Aerospace Engineering, 2013, Texas A&M University

URL: http://hdl.handle.net/1969.1/151375

► We propose novel methods to utilize orthogonal *polynomial* approximation in higher dimension spaces, which enable us to modify classical differential equation solvers to perform high…
(more)

Subjects/Keywords: Chebyshev Polynomial; Orthogonal Polynomial; Picard Iteration; MCPI; Geopotential; Finite Element; Trajectory Propagation; Initial Value Problem

…Introduction . . . . . . . . . . . . . . . . . . . . . .
IV.B. OCPI: Orthogonal *Chebyshev* *Polynomial*… …Iteration. When the zeros of
*Chebyshev* polynomials are used as the nodes for *polynomial*… …56
58
67
74
75
78
80
82
PICARD ITERATION, *CHEBYSHEV* POLYNOMIALS AND
*CHEBYSHEV*-PICARD… …Integrator
IV.B.1. Example: Ballistic Projectile Problem . . . . .
IV.C. MCPI: Modified *Chebyshev*… …IV.F. ACPI: Adaptive *Chebyshev* Picard Iteration . . . . .
IV.F.1. VACPI: Vectorized Adaptive…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bani Younes, A. H. (2013). Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/151375

Chicago Manual of Style (16^{th} Edition):

Bani Younes, Ahmad H. “Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics.” 2013. Doctoral Dissertation, Texas A&M University. Accessed October 24, 2020. http://hdl.handle.net/1969.1/151375.

MLA Handbook (7^{th} Edition):

Bani Younes, Ahmad H. “Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics.” 2013. Web. 24 Oct 2020.

Vancouver:

Bani Younes AH. Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. [Internet] [Doctoral dissertation]. Texas A&M University; 2013. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1969.1/151375.

Council of Science Editors:

Bani Younes AH. Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics. [Doctoral Dissertation]. Texas A&M University; 2013. Available from: http://hdl.handle.net/1969.1/151375

10.
Chochol, Catherine.
Continuous time and space identification : An identification process based on *Chebyshev* polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes.

Degree: Docteur es, Mécanique, 2013, INSA Lyon

URL: http://www.theses.fr/2013ISAL0095

►

La méthode d'identification développée dans cette thèse est inspirée des travaux de D. Rémond. On considérera les données d'entrée suivante : la réponse de la… (more)

Subjects/Keywords: Mécanique; Identification de structure; Identification à temps continu; Caractérisation structurale; Vieillissement; Détection de défaut; Polynôme de Tchebyshev; Mechanics; Structure identification; Continuous time; Structural analysis; Aging; Defect detection; Chebyshev polynomial; 624.171 072

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chochol, C. (2013). Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes. (Doctoral Dissertation). INSA Lyon. Retrieved from http://www.theses.fr/2013ISAL0095

Chicago Manual of Style (16^{th} Edition):

Chochol, Catherine. “Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes.” 2013. Doctoral Dissertation, INSA Lyon. Accessed October 24, 2020. http://www.theses.fr/2013ISAL0095.

MLA Handbook (7^{th} Edition):

Chochol, Catherine. “Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes.” 2013. Web. 24 Oct 2020.

Vancouver:

Chochol C. Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes. [Internet] [Doctoral dissertation]. INSA Lyon; 2013. [cited 2020 Oct 24]. Available from: http://www.theses.fr/2013ISAL0095.

Council of Science Editors:

Chochol C. Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure : Réseaux de capteurs adaptatifs pour structures/machines intelligentes. [Doctoral Dissertation]. INSA Lyon; 2013. Available from: http://www.theses.fr/2013ISAL0095

11.
Sorek, Nadav.
Reservoir Flooding Optimization by Control *Polynomial* Approximations.

Degree: PhD, Petroleum Engineering, 2017, Texas A&M University

URL: http://hdl.handle.net/1969.1/166003

► In this dissertation, we provide novel parametrization procedures for water-flooding production optimization problems, using *polynomial* approximation techniques. The methods project the original infinite dimensional controls…
(more)

Subjects/Keywords: Optimization; Optimal Control; Polynomial Approximation; Waterflooding; Reservoir Simulation; Reduced Order Modeling; Control Parameterization; Chebyshev; Spline Interpolation; Particle Swarm Optimization; Interior Point; LBFGS; BFGS; Adjoint Method; Optimization Under Uncertainty; Conditional Value at Risk; Conditional Value at Success

…*polynomial* function approximation approaches, namely, natural polynomials and orthogonal *Chebyshev*… …degree
23
In Figure 2.5 and Figure 2.6 we perform *polynomial* fitting with *Chebyshev*… …Optimization Using Particle Swarm Optimization
Adjoint Method for *Polynomial* Approximation… …Model Order Reduction with *Polynomial* Approximation . . . . .
4.3.1 Problem Description… …Example of piece-wise zero order *polynomial* approximation often used in
the literature…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sorek, N. (2017). Reservoir Flooding Optimization by Control Polynomial Approximations. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/166003

Chicago Manual of Style (16^{th} Edition):

Sorek, Nadav. “Reservoir Flooding Optimization by Control Polynomial Approximations.” 2017. Doctoral Dissertation, Texas A&M University. Accessed October 24, 2020. http://hdl.handle.net/1969.1/166003.

MLA Handbook (7^{th} Edition):

Sorek, Nadav. “Reservoir Flooding Optimization by Control Polynomial Approximations.” 2017. Web. 24 Oct 2020.

Vancouver:

Sorek N. Reservoir Flooding Optimization by Control Polynomial Approximations. [Internet] [Doctoral dissertation]. Texas A&M University; 2017. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1969.1/166003.

Council of Science Editors:

Sorek N. Reservoir Flooding Optimization by Control Polynomial Approximations. [Doctoral Dissertation]. Texas A&M University; 2017. Available from: http://hdl.handle.net/1969.1/166003

12. Muševič, Sašo. Non-stationary sinusoidal analysis.

Degree: Departament de Tecnologies de la Informació i les Comunicacions, 2013, Universitat Pompeu Fabra

URL: http://hdl.handle.net/10803/123809

► Many types of everyday signals fall into the non-stationary sinusoids category. A large family of such signals represent audio, including acoustic/electronic, pitched/transient instrument sounds, human…
(more)

Subjects/Keywords: Sinusoidal analysis; Non-stationary sinusoid; Amplitude modulation; Frequency modulation; Polynomial phase; Generalised sinusoid; Complex polynomial amplitude modulated complex sinusoid with exponential damping; cPACE, cPACED, PACE; Overapping sinusoids; Non-linear analysis; Kernel based analysis; Linear systems of equations; Non-linear systems of equations; Multivariate polynomial systems; Energy reallocation; Reassignment; Generalised reassignment; Distribution derivative; Derivative method; Sinusoidal parameter estimation; Sound analysis; High-resolution analysis; Transient analysis; Time-frequency distributions; Chebyshev polynomial; Adaptive signal analysis; Gamma function; 62

…cover two main sinusoidal models: a complex *polynomial* amplitude modulated complex sinusoid… …The fact that multivariate *polynomial* systems can
many times have very simple solutions is… …5.2 *Polynomial*-phase Fourier kernel . . . . . . . . .
5.3 Tests and Results… …6.3 Complex *polynomial* amplitude estimator . . . .
6.4 Tests and Results… …85
86
88
91
91
94
7 Non-stationary sinusoidal analysis using *Chebyshev* polynomials and Gr…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Muševič, S. (2013). Non-stationary sinusoidal analysis. (Thesis). Universitat Pompeu Fabra. Retrieved from http://hdl.handle.net/10803/123809

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Muševič, Sašo. “Non-stationary sinusoidal analysis.” 2013. Thesis, Universitat Pompeu Fabra. Accessed October 24, 2020. http://hdl.handle.net/10803/123809.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Muševič, Sašo. “Non-stationary sinusoidal analysis.” 2013. Web. 24 Oct 2020.

Vancouver:

Muševič S. Non-stationary sinusoidal analysis. [Internet] [Thesis]. Universitat Pompeu Fabra; 2013. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10803/123809.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Muševič S. Non-stationary sinusoidal analysis. [Thesis]. Universitat Pompeu Fabra; 2013. Available from: http://hdl.handle.net/10803/123809

Not specified: Masters Thesis or Doctoral Dissertation