Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Cech cohomology). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Combe, Noémie. On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups : Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tresses.

Degree: Docteur es, Mathématiques, 2018, Aix Marseille Université

Cette thèse concerne principalement deux objets classiques étroitement liés: d'une part la variété des polynômes complexes unitaires de degré d>1 à une variable, et à… (more)

Subjects/Keywords: Cohomologie de Cech; Groupe de tresses; Polynômes complexes; Cech cohomology; Braid groups; Complex polynomials; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Combe, N. (2018). On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups : Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tresses. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2018AIXM0140

Chicago Manual of Style (16th Edition):

Combe, Noémie. “On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups : Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tresses.” 2018. Doctoral Dissertation, Aix Marseille Université. Accessed October 30, 2020. http://www.theses.fr/2018AIXM0140.

MLA Handbook (7th Edition):

Combe, Noémie. “On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups : Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tresses.” 2018. Web. 30 Oct 2020.

Vancouver:

Combe N. On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups : Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tresses. [Internet] [Doctoral dissertation]. Aix Marseille Université 2018. [cited 2020 Oct 30]. Available from: http://www.theses.fr/2018AIXM0140.

Council of Science Editors:

Combe N. On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups : Sur une nouvelle décomposition cellulaire de l’espace des polynômes à racines simples : application à la cohomologie des groupes de tresses. [Doctoral Dissertation]. Aix Marseille Université 2018. Available from: http://www.theses.fr/2018AIXM0140


Cornell University

2. Bergfalk, Jeffrey. Dimensions of ordinals: set theory, homology theory, and the first omega alephs.

Degree: PhD, Mathematics, 2018, Cornell University

 We describe an organizing framework for the study of infinitary combinatorics. This framework is Cˇech cohomology. It describes ZFC combinatorial principles distinguishing among higher ωn.… (more)

Subjects/Keywords: Cech cohomology; coherence; derived limit; omega_n; ordinal; walks; Mathematics; Logic

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bergfalk, J. (2018). Dimensions of ordinals: set theory, homology theory, and the first omega alephs. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/59576

Chicago Manual of Style (16th Edition):

Bergfalk, Jeffrey. “Dimensions of ordinals: set theory, homology theory, and the first omega alephs.” 2018. Doctoral Dissertation, Cornell University. Accessed October 30, 2020. http://hdl.handle.net/1813/59576.

MLA Handbook (7th Edition):

Bergfalk, Jeffrey. “Dimensions of ordinals: set theory, homology theory, and the first omega alephs.” 2018. Web. 30 Oct 2020.

Vancouver:

Bergfalk J. Dimensions of ordinals: set theory, homology theory, and the first omega alephs. [Internet] [Doctoral dissertation]. Cornell University; 2018. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/1813/59576.

Council of Science Editors:

Bergfalk J. Dimensions of ordinals: set theory, homology theory, and the first omega alephs. [Doctoral Dissertation]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59576


Texas A&M University

3. Yang, Haibo. Ro(g)-graded equivariant cohomology theory and sheaves.

Degree: PhD, Mathematics, 2009, Texas A&M University

 If G is a nite group and if X is a G-space, then a Bredon RO(G)-graded equivariantcohomology theory is dened on X. Furthermore, if X… (more)

Subjects/Keywords: equivariant cohomology theory; sheaf cohomology; Cech cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, H. (2009). Ro(g)-graded equivariant cohomology theory and sheaves. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2346

Chicago Manual of Style (16th Edition):

Yang, Haibo. “Ro(g)-graded equivariant cohomology theory and sheaves.” 2009. Doctoral Dissertation, Texas A&M University. Accessed October 30, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-2346.

MLA Handbook (7th Edition):

Yang, Haibo. “Ro(g)-graded equivariant cohomology theory and sheaves.” 2009. Web. 30 Oct 2020.

Vancouver:

Yang H. Ro(g)-graded equivariant cohomology theory and sheaves. [Internet] [Doctoral dissertation]. Texas A&M University; 2009. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2346.

Council of Science Editors:

Yang H. Ro(g)-graded equivariant cohomology theory and sheaves. [Doctoral Dissertation]. Texas A&M University; 2009. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2346

4. Silva, Nelson Antonio. Uma versão parametrizada do teorema de Borsuk-Ulam.

Degree: Mestrado, Matemática, 2011, University of São Paulo

O teorema clássico de Borsuk-Ulam nos dá informações à respeito de aplicações \'S POT. n\́'SETA ́\'R POT. n\', no qual \'S POT. n ́é um… (more)

Subjects/Keywords: Borsuk-Ulam theorem; Cech cohomology; Characteristic classes; Classes características; Cohomologia de Cech; Fiber bundles; Fibrados; Leray-Hirsch theorem; Teorema de Borsuk-Ulam; Teorema de Leray-Hirsch

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, N. A. (2011). Uma versão parametrizada do teorema de Borsuk-Ulam. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042011-082846/ ;

Chicago Manual of Style (16th Edition):

Silva, Nelson Antonio. “Uma versão parametrizada do teorema de Borsuk-Ulam.” 2011. Masters Thesis, University of São Paulo. Accessed October 30, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042011-082846/ ;.

MLA Handbook (7th Edition):

Silva, Nelson Antonio. “Uma versão parametrizada do teorema de Borsuk-Ulam.” 2011. Web. 30 Oct 2020.

Vancouver:

Silva NA. Uma versão parametrizada do teorema de Borsuk-Ulam. [Internet] [Masters thesis]. University of São Paulo; 2011. [cited 2020 Oct 30]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042011-082846/ ;.

Council of Science Editors:

Silva NA. Uma versão parametrizada do teorema de Borsuk-Ulam. [Masters Thesis]. University of São Paulo; 2011. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12042011-082846/ ;

5. Neyra, Norbil Leodan Cordova. Teorida de G-índice e grau de aplicações G-equivariantes.

Degree: Mestrado, Matemática, 2010, University of São Paulo

Antes da publicação do trabalho An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"de Fadell e Husseini [20], haviam sido apenas considerados… (more)

Subjects/Keywords: Aplicações G-equivariantes; Cech cohomology; Classifying spaces; Cohomologia de Cech; Degree; Espaços classificantes; G-equivariant maps; G-espaços; G-index; G-índice; G-spaces; Grau

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neyra, N. L. C. (2010). Teorida de G-índice e grau de aplicações G-equivariantes. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22062010-091958/ ;

Chicago Manual of Style (16th Edition):

Neyra, Norbil Leodan Cordova. “Teorida de G-índice e grau de aplicações G-equivariantes.” 2010. Masters Thesis, University of São Paulo. Accessed October 30, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22062010-091958/ ;.

MLA Handbook (7th Edition):

Neyra, Norbil Leodan Cordova. “Teorida de G-índice e grau de aplicações G-equivariantes.” 2010. Web. 30 Oct 2020.

Vancouver:

Neyra NLC. Teorida de G-índice e grau de aplicações G-equivariantes. [Internet] [Masters thesis]. University of São Paulo; 2010. [cited 2020 Oct 30]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22062010-091958/ ;.

Council of Science Editors:

Neyra NLC. Teorida de G-índice e grau de aplicações G-equivariantes. [Masters Thesis]. University of São Paulo; 2010. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22062010-091958/ ;


Universidade Federal de Viçosa

6. Alana Nunes Pereira. Determinação de folheações projetivas pelo seu conjunto singular.

Degree: 2013, Universidade Federal de Viçosa

Neste trabalho, estudamos o Teorema de Gomez-Mont e Kempf sobre a determinação de folheações unidimensionais, de grau d >1, sobre espaços projetivos complexos Pn, pelo… (more)

Subjects/Keywords: Cohomologia de Cech; Conjunto singular; Campos de vetores polinomiais homogêneos; Folheações unidimensionais; MATEMATICA APLICADA; One-dimensional foliations; Fields of homogeneous-polynomial vectors; Singular set; Cech Cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pereira, A. N. (2013). Determinação de folheações projetivas pelo seu conjunto singular. (Thesis). Universidade Federal de Viçosa. Retrieved from http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pereira, Alana Nunes. “Determinação de folheações projetivas pelo seu conjunto singular.” 2013. Thesis, Universidade Federal de Viçosa. Accessed October 30, 2020. http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pereira, Alana Nunes. “Determinação de folheações projetivas pelo seu conjunto singular.” 2013. Web. 30 Oct 2020.

Vancouver:

Pereira AN. Determinação de folheações projetivas pelo seu conjunto singular. [Internet] [Thesis]. Universidade Federal de Viçosa; 2013. [cited 2020 Oct 30]. Available from: http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pereira AN. Determinação de folheações projetivas pelo seu conjunto singular. [Thesis]. Universidade Federal de Viçosa; 2013. Available from: http://www.tede.ufv.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=5022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

7. Stuart Ambler. A Bundle Gerbe Construction of a Spinor Bundle from the Smooth Free Loop of a Vector Bundle</h1>.

Degree: Mathematics, 2012, University of Notre Dame

  A bundle gerbe is constructed from an oriented smooth vector bundle of even rank with a fiberwise inner product, over a compact connected orientable… (more)

Subjects/Keywords: Fock representation; algebraic topology; Cech cohomology; Dixmier-Douady class; Lagrangian subspace; Clifford algebra; Frechet manifold; Fock space; restricted orthogonal group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ambler, S. (2012). A Bundle Gerbe Construction of a Spinor Bundle from the Smooth Free Loop of a Vector Bundle</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/m900ns08d7m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ambler, Stuart. “A Bundle Gerbe Construction of a Spinor Bundle from the Smooth Free Loop of a Vector Bundle</h1>.” 2012. Thesis, University of Notre Dame. Accessed October 30, 2020. https://curate.nd.edu/show/m900ns08d7m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ambler, Stuart. “A Bundle Gerbe Construction of a Spinor Bundle from the Smooth Free Loop of a Vector Bundle</h1>.” 2012. Web. 30 Oct 2020.

Vancouver:

Ambler S. A Bundle Gerbe Construction of a Spinor Bundle from the Smooth Free Loop of a Vector Bundle</h1>. [Internet] [Thesis]. University of Notre Dame; 2012. [cited 2020 Oct 30]. Available from: https://curate.nd.edu/show/m900ns08d7m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ambler S. A Bundle Gerbe Construction of a Spinor Bundle from the Smooth Free Loop of a Vector Bundle</h1>. [Thesis]. University of Notre Dame; 2012. Available from: https://curate.nd.edu/show/m900ns08d7m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

8. Lipsky, David. Cocycle Constructions for Topological Field Theories.

Degree: PhD, 0439, 2010, University of Illinois – Urbana-Champaign

 In this thesis, we explore a chain-level construction in smooth Deligne cohomology that produces data for extended topological field theories. For closed oriented manifolds Σ,… (more)

Subjects/Keywords: Algebraic topology; Topological field theory; Smooth Deligne cohomology; Cech cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lipsky, D. (2010). Cocycle Constructions for Topological Field Theories. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/16929

Chicago Manual of Style (16th Edition):

Lipsky, David. “Cocycle Constructions for Topological Field Theories.” 2010. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 30, 2020. http://hdl.handle.net/2142/16929.

MLA Handbook (7th Edition):

Lipsky, David. “Cocycle Constructions for Topological Field Theories.” 2010. Web. 30 Oct 2020.

Vancouver:

Lipsky D. Cocycle Constructions for Topological Field Theories. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2010. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/2142/16929.

Council of Science Editors:

Lipsky D. Cocycle Constructions for Topological Field Theories. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2010. Available from: http://hdl.handle.net/2142/16929

9. Taneda, Paulo Takashi. Teoria de Nielsen de raízes e teoria do grau de Hopf.

Degree: Mestrado, Matemática, 2007, University of São Paulo

Neste trabalho, veremos que a noção de número de Nielsen pode ser estendida para aplicações entre variedades topológicas não necessariamente orientáveis ou compactas, com ou… (more)

Subjects/Keywords: Cech Cohomology; Cohomologia de Cech; grau cohomológico; Hopf Degree Theory; Microbundles Transversality; multiplicidade de uma classe de raízes; Multiplicity of a Root Class; Nielsen Root Theory; Nilsen number; Teoria de Nielsen de raízes; Teoria do grau de Hopf; transversalidade de microfibrados

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taneda, P. T. (2007). Teoria de Nielsen de raízes e teoria do grau de Hopf. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04062007-204158/ ;

Chicago Manual of Style (16th Edition):

Taneda, Paulo Takashi. “Teoria de Nielsen de raízes e teoria do grau de Hopf.” 2007. Masters Thesis, University of São Paulo. Accessed October 30, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04062007-204158/ ;.

MLA Handbook (7th Edition):

Taneda, Paulo Takashi. “Teoria de Nielsen de raízes e teoria do grau de Hopf.” 2007. Web. 30 Oct 2020.

Vancouver:

Taneda PT. Teoria de Nielsen de raízes e teoria do grau de Hopf. [Internet] [Masters thesis]. University of São Paulo; 2007. [cited 2020 Oct 30]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04062007-204158/ ;.

Council of Science Editors:

Taneda PT. Teoria de Nielsen de raízes e teoria do grau de Hopf. [Masters Thesis]. University of São Paulo; 2007. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-04062007-204158/ ;


University of South Africa

10. Tshilombo, Mukinayi Hermenegilde. Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces .

Degree: 2015, University of South Africa

 This thesis deals with cohomologies on the symplectic quotient of a Frölicher space which is locally diffeomorphic to a Euclidean Frölicher subspace of Rn of… (more)

Subjects/Keywords: Differential geometry on Frolicher spaces; Constant dimension; Locally Euclidean Frolicher spaces; Symplectic structure; Symplectic geometry; Symplectic quotient or reduced space; Exterior algebra; Hausdor paracompact Frolicher topologies; Ringed Frolicher space; Smooth Gelfand representation; Sheaf cohomology; Alexander-Spanier cohomology; Singular cohomology; Cech cohomology and de Rham cohomology; Isommorphism of cohomologies on the reduced space; Poisson and Hamiltonian geometries on the reduced space; Vector fields and mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tshilombo, M. H. (2015). Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces . (Doctoral Dissertation). University of South Africa. Retrieved from http://hdl.handle.net/10500/19942

Chicago Manual of Style (16th Edition):

Tshilombo, Mukinayi Hermenegilde. “Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces .” 2015. Doctoral Dissertation, University of South Africa. Accessed October 30, 2020. http://hdl.handle.net/10500/19942.

MLA Handbook (7th Edition):

Tshilombo, Mukinayi Hermenegilde. “Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces .” 2015. Web. 30 Oct 2020.

Vancouver:

Tshilombo MH. Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces . [Internet] [Doctoral dissertation]. University of South Africa; 2015. [cited 2020 Oct 30]. Available from: http://hdl.handle.net/10500/19942.

Council of Science Editors:

Tshilombo MH. Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces . [Doctoral Dissertation]. University of South Africa; 2015. Available from: http://hdl.handle.net/10500/19942

11. Tête, Claire. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.

Degree: Docteur es, Mathématiques et leurs interactions, 2014, Poitiers

Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper… (more)

Subjects/Keywords: Algèbre commutative effective; (co)homologie de Koszul; Cohomologie de Cech; Suite exacte de Mayer-Vietoris; Cohomologie du totalisé d'un bicomplexe; Profondeur; Suite régulière; Complètement sécante; 1-Sécante; Quasi-Régulière; Dimension de Krull; Résolution libre finie; Construction de Tate; Calcul de l'anneau des entiers d'un corps de nombres; Effective commutative algebra; Koszul cohomology; Cech cohomology; Mayer-Vietoris exact sequence; Cohomology of the totalization of a bicomplex; Depth; Regular sequence; 1-Secant sequence; Quasi-Regular sequence; Krull dimension; Finite free resolution; Tate construction; Algorithm for computing the ring of integers of a number field; 512.44

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tête, C. (2014). Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2014POIT2288

Chicago Manual of Style (16th Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Doctoral Dissertation, Poitiers. Accessed October 30, 2020. http://www.theses.fr/2014POIT2288.

MLA Handbook (7th Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Web. 30 Oct 2020.

Vancouver:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Internet] [Doctoral dissertation]. Poitiers; 2014. [cited 2020 Oct 30]. Available from: http://www.theses.fr/2014POIT2288.

Council of Science Editors:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Doctoral Dissertation]. Poitiers; 2014. Available from: http://www.theses.fr/2014POIT2288

.