Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Calcul qualitatif). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Inants, Armen. Qualitative calculi with heterogeneous universes : Calculs qualitatifs avec des univers hétérogènes.

Degree: Docteur es, Mathématiques et informatique, 2016, Grenoble Alpes

Représentation et raisonnement qualitatifs fonctionnent avec des relations non-numériques entre les objets d'un univers. Les formalismes généraux développés dans ce domaine sont basés sur différents types d'algèbres de relations, comme les algèbres de Tarski. Tous ces formalismes, qui sont appelés des calculs qualitatifs, partagent l'hypothèse implicite que l'univers est homogène, c'est-à-dire qu'il se compose d'objets de même nature. Toutefois, les objets de différents types peuvent aussi entretenir des relations. L'état de l'art du raisonnement qualitatif ne permet pas de combiner les calculs qualitatifs pour les différents types d'objets en un seul calcul.De nombreuses applications discriminent entre différents types d'objets. Par exemple, certains modèles spatiaux discriminent entre les régions, les lignes et les points, et différentes relations sont utilisées pour chaque type d'objets. Dans l'alignement d'ontologies, les calculs qualitatifs sont utiles pour exprimer des alignements entre un seul type d'entités, telles que des concepts ou des individus. Cependant, les relations entre les individus et les concepts, qui imposent des contraintes supplémentaires, ne sont pas exploitées.Cette thèse introduit la modularité dans les calculs qualitatifs et fournit une méthodologie pour la modélisation de calculs qualitatifs des univers hétérogènes. Notre contribution principale est un cadre basé sur une classe spéciale de schémas de partition que nous appelons modulaires. Pour un calcul qualitatif engendré par un schéma de partition modulaire, nous définissons une structure qui associe chaque symbole de relation avec un domaine et codomain abstrait à partir d'un treillis booléen de sortes. Un module d'un tel calcul qualitatif est un sous-calcul limité à une sorte donnée, qui est obtenu par une opération appelée relativisation à une sorte. D'un intérêt pratique plus grand est l'opération inverse, qui permet de combiner plusieurs calculs qualitatifs en un seul calcul. Nous définissons une opération appelée combinaison modulo liaison, qui combine deux ou plusieurs calculs qualitatifs sur différents univers, en fonction de quelques relations de liaison entre ces univers. Le cadre est suffisamment général pour soutenir la plupart des calculs spatio-temporels qualitatifs connus.

Qualitative representation and reasoning operate with non-numerical relations holding between objects of some universe. The general formalisms developed in this field are based on various kinds of algebras of relations, such as Tarskian relation algebras. All these formalisms, which are called qualitative calculi, share an implicit assumption that the universe is homogeneous, i.e., consists of objects of the same kind. However, objects of different kinds may also entertain relations. The state of the art of qualitative reasoning does not offer a combination operation of qualitative calculi for different kinds of objects into a single calculus.Many applications discriminate between different kinds of objects. For example, some spatial models…

Advisors/Committee Members: Euzenat, Jérôme (thesis director).

Subjects/Keywords: Calcul qualitatif; Catégorie de Schröder; Algèbre de relations; Alignement d'ontologies; Qualitative calculus; Schröder category; Relation algebra; Ontology alignment; 004; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Inants, A. (2016). Qualitative calculi with heterogeneous universes : Calculs qualitatifs avec des univers hétérogènes. (Doctoral Dissertation). Grenoble Alpes. Retrieved from http://www.theses.fr/2016GREAMO10

Chicago Manual of Style (16th Edition):

Inants, Armen. “Qualitative calculi with heterogeneous universes : Calculs qualitatifs avec des univers hétérogènes.” 2016. Doctoral Dissertation, Grenoble Alpes. Accessed November 22, 2019. http://www.theses.fr/2016GREAMO10.

MLA Handbook (7th Edition):

Inants, Armen. “Qualitative calculi with heterogeneous universes : Calculs qualitatifs avec des univers hétérogènes.” 2016. Web. 22 Nov 2019.

Vancouver:

Inants A. Qualitative calculi with heterogeneous universes : Calculs qualitatifs avec des univers hétérogènes. [Internet] [Doctoral dissertation]. Grenoble Alpes; 2016. [cited 2019 Nov 22]. Available from: http://www.theses.fr/2016GREAMO10.

Council of Science Editors:

Inants A. Qualitative calculi with heterogeneous universes : Calculs qualitatifs avec des univers hétérogènes. [Doctoral Dissertation]. Grenoble Alpes; 2016. Available from: http://www.theses.fr/2016GREAMO10

.