Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(COMPUTER ALGEBRA SYMBOLIC COMPUTATION)`

.
Showing records 1 – 30 of
101058 total matches.

◁ [1] [2] [3] [4] [5] … [3369] ▶

Search Limiters

Dates

- 2016 – 2020 (25818)
- 2011 – 2015 (33725)
- 2006 – 2010 (20431)
- 2001 – 2005 (10761)
- 1996 – 2000 (6287)
- 1991 – 1995 (4470)
- 1986 – 1990 (3063)
- 1981 – 1985 (1879)
- 1976 – 1980 (1010)
- 1971 – 1975 (720)

Universities

- MIT (9941)
- KTH (3124)
- Missouri University of Science and Technology (2436)
- ETH Zürich (1907)
- Iowa State University (1877)
- Linköping University (1700)
- Chalmers University of Technology (1405)
- University of Central Florida (1297)
- The Ohio State University (1255)
- Brno University of Technology (1069)
- California State University – Northridge (1054)
- University of Skövde (1027)
- Universidad Nacional de Colombia (1006)
- Georgia Tech (927)
- Lehigh University (926)

Department

- Computer Science (8493)
- Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science (5986)
- Electrical Engineering (3993)
- Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (3552)
- Electrical and Computer Engineering (2822)
- Electrical Engineering and Computer Science (EECS) (1268)
- Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers) (1233)
- Computer and Information Science (1056)
- Computer Science and Communication (CSC) (1007)
- Computer Science and Engineering (982)
- Computer Engineering (760)
- Department of Electrical and Computer Engineering (743)
- Engineering (627)
- Informatics (615)
- Mathematics (587)

Degrees

- PhD (18030)
- MS (12231)
- M.S. in Electrical Engineering (1397)
- Docteur es (1072)
- MA (614)
- M.S. in Computer Science (419)
- Master (393)
- MSin Computer Science (313)
- Mestrado (267)
- phd (267)
- Image (229)
- d_ph (223)
- MSc Engg (219)
- M. Eng. (203)
- MS(M.S.) in Electrical and Computer Engineering (165)

Levels

- doctoral (25642)
- masters (19749)
- thesis (2887)
- project (324)
- d_ph (223)
- doctor of philosophy ph.d. (119)
- 1 (113)
- undergraduate (108)
- dissertation (42)
- capstone (29)

Languages

Country

- US (54616)
- Sweden (13683)
- UK (5809)
- Canada (4878)
- Brazil (2215)
- South Africa (2174)
- Switzerland (2060)
- Australia (1904)
- Hong Kong (1560)
- France (1074)
- Czech Republic (1071)
- India (1056)
- Colombia (1019)
- Singapore (973)
- New Zealand (725)

▼ Search Limiters

University of Waterloo

1. Gupta, Somit. Hermite Forms of Polynomial Matrices.

Degree: 2011, University of Waterloo

URL: http://hdl.handle.net/10012/6108

► This thesis presents a new algorithm for computing the Hermite form of a polynomial matrix. Given a nonsingular n by n matrix A filled with…
(more)

Subjects/Keywords: Computer Algebra; Matrix Normal Forms; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gupta, S. (2011). Hermite Forms of Polynomial Matrices. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/6108

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gupta, Somit. “Hermite Forms of Polynomial Matrices.” 2011. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/6108.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gupta, Somit. “Hermite Forms of Polynomial Matrices.” 2011. Web. 28 Sep 2020.

Vancouver:

Gupta S. Hermite Forms of Polynomial Matrices. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/6108.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gupta S. Hermite Forms of Polynomial Matrices. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/6108

Not specified: Masters Thesis or Doctoral Dissertation

University of Ottawa

2.
Dovlo, Edem.
Development of a *Symbolic* *Computer* *Algebra* Toolbox for 2D Fourier Transforms in Polar Coordinates
.

Degree: 2011, University of Ottawa

URL: http://hdl.handle.net/10393/20269

► The Fourier transform is one of the most useful tools in science and engineering and can be expanded to multi-dimensions and curvilinear coordinates. Multidimensional Fourier…
(more)

Subjects/Keywords: 2D Fourier Transform; Polar coordinates; Symbolic Computer Algebra; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dovlo, E. (2011). Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/20269

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Dovlo, Edem. “Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .” 2011. Thesis, University of Ottawa. Accessed September 28, 2020. http://hdl.handle.net/10393/20269.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Dovlo, Edem. “Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates .” 2011. Web. 28 Sep 2020.

Vancouver:

Dovlo E. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . [Internet] [Thesis]. University of Ottawa; 2011. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10393/20269.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dovlo E. Development of a Symbolic Computer Algebra Toolbox for 2D Fourier Transforms in Polar Coordinates . [Thesis]. University of Ottawa; 2011. Available from: http://hdl.handle.net/10393/20269

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

3.
Heinle, Albert.
Computational Approaches to Problems in Noncommutative *Algebra* – Theory, Applications and Implementations.

Degree: 2016, University of Waterloo

URL: http://hdl.handle.net/10012/10948

► Noncommutative rings appear in several areas of mathematics. Most prominently, they can be used to model operator equations, such as differential or difference equations. In…
(more)

Subjects/Keywords: Noncommutative Algebra; Symbolic Computation; Computer Algebra; Matrix Normal Forms; Cryptography

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Heinle, A. (2016). Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10948

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Heinle, Albert. “Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations.” 2016. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/10948.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Heinle, Albert. “Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations.” 2016. Web. 28 Sep 2020.

Vancouver:

Heinle A. Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/10948.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Heinle A. Computational Approaches to Problems in Noncommutative Algebra – Theory, Applications and Implementations. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10948

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

4.
Roche, Daniel Steven.
Efficient *Computation* with Sparse and Dense Polynomials.

Degree: 2011, University of Waterloo

URL: http://hdl.handle.net/10012/5869

► Computations with polynomials are at the heart of any *computer* *algebra* system and also have many applications in engineering, coding theory, and cryptography. Generally speaking,…
(more)

Subjects/Keywords: computer algebra; symbolic computation; polynomials; multiplication; interpolation; perfect powers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roche, D. S. (2011). Efficient Computation with Sparse and Dense Polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/5869

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/5869.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Roche, Daniel Steven. “Efficient Computation with Sparse and Dense Polynomials.” 2011. Web. 28 Sep 2020.

Vancouver:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/5869.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roche DS. Efficient Computation with Sparse and Dense Polynomials. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/5869

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

5. Chen, Cheng-yu. Calculating Distribution Function and Characteristic Function using Mathematica.

Degree: Master, Applied Mathematics, 2010, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

► This paper deals with the applications of *symbolic* *computation* of Mathematica 7.0 (Wolfram, 2008) in distribution theory. The purpose of this study is twofold. Firstly,…
(more)

Subjects/Keywords: characteristic function; computer algebra system; independent univariate random variables; Mathematica; numerical computation; symbolic computation; linear combination

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, C. (2010). Calculating Distribution Function and Characteristic Function using Mathematica. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chen, Cheng-yu. “Calculating Distribution Function and Characteristic Function using Mathematica.” 2010. Thesis, NSYSU. Accessed September 28, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chen, Cheng-yu. “Calculating Distribution Function and Characteristic Function using Mathematica.” 2010. Web. 28 Sep 2020.

Vancouver:

Chen C. Calculating Distribution Function and Characteristic Function using Mathematica. [Internet] [Thesis]. NSYSU; 2010. [cited 2020 Sep 28]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen C. Calculating Distribution Function and Characteristic Function using Mathematica. [Thesis]. NSYSU; 2010. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0707110-152658

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

6.
Kim, Myung Sub.
Hermite form *computation* of matrices of differential polynomials.

Degree: 2009, University of Waterloo

URL: http://hdl.handle.net/10012/4626

► Given a matrix A in F(t)[D;δ]^{n × n} over the ring of differential polynomials, we first prove the existence of the Hermite form H of A…
(more)

Subjects/Keywords: Symbolic Computation; Differential Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kim, M. S. (2009). Hermite form computation of matrices of differential polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/4626

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Kim, Myung Sub. “Hermite form computation of matrices of differential polynomials.” 2009. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/4626.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Kim, Myung Sub. “Hermite form computation of matrices of differential polynomials.” 2009. Web. 28 Sep 2020.

Vancouver:

Kim MS. Hermite form computation of matrices of differential polynomials. [Internet] [Thesis]. University of Waterloo; 2009. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/4626.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kim MS. Hermite form computation of matrices of differential polynomials. [Thesis]. University of Waterloo; 2009. Available from: http://hdl.handle.net/10012/4626

Not specified: Masters Thesis or Doctoral Dissertation

University of Arizona

7. Linfoot, Andy James. A Case Study of A Multithreaded Buchberger Normal Form Algorithm .

Degree: 2006, University of Arizona

URL: http://hdl.handle.net/10150/305141

► Groebner bases have many applications in mathematics, science, and engineering. This dissertation deals with the algorithmic aspects of computing these bases. The dissertation begins with…
(more)

Subjects/Keywords: Applied Mathematics; Symbolic Computation; Groebner Bases; Parallel Computing; Computer Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Linfoot, A. J. (2006). A Case Study of A Multithreaded Buchberger Normal Form Algorithm . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/305141

Chicago Manual of Style (16^{th} Edition):

Linfoot, Andy James. “A Case Study of A Multithreaded Buchberger Normal Form Algorithm .” 2006. Doctoral Dissertation, University of Arizona. Accessed September 28, 2020. http://hdl.handle.net/10150/305141.

MLA Handbook (7^{th} Edition):

Linfoot, Andy James. “A Case Study of A Multithreaded Buchberger Normal Form Algorithm .” 2006. Web. 28 Sep 2020.

Vancouver:

Linfoot AJ. A Case Study of A Multithreaded Buchberger Normal Form Algorithm . [Internet] [Doctoral dissertation]. University of Arizona; 2006. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10150/305141.

Council of Science Editors:

Linfoot AJ. A Case Study of A Multithreaded Buchberger Normal Form Algorithm . [Doctoral Dissertation]. University of Arizona; 2006. Available from: http://hdl.handle.net/10150/305141

University of Cincinnati

8.
Cabarcas, Daniel.
Gröbner Bases *Computation* and Mutant Polynomials.

Degree: PhD, Arts and Sciences: Mathematical Sciences, 2011, University of Cincinnati

URL: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

► Gröbner bases are the single most important tool in applicable algebraic geometry. They are used to compute standard representatives in the residue classes of…
(more)

Subjects/Keywords: Mathematics; Gr&246; bner bases; Mutant polynomials; Complexity; Algorithms; Symbolic computation; Linear algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cabarcas, D. (2011). Gröbner Bases Computation and Mutant Polynomials. (Doctoral Dissertation). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

Chicago Manual of Style (16^{th} Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Doctoral Dissertation, University of Cincinnati. Accessed September 28, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

MLA Handbook (7^{th} Edition):

Cabarcas, Daniel. “Gröbner Bases Computation and Mutant Polynomials.” 2011. Web. 28 Sep 2020.

Vancouver:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Internet] [Doctoral dissertation]. University of Cincinnati; 2011. [cited 2020 Sep 28]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.

Council of Science Editors:

Cabarcas D. Gröbner Bases Computation and Mutant Polynomials. [Doctoral Dissertation]. University of Cincinnati; 2011. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300

Georgia Tech

9. Steffy, Daniel E. Topics in exact precision mathematical programming.

Degree: PhD, Algorithms, Combinatorics, and Optimization, 2011, Georgia Tech

URL: http://hdl.handle.net/1853/39639

► The focus of this dissertation is the advancement of theory and *computation* related to exact precision mathematical programming. Optimization software based on floating-point arithmetic can…
(more)

Subjects/Keywords: Linear programming; Mixed-integer programming; Exact computation; Symbolic computation; Linear algebra; Programming (Mathematics); Mathematical optimization; Linear programming

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Steffy, D. E. (2011). Topics in exact precision mathematical programming. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/39639

Chicago Manual of Style (16^{th} Edition):

Steffy, Daniel E. “Topics in exact precision mathematical programming.” 2011. Doctoral Dissertation, Georgia Tech. Accessed September 28, 2020. http://hdl.handle.net/1853/39639.

MLA Handbook (7^{th} Edition):

Steffy, Daniel E. “Topics in exact precision mathematical programming.” 2011. Web. 28 Sep 2020.

Vancouver:

Steffy DE. Topics in exact precision mathematical programming. [Internet] [Doctoral dissertation]. Georgia Tech; 2011. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1853/39639.

Council of Science Editors:

Steffy DE. Topics in exact precision mathematical programming. [Doctoral Dissertation]. Georgia Tech; 2011. Available from: http://hdl.handle.net/1853/39639

10. Khochtali, Mohamed. Computing Matrix Canonical Forms of Ore Polynomials.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/11831

► We present algorithms to compute canonical forms of matrices of Ore polynomials while controlling intermediate expression swell. Given a square non-singular input matrix of Ore…
(more)

Subjects/Keywords: Computer Algebra; Symbolic Computation; Linear Algebra; Popov Form; Hermite Form; Fast Algorithms

…basic skew *algebra*, or
3
[Beckermann et al., 2006, Giesbrecht and Kim, 2012] for… …detailed
overview of pseudo linear *algebra* describing skew polynomials properties, difference and… …A.
Our main algorithm for Popov form *computation*, reported in Chapter 5, constructs from A… …lions share of the
*computation*, instead applying a fast normalization to transform the input… …for reduced
form *computation* to our knowledge) by a factor of n. An implementation
9…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khochtali, M. (2017). Computing Matrix Canonical Forms of Ore Polynomials. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/11831

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khochtali, Mohamed. “Computing Matrix Canonical Forms of Ore Polynomials.” 2017. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/11831.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khochtali, Mohamed. “Computing Matrix Canonical Forms of Ore Polynomials.” 2017. Web. 28 Sep 2020.

Vancouver:

Khochtali M. Computing Matrix Canonical Forms of Ore Polynomials. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/11831.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khochtali M. Computing Matrix Canonical Forms of Ore Polynomials. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/11831

Not specified: Masters Thesis or Doctoral Dissertation

11. Elsheikh, Mustafa. Smith Normal Form over Local Rings and Related Problems.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/12241

► The Smith normal form is a diagonalization of matrices with many applications in diophantine analysis, graph theory, system control theory, simplicial homology, and more recently,…
(more)

Subjects/Keywords: Linear algebra; Computer algebra; Algorithm design and analysis; Smith normal form; Symbolic computation

…x29; for some positive
constant c.
When designing algorithms for linear *algebra* we desire… …algorithm [Wiedemann, 1986], where the cost of many
linear *algebra* problems has been… …degree of the minimal polynomial can be smaller than n. Hence the *computation*
of the minimal… …heuristic stops the iterative *computation* when the minimal polynomial remains the
8
same after… …*algebra* problems for sparse matrices using the black-box model over fields. However,
linearly…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Elsheikh, M. (2017). Smith Normal Form over Local Rings and Related Problems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/12241

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Elsheikh, Mustafa. “Smith Normal Form over Local Rings and Related Problems.” 2017. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/12241.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Elsheikh, Mustafa. “Smith Normal Form over Local Rings and Related Problems.” 2017. Web. 28 Sep 2020.

Vancouver:

Elsheikh M. Smith Normal Form over Local Rings and Related Problems. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/12241.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Elsheikh M. Smith Normal Form over Local Rings and Related Problems. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/12241

Not specified: Masters Thesis or Doctoral Dissertation

12.
Vialla, Bastien.
Contributions à l'algèbre linéaire exacte sur corps finis et au chiffrement homomorphe : Contributions in sparse linear *algebra* on finite fields and homomorphic encryption.

Degree: Docteur es, Informatique, 2015, Montpellier

URL: http://www.theses.fr/2015MONTS112

►

Cette thèse est composée de deux axes principaux, le premier portant sur le chiffrement homomorphe et le second sur l’algèbre linéaire creuse sur corps finis.… (more)

Subjects/Keywords: Cryptographie; Calcul formel; Algèbre linéaire; Calcul parallèle; Cryptography; Computer Algebra; Linear Algebra; Parallel computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vialla, B. (2015). Contributions à l'algèbre linéaire exacte sur corps finis et au chiffrement homomorphe : Contributions in sparse linear algebra on finite fields and homomorphic encryption. (Doctoral Dissertation). Montpellier. Retrieved from http://www.theses.fr/2015MONTS112

Chicago Manual of Style (16^{th} Edition):

Vialla, Bastien. “Contributions à l'algèbre linéaire exacte sur corps finis et au chiffrement homomorphe : Contributions in sparse linear algebra on finite fields and homomorphic encryption.” 2015. Doctoral Dissertation, Montpellier. Accessed September 28, 2020. http://www.theses.fr/2015MONTS112.

MLA Handbook (7^{th} Edition):

Vialla, Bastien. “Contributions à l'algèbre linéaire exacte sur corps finis et au chiffrement homomorphe : Contributions in sparse linear algebra on finite fields and homomorphic encryption.” 2015. Web. 28 Sep 2020.

Vancouver:

Vialla B. Contributions à l'algèbre linéaire exacte sur corps finis et au chiffrement homomorphe : Contributions in sparse linear algebra on finite fields and homomorphic encryption. [Internet] [Doctoral dissertation]. Montpellier; 2015. [cited 2020 Sep 28]. Available from: http://www.theses.fr/2015MONTS112.

Council of Science Editors:

Vialla B. Contributions à l'algèbre linéaire exacte sur corps finis et au chiffrement homomorphe : Contributions in sparse linear algebra on finite fields and homomorphic encryption. [Doctoral Dissertation]. Montpellier; 2015. Available from: http://www.theses.fr/2015MONTS112

13.
Flood, Connor.
MathBrush web application: Design and implementation of an online pen-input interface for *computer* *algebra* systems.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/12148

► Several pen-math systems have been developed for mobile and tablet platforms, most notably by the MathBrush project. With the increasing variety of available devices and…
(more)

Subjects/Keywords: cas; pen recognition; web development; hci; symbolic computation; mathbrush; computer algebra

…of this change is due to the introduction of *computer* *algebra* systems (CAS). When… …1
method of input to *computer* *algebra* systems, in the form of a web application.
This… …accessibility and usability of *computer* *algebra* systems.
1.1
*Computer* *algebra* systems (CAS)… …*Computer* *algebra* systems (CAS) have been widely used to support the teaching and… …*symbolic* *computation* surrounding differentiation, integration, simplification, and solving…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Flood, C. (2017). MathBrush web application: Design and implementation of an online pen-input interface for computer algebra systems. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/12148

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Flood, Connor. “MathBrush web application: Design and implementation of an online pen-input interface for computer algebra systems.” 2017. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/12148.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Flood, Connor. “MathBrush web application: Design and implementation of an online pen-input interface for computer algebra systems.” 2017. Web. 28 Sep 2020.

Vancouver:

Flood C. MathBrush web application: Design and implementation of an online pen-input interface for computer algebra systems. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/12148.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Flood C. MathBrush web application: Design and implementation of an online pen-input interface for computer algebra systems. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/12148

Not specified: Masters Thesis or Doctoral Dissertation

North Carolina State University

14.
May, John P.
Approximate Factorization of Polynomials in Many Variables and Other Problems in Approximate *Algebra* via Singular Value Decomposition Methods.

Degree: PhD, Mathematics, 2005, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/5379

► Aspects of the approximate problem of finding the factors of a polynomial in many variables are considered. The idea is that an polynomial may be…
(more)

Subjects/Keywords: numerical algebra; computer algebra; polynomial factorization; symbolic-numerics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

May, J. P. (2005). Approximate Factorization of Polynomials in Many Variables and Other Problems in Approximate Algebra via Singular Value Decomposition Methods. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5379

Chicago Manual of Style (16^{th} Edition):

May, John P. “Approximate Factorization of Polynomials in Many Variables and Other Problems in Approximate Algebra via Singular Value Decomposition Methods.” 2005. Doctoral Dissertation, North Carolina State University. Accessed September 28, 2020. http://www.lib.ncsu.edu/resolver/1840.16/5379.

MLA Handbook (7^{th} Edition):

May, John P. “Approximate Factorization of Polynomials in Many Variables and Other Problems in Approximate Algebra via Singular Value Decomposition Methods.” 2005. Web. 28 Sep 2020.

Vancouver:

May JP. Approximate Factorization of Polynomials in Many Variables and Other Problems in Approximate Algebra via Singular Value Decomposition Methods. [Internet] [Doctoral dissertation]. North Carolina State University; 2005. [cited 2020 Sep 28]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5379.

Council of Science Editors:

May JP. Approximate Factorization of Polynomials in Many Variables and Other Problems in Approximate Algebra via Singular Value Decomposition Methods. [Doctoral Dissertation]. North Carolina State University; 2005. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5379

University of Newcastle

15. Skerritt, Matthew. Tools for teaching computational mathematics.

Degree: MPhil, 2014, University of Newcastle

URL: http://hdl.handle.net/1959.13/1052941

►

Masters Research - Master of Philosophy (MPhil)

So called “*computer* algebra” or “*symbolic* computation” systems such as Maple, and Mathematica have become complete mathematical *computation*…
(more)

Subjects/Keywords: mathematical computation; Maple; Mathematica; computer algebra; CAS; mathematics teaching; mathematics education; mathematics; MATH2600

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Skerritt, M. (2014). Tools for teaching computational mathematics. (Masters Thesis). University of Newcastle. Retrieved from http://hdl.handle.net/1959.13/1052941

Chicago Manual of Style (16^{th} Edition):

Skerritt, Matthew. “Tools for teaching computational mathematics.” 2014. Masters Thesis, University of Newcastle. Accessed September 28, 2020. http://hdl.handle.net/1959.13/1052941.

MLA Handbook (7^{th} Edition):

Skerritt, Matthew. “Tools for teaching computational mathematics.” 2014. Web. 28 Sep 2020.

Vancouver:

Skerritt M. Tools for teaching computational mathematics. [Internet] [Masters thesis]. University of Newcastle; 2014. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1959.13/1052941.

Council of Science Editors:

Skerritt M. Tools for teaching computational mathematics. [Masters Thesis]. University of Newcastle; 2014. Available from: http://hdl.handle.net/1959.13/1052941

16. Ghesquiere, Mike W. Generalized Inclusion-Exclusion.

Degree: 2015, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/3262

► Sets are a foundational structure within mathematics and are commonly used as a building block for more complex structures. Just above this we have functions…
(more)

Subjects/Keywords: Symbolic computation; Signed multi-set; Generalized partition; Piecewise function; Block matrix algebra; Piecewise convolution; Other Computer Sciences

…sets, see
[18, 20]. These ideas allow *symbolic* *computation* on functions defined… …hybrid domains applied towards *symbolic*
matrix *algebra*. Addition has already been considered… …functions over *symbolic* intervals.
Chapter 3
*Symbolic* Block Linear *Algebra*
In mathematics… …x28;3.2)
28
Chapter 3. *Symbolic* Block Linear *Algebra*
(b)
(a)
"… …the tools required in one’s toolbox. But the *algebra* of sets,
is a fairly restrictive one…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ghesquiere, M. W. (2015). Generalized Inclusion-Exclusion. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3262

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ghesquiere, Mike W. “Generalized Inclusion-Exclusion.” 2015. Thesis, University of Western Ontario. Accessed September 28, 2020. https://ir.lib.uwo.ca/etd/3262.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ghesquiere, Mike W. “Generalized Inclusion-Exclusion.” 2015. Web. 28 Sep 2020.

Vancouver:

Ghesquiere MW. Generalized Inclusion-Exclusion. [Internet] [Thesis]. University of Western Ontario; 2015. [cited 2020 Sep 28]. Available from: https://ir.lib.uwo.ca/etd/3262.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ghesquiere MW. Generalized Inclusion-Exclusion. [Thesis]. University of Western Ontario; 2015. Available from: https://ir.lib.uwo.ca/etd/3262

Not specified: Masters Thesis or Doctoral Dissertation

17. Watson, Robert Loyd. Lifting Automorphisms from Root Systems to Lie Algebras.

Degree: PhD, Mathematics, 2010, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/6181

► In 1996 and 2000 A.G. Helminck gave the first algorithms for computing some of the structure of symmetric spaces. In this thesis we extend these…
(more)

Subjects/Keywords: Symbolic Computation; Root Systems; Lie Algebra; Lie Theory; Lie

…Chapter 11 Programming Interface for *Symbolic* *Computation* in LiE Groups
and Symmetric Spaces… …Chapter 12 Programming Interface for *Symbolic* *Computation* in LiE Groups
and Symmetric Spaces… …Recovering the Action of an Involutorial Automorphism on the Lie *Algebra*
1.3 A Brief Overview… …1
1
3
3
Chapter 2 Preliminary Topics in Lie *Algebra*… …*Computation* of the Correction Vector(s) . . . . . . . . . . . . . . . . . . .
4.6…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Watson, R. L. (2010). Lifting Automorphisms from Root Systems to Lie Algebras. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/6181

Chicago Manual of Style (16^{th} Edition):

Watson, Robert Loyd. “Lifting Automorphisms from Root Systems to Lie Algebras.” 2010. Doctoral Dissertation, North Carolina State University. Accessed September 28, 2020. http://www.lib.ncsu.edu/resolver/1840.16/6181.

MLA Handbook (7^{th} Edition):

Watson, Robert Loyd. “Lifting Automorphisms from Root Systems to Lie Algebras.” 2010. Web. 28 Sep 2020.

Vancouver:

Watson RL. Lifting Automorphisms from Root Systems to Lie Algebras. [Internet] [Doctoral dissertation]. North Carolina State University; 2010. [cited 2020 Sep 28]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6181.

Council of Science Editors:

Watson RL. Lifting Automorphisms from Root Systems to Lie Algebras. [Doctoral Dissertation]. North Carolina State University; 2010. Available from: http://www.lib.ncsu.edu/resolver/1840.16/6181

University of Western Ontario

18. Pan, Wei. Algorithmic Contributions to the Theory of Regular Chains.

Degree: 2011, University of Western Ontario

URL: https://ir.lib.uwo.ca/etd/80

► Regular chains, introduced about twenty years ago, have emerged as one of the major tools for solving polynomial systems symbolically. In this thesis, we focus…
(more)

Subjects/Keywords: symbolic computation; regular chain; regular GCD; subresultant; fast Fourier transform; GPU computing; Other Computer Sciences; Theory and Algorithms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pan, W. (2011). Algorithmic Contributions to the Theory of Regular Chains. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/80

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Pan, Wei. “Algorithmic Contributions to the Theory of Regular Chains.” 2011. Thesis, University of Western Ontario. Accessed September 28, 2020. https://ir.lib.uwo.ca/etd/80.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Pan, Wei. “Algorithmic Contributions to the Theory of Regular Chains.” 2011. Web. 28 Sep 2020.

Vancouver:

Pan W. Algorithmic Contributions to the Theory of Regular Chains. [Internet] [Thesis]. University of Western Ontario; 2011. [cited 2020 Sep 28]. Available from: https://ir.lib.uwo.ca/etd/80.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pan W. Algorithmic Contributions to the Theory of Regular Chains. [Thesis]. University of Western Ontario; 2011. Available from: https://ir.lib.uwo.ca/etd/80

Not specified: Masters Thesis or Doctoral Dissertation

Georgia Tech

19.
Poore, Jesse Hubbard.
Toward an *algebra* of *computation*.

Degree: PhD, Information science, 1970, Georgia Tech

URL: http://hdl.handle.net/1853/9501

Subjects/Keywords: Logic; Algebra; Computer programming; Symbolic and mathematical; Boolean

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Poore, J. H. (1970). Toward an algebra of computation. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/9501

Chicago Manual of Style (16^{th} Edition):

Poore, Jesse Hubbard. “Toward an algebra of computation.” 1970. Doctoral Dissertation, Georgia Tech. Accessed September 28, 2020. http://hdl.handle.net/1853/9501.

MLA Handbook (7^{th} Edition):

Poore, Jesse Hubbard. “Toward an algebra of computation.” 1970. Web. 28 Sep 2020.

Vancouver:

Poore JH. Toward an algebra of computation. [Internet] [Doctoral dissertation]. Georgia Tech; 1970. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1853/9501.

Council of Science Editors:

Poore JH. Toward an algebra of computation. [Doctoral Dissertation]. Georgia Tech; 1970. Available from: http://hdl.handle.net/1853/9501

University of Waterloo

20. Peasgood, Richard. A Method to Symbolically Compute Convolution Integrals.

Degree: 2009, University of Waterloo

URL: http://hdl.handle.net/10012/4884

► This thesis presents a method for computing *symbolic* solutions of a certain class of improper integrals related to convolutions of Mellin transforms. Important integrals that…
(more)

Subjects/Keywords: Computer Science; Integration; Mellin; Transform; Symbolic; Compute Algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Peasgood, R. (2009). A Method to Symbolically Compute Convolution Integrals. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/4884

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Peasgood, Richard. “A Method to Symbolically Compute Convolution Integrals.” 2009. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/4884.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Peasgood, Richard. “A Method to Symbolically Compute Convolution Integrals.” 2009. Web. 28 Sep 2020.

Vancouver:

Peasgood R. A Method to Symbolically Compute Convolution Integrals. [Internet] [Thesis]. University of Waterloo; 2009. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/4884.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Peasgood R. A Method to Symbolically Compute Convolution Integrals. [Thesis]. University of Waterloo; 2009. Available from: http://hdl.handle.net/10012/4884

Not specified: Masters Thesis or Doctoral Dissertation

ETH Zürich

21. Rostalski, Philipp. Algebraic moments: real root finding and related topics.

Degree: 2009, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/151304

Subjects/Keywords: POLYNOME MEHRERER VERÄNDERLICHER (ALGEBRA); NULLSTELLEN VON POLYNOMEN (NUMERISCHE MATHEMATIK); IDEALE UND RADIKALE IN ASSOZIATIVEN RINGEN (ALGEBRA); GRÖBNERBASEN (ALGEBRA); COMPUTERALGEBRA + SYMBOLISCHE BERECHNUNG; NUMERISCHE METHODEN IN DER ALGEBRA (NUMERISCHE MATHEMATIK); MULTIVARIATE POLYNOMIALS (ALGEBRA); ZEROS OF POLYNOMIALS (NUMERICAL MATHEMATICS); IDEALS AND RADICALS IN ASSOCIATIVE RINGS (ALGEBRA); GRÖBNER BASES (ALGEBRA); COMPUTER ALGEBRA + SYMBOLIC COMPUTATION; NUMERICAL METHODS IN ALGEBRA (NUMERICAL MATHEMATICS); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rostalski, P. (2009). Algebraic moments: real root finding and related topics. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/151304

Chicago Manual of Style (16^{th} Edition):

Rostalski, Philipp. “Algebraic moments: real root finding and related topics.” 2009. Doctoral Dissertation, ETH Zürich. Accessed September 28, 2020. http://hdl.handle.net/20.500.11850/151304.

MLA Handbook (7^{th} Edition):

Rostalski, Philipp. “Algebraic moments: real root finding and related topics.” 2009. Web. 28 Sep 2020.

Vancouver:

Rostalski P. Algebraic moments: real root finding and related topics. [Internet] [Doctoral dissertation]. ETH Zürich; 2009. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/20.500.11850/151304.

Council of Science Editors:

Rostalski P. Algebraic moments: real root finding and related topics. [Doctoral Dissertation]. ETH Zürich; 2009. Available from: http://hdl.handle.net/20.500.11850/151304

Indian Institute of Science

22.
Bandyopadhyay, Sandipan.
Analysis And Design Of Spatial Manipulators : An Exact Algebraic Approach Using Dual Numbers And *Symbolic* * Computation*.

Degree: PhD, Faculty of Engineering, 2008, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/384

► This thesis presents a uniﬁed framework for the analysis of instantaneous kinematics and statics of spatial manipulators. The proposed formulation covers the entire range of…
(more)

Subjects/Keywords: Symbolic Computation; Computational Algebra; Algebraic Logic; Dual Algebra; Spatial Manipulators; Dual Numbers; Canonical Forms; Automatic Control Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bandyopadhyay, S. (2008). Analysis And Design Of Spatial Manipulators : An Exact Algebraic Approach Using Dual Numbers And Symbolic Computation. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/384

Chicago Manual of Style (16^{th} Edition):

Bandyopadhyay, Sandipan. “Analysis And Design Of Spatial Manipulators : An Exact Algebraic Approach Using Dual Numbers And Symbolic Computation.” 2008. Doctoral Dissertation, Indian Institute of Science. Accessed September 28, 2020. http://etd.iisc.ac.in/handle/2005/384.

MLA Handbook (7^{th} Edition):

Bandyopadhyay, Sandipan. “Analysis And Design Of Spatial Manipulators : An Exact Algebraic Approach Using Dual Numbers And Symbolic Computation.” 2008. Web. 28 Sep 2020.

Vancouver:

Bandyopadhyay S. Analysis And Design Of Spatial Manipulators : An Exact Algebraic Approach Using Dual Numbers And Symbolic Computation. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2008. [cited 2020 Sep 28]. Available from: http://etd.iisc.ac.in/handle/2005/384.

Council of Science Editors:

Bandyopadhyay S. Analysis And Design Of Spatial Manipulators : An Exact Algebraic Approach Using Dual Numbers And Symbolic Computation. [Doctoral Dissertation]. Indian Institute of Science; 2008. Available from: http://etd.iisc.ac.in/handle/2005/384

23.
Sultan, Ziad.
Algèbre linéaire exacte, parallèle, adaptative et générique : Adaptive and generic parallel exact linear * algebra*.

Degree: Docteur es, Mathématiques Appliquées, 2016, Université Grenoble Alpes (ComUE)

URL: http://www.theses.fr/2016GREAM030

►

Les décompositions en matrices triangulaires sont une brique de base fondamentale en calcul algébrique. Ils sont utilisés pour résoudre des systèmes linéaires et calculer le… (more)

Subjects/Keywords: Calcul parallèl; Algèbre linéaire; Calcul exact; Algorithme adaptatives; Mathématiques computationnelles; Parallèlisme de flot de données; Parallel computation; Computer algebra; Exact computation; Adaptive algorithm; Computational mathematics; Dataflow parallelism; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sultan, Z. (2016). Algèbre linéaire exacte, parallèle, adaptative et générique : Adaptive and generic parallel exact linear algebra. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2016GREAM030

Chicago Manual of Style (16^{th} Edition):

Sultan, Ziad. “Algèbre linéaire exacte, parallèle, adaptative et générique : Adaptive and generic parallel exact linear algebra.” 2016. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed September 28, 2020. http://www.theses.fr/2016GREAM030.

MLA Handbook (7^{th} Edition):

Sultan, Ziad. “Algèbre linéaire exacte, parallèle, adaptative et générique : Adaptive and generic parallel exact linear algebra.” 2016. Web. 28 Sep 2020.

Vancouver:

Sultan Z. Algèbre linéaire exacte, parallèle, adaptative et générique : Adaptive and generic parallel exact linear algebra. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2016. [cited 2020 Sep 28]. Available from: http://www.theses.fr/2016GREAM030.

Council of Science Editors:

Sultan Z. Algèbre linéaire exacte, parallèle, adaptative et générique : Adaptive and generic parallel exact linear algebra. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2016. Available from: http://www.theses.fr/2016GREAM030

ETH Zürich

24.
Gruntz, Dominik.
On computing limits in a *symbolic* manipulation system.

Degree: 1996, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/142608

Subjects/Keywords: COMPUTERALGEBRA + SYMBOLISCHE BERECHNUNG; KONVERGENZ VON FOLGEN UND REIHEN (ANALYSIS); COMPUTER ALGEBRA + SYMBOLIC COMPUTATION; CONVERGENCE OF SEQUENCES AND SERIES (MATHEMATICAL ANALYSIS); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gruntz, D. (1996). On computing limits in a symbolic manipulation system. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/142608

Chicago Manual of Style (16^{th} Edition):

Gruntz, Dominik. “On computing limits in a symbolic manipulation system.” 1996. Doctoral Dissertation, ETH Zürich. Accessed September 28, 2020. http://hdl.handle.net/20.500.11850/142608.

MLA Handbook (7^{th} Edition):

Gruntz, Dominik. “On computing limits in a symbolic manipulation system.” 1996. Web. 28 Sep 2020.

Vancouver:

Gruntz D. On computing limits in a symbolic manipulation system. [Internet] [Doctoral dissertation]. ETH Zürich; 1996. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/20.500.11850/142608.

Council of Science Editors:

Gruntz D. On computing limits in a symbolic manipulation system. [Doctoral Dissertation]. ETH Zürich; 1996. Available from: http://hdl.handle.net/20.500.11850/142608

University of Plymouth

25.
Carmantini, Giovanni Sirio.
Dynamical systems theory for transparent *symbolic* *computation* in neuronal networks.

Degree: PhD, 2017, University of Plymouth

URL: http://hdl.handle.net/10026.1/8647

► In this thesis, we explore the interface between *symbolic* and dynamical system *computation*, with particular regard to dynamical system models of neuronal networks. In doing…
(more)

Subjects/Keywords: 006.3; Automata Theory; Recurrent Neural Networks; Representation Theory; Neural Symbolic Computation; Dynamical Systems; Symbolic Dynamics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Carmantini, G. S. (2017). Dynamical systems theory for transparent symbolic computation in neuronal networks. (Doctoral Dissertation). University of Plymouth. Retrieved from http://hdl.handle.net/10026.1/8647

Chicago Manual of Style (16^{th} Edition):

Carmantini, Giovanni Sirio. “Dynamical systems theory for transparent symbolic computation in neuronal networks.” 2017. Doctoral Dissertation, University of Plymouth. Accessed September 28, 2020. http://hdl.handle.net/10026.1/8647.

MLA Handbook (7^{th} Edition):

Carmantini, Giovanni Sirio. “Dynamical systems theory for transparent symbolic computation in neuronal networks.” 2017. Web. 28 Sep 2020.

Vancouver:

Carmantini GS. Dynamical systems theory for transparent symbolic computation in neuronal networks. [Internet] [Doctoral dissertation]. University of Plymouth; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10026.1/8647.

Council of Science Editors:

Carmantini GS. Dynamical systems theory for transparent symbolic computation in neuronal networks. [Doctoral Dissertation]. University of Plymouth; 2017. Available from: http://hdl.handle.net/10026.1/8647

Penn State University

26. Liang, Chao. Approximate solution to second order parabolic equations, with application to financial modeling.

Degree: 2014, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/22656

► In this dissertation, we consider second order parabolic equations with variable coefficients. We derive the closed-form approximations to the associated fundamental solution, as well as…
(more)

Subjects/Keywords: Partial Differential Equations; Financial Modeling; Option Pricing; Approximate Solutions; Symbolic Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liang, C. (2014). Approximate solution to second order parabolic equations, with application to financial modeling. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/22656

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Liang, Chao. “Approximate solution to second order parabolic equations, with application to financial modeling.” 2014. Thesis, Penn State University. Accessed September 28, 2020. https://submit-etda.libraries.psu.edu/catalog/22656.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Liang, Chao. “Approximate solution to second order parabolic equations, with application to financial modeling.” 2014. Web. 28 Sep 2020.

Vancouver:

Liang C. Approximate solution to second order parabolic equations, with application to financial modeling. [Internet] [Thesis]. Penn State University; 2014. [cited 2020 Sep 28]. Available from: https://submit-etda.libraries.psu.edu/catalog/22656.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liang C. Approximate solution to second order parabolic equations, with application to financial modeling. [Thesis]. Penn State University; 2014. Available from: https://submit-etda.libraries.psu.edu/catalog/22656

Not specified: Masters Thesis or Doctoral Dissertation

University of Waterloo

27.
LIANG, YITENG.
* Symbolic* Integration of Multibody System Dynamics with Finite Element Method.

Degree: 2017, University of Waterloo

URL: http://hdl.handle.net/10012/11152

► A general procedure integrating the finite element method with multibody system dynamics using *symbolic* *computation* is presented. It takes advantage of both the nodal formulation…
(more)

Subjects/Keywords: Multibody system dynamics; Finite element method; Symbolic computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

LIANG, Y. (2017). Symbolic Integration of Multibody System Dynamics with Finite Element Method. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/11152

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

LIANG, YITENG. “Symbolic Integration of Multibody System Dynamics with Finite Element Method.” 2017. Thesis, University of Waterloo. Accessed September 28, 2020. http://hdl.handle.net/10012/11152.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

LIANG, YITENG. “Symbolic Integration of Multibody System Dynamics with Finite Element Method.” 2017. Web. 28 Sep 2020.

Vancouver:

LIANG Y. Symbolic Integration of Multibody System Dynamics with Finite Element Method. [Internet] [Thesis]. University of Waterloo; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10012/11152.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LIANG Y. Symbolic Integration of Multibody System Dynamics with Finite Element Method. [Thesis]. University of Waterloo; 2017. Available from: http://hdl.handle.net/10012/11152

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

28.
Sullivan, Patrick.
Characterizing the Nature of Students' Feature Noticing-and-using With Respect to Mathematical Symbols Across Different Levels of *Algebra* Exposure.

Degree: 2013, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/17411

► The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar *algebra* problems based…
(more)

Subjects/Keywords: Noticing; Features; Algebra; Algebraic Symbols; Symbolic Representations; Student Learning

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sullivan, P. (2013). Characterizing the Nature of Students' Feature Noticing-and-using With Respect to Mathematical Symbols Across Different Levels of Algebra Exposure. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/17411

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sullivan, Patrick. “Characterizing the Nature of Students' Feature Noticing-and-using With Respect to Mathematical Symbols Across Different Levels of Algebra Exposure.” 2013. Thesis, Penn State University. Accessed September 28, 2020. https://submit-etda.libraries.psu.edu/catalog/17411.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sullivan, Patrick. “Characterizing the Nature of Students' Feature Noticing-and-using With Respect to Mathematical Symbols Across Different Levels of Algebra Exposure.” 2013. Web. 28 Sep 2020.

Vancouver:

Sullivan P. Characterizing the Nature of Students' Feature Noticing-and-using With Respect to Mathematical Symbols Across Different Levels of Algebra Exposure. [Internet] [Thesis]. Penn State University; 2013. [cited 2020 Sep 28]. Available from: https://submit-etda.libraries.psu.edu/catalog/17411.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sullivan P. Characterizing the Nature of Students' Feature Noticing-and-using With Respect to Mathematical Symbols Across Different Levels of Algebra Exposure. [Thesis]. Penn State University; 2013. Available from: https://submit-etda.libraries.psu.edu/catalog/17411

Not specified: Masters Thesis or Doctoral Dissertation

Latrobe University

29. Nguyen, Thanh Long. Compatible relations on logic-based algebras.

Degree: PhD, 2012, Latrobe University

URL: http://hdl.handle.net/1959.9/513382

►

Thesis (Ph.D.) - La Trobe University, 2012

Submission note: "A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy… (more)

Subjects/Keywords: Modular arithmetic.; Logic, Symbolic and mathematical.; Ockham algebras.; Algebra.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Nguyen, T. L. (2012). Compatible relations on logic-based algebras. (Doctoral Dissertation). Latrobe University. Retrieved from http://hdl.handle.net/1959.9/513382

Chicago Manual of Style (16^{th} Edition):

Nguyen, Thanh Long. “Compatible relations on logic-based algebras.” 2012. Doctoral Dissertation, Latrobe University. Accessed September 28, 2020. http://hdl.handle.net/1959.9/513382.

MLA Handbook (7^{th} Edition):

Nguyen, Thanh Long. “Compatible relations on logic-based algebras.” 2012. Web. 28 Sep 2020.

Vancouver:

Nguyen TL. Compatible relations on logic-based algebras. [Internet] [Doctoral dissertation]. Latrobe University; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1959.9/513382.

Council of Science Editors:

Nguyen TL. Compatible relations on logic-based algebras. [Doctoral Dissertation]. Latrobe University; 2012. Available from: http://hdl.handle.net/1959.9/513382

Linnaeus University

30.
Strikic, Ana.
Linear *Algebra* in *Computer* Graphics.

Degree: Mathematics, 2019, Linnaeus University

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-89168

► In this thesis, we will investigate the rapidly developing eld of computergraphics by giving an insight into the calculations behind the most im-portant topics…
(more)

Subjects/Keywords: Linear algebra; computer graphics; Algebra and Logic; Algebra och logik

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Strikic, A. (2019). Linear Algebra in Computer Graphics. (Thesis). Linnaeus University. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-89168

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Strikic, Ana. “Linear Algebra in Computer Graphics.” 2019. Thesis, Linnaeus University. Accessed September 28, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-89168.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Strikic, Ana. “Linear Algebra in Computer Graphics.” 2019. Web. 28 Sep 2020.

Vancouver:

Strikic A. Linear Algebra in Computer Graphics. [Internet] [Thesis]. Linnaeus University; 2019. [cited 2020 Sep 28]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-89168.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Strikic A. Linear Algebra in Computer Graphics. [Thesis]. Linnaeus University; 2019. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-89168

Not specified: Masters Thesis or Doctoral Dissertation