Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(CNNs). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Rochester Institute of Technology

1. Oruganti, Ram Manohar. Image Description using Deep Neural Networks.

Degree: MS, Computer Engineering, 2016, Rochester Institute of Technology

  Current research in computer vision and machine learning has demonstrated some great abilities at detecting and recognizing objects in natural images. Current state-of-the-art results… (more)

Subjects/Keywords: CNNs; Deep learning; Image description; LSTMs; Multi-modal applications; Scene analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oruganti, R. M. (2016). Image Description using Deep Neural Networks. (Masters Thesis). Rochester Institute of Technology. Retrieved from http://scholarworks.rit.edu/theses/9043

Chicago Manual of Style (16th Edition):

Oruganti, Ram Manohar. “Image Description using Deep Neural Networks.” 2016. Masters Thesis, Rochester Institute of Technology. Accessed May 21, 2018. http://scholarworks.rit.edu/theses/9043.

MLA Handbook (7th Edition):

Oruganti, Ram Manohar. “Image Description using Deep Neural Networks.” 2016. Web. 21 May 2018.

Vancouver:

Oruganti RM. Image Description using Deep Neural Networks. [Internet] [Masters thesis]. Rochester Institute of Technology; 2016. [cited 2018 May 21]. Available from: http://scholarworks.rit.edu/theses/9043.

Council of Science Editors:

Oruganti RM. Image Description using Deep Neural Networks. [Masters Thesis]. Rochester Institute of Technology; 2016. Available from: http://scholarworks.rit.edu/theses/9043


Universitat Ramon Llull

2. Viñoles Serra, Mireia. Dynamics of Two Neuron Cellular Neural Networks.

Degree: 2011, Universitat Ramon Llull

 In this dissertation we review the two neuron cellular neural network stability using the Lyapunov theory, and using the different local dynamic behavior derived from… (more)

Subjects/Keywords: classification problems; template design; limit cycles; problemas de clasificación; CNNs; diseño de plantillas; problems de classificació; disseny de plantilles; CNNs; ciclos límite; CNNs; cicles limit; Les TIC i la seva gestió; 537; 621.3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Viñoles Serra, M. (2011). Dynamics of Two Neuron Cellular Neural Networks. (Thesis). Universitat Ramon Llull. Retrieved from http://hdl.handle.net/10803/9154

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Viñoles Serra, Mireia. “Dynamics of Two Neuron Cellular Neural Networks.” 2011. Thesis, Universitat Ramon Llull. Accessed May 21, 2018. http://hdl.handle.net/10803/9154.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Viñoles Serra, Mireia. “Dynamics of Two Neuron Cellular Neural Networks.” 2011. Web. 21 May 2018.

Vancouver:

Viñoles Serra M. Dynamics of Two Neuron Cellular Neural Networks. [Internet] [Thesis]. Universitat Ramon Llull; 2011. [cited 2018 May 21]. Available from: http://hdl.handle.net/10803/9154.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Viñoles Serra M. Dynamics of Two Neuron Cellular Neural Networks. [Thesis]. Universitat Ramon Llull; 2011. Available from: http://hdl.handle.net/10803/9154

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Cincinnati

3. MAILAVARAM, MADHURI. A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS.

Degree: MS, Engineering : Electrical Engineering, 2006, University of Cincinnati

 Cellular Neural Networks (CNNs) form a class of information-processing systems which like neural networks are large-scale nonlinear analog circuits performing real time parallel processing of… (more)

Subjects/Keywords: Cellular Neural Networks; CNNs; CMOS Transconductance Amplifier; Standard Cell Library of CNNS; Analog CMOS VLSI Implementation; CNN Image Processing Applications

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

MAILAVARAM, M. (2006). A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS. (Masters Thesis). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1140802889

Chicago Manual of Style (16th Edition):

MAILAVARAM, MADHURI. “A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS.” 2006. Masters Thesis, University of Cincinnati. Accessed May 21, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1140802889.

MLA Handbook (7th Edition):

MAILAVARAM, MADHURI. “A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS.” 2006. Web. 21 May 2018.

Vancouver:

MAILAVARAM M. A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS. [Internet] [Masters thesis]. University of Cincinnati; 2006. [cited 2018 May 21]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1140802889.

Council of Science Editors:

MAILAVARAM M. A STANDARD CELL LIBRARY USING CMOS TRANSCONDUCTANCE AMPLIFIERS FOR CELLULAR NEURAL NETWORKS. [Masters Thesis]. University of Cincinnati; 2006. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1140802889


KTH

4. Linder, Johannes. Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets.

Degree: Computer Science and Communication (CSC), 2015, KTH

This paper investigates the use of deep Convolutional Neural Networks for modeling the intronic regulation of Alternative Splicing on the basis of DNA sequence.… (more)

Subjects/Keywords: Machine Learning; Deep Learning; CNN; CNNs; Convolutional Neural Networks; Convolutional Neural Nets; Neural Networks; Neural Nets; Synthetic Biology; Alternative Splicing; AS; Splicing; DNA Regulation; Synthetic DNA; Massively Parallel Library; Maskinlärning; CNN; CNNs; Convolutional Neural Networks; Convolutional Neural Nets; Faltning; Neurala Nätverk; Neurala Nät; Syntetisk Biologi; Alternativ Splicing; Splicing; AS; DNA; Massivt Parallellt Bibliotek; Syntetiskt DNA; Computer Sciences; Datavetenskap (datalogi)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Linder, J. (2015). Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172327

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Linder, Johannes. “Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets.” 2015. Thesis, KTH. Accessed May 21, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172327.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Linder, Johannes. “Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets.” 2015. Web. 21 May 2018.

Vancouver:

Linder J. Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets. [Internet] [Thesis]. KTH; 2015. [cited 2018 May 21]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172327.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Linder J. Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets. [Thesis]. KTH; 2015. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172327

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

5. Srinivas, Kruthiventi S S. Visual Flow Analysis and Saliency Prediction.

Degree: 2016, Indian Institute of Science

 Nowadays, we have millions of cameras in public places such as traffic junctions, railway stations etc., and capturing video data round the clock. This humongous… (more)

Subjects/Keywords: Visual Flow Analysis; Saliency Prediction; Visual Saliency; Static Flow Analysis; Surveillance Videos; Dynamic Flow Analysis; DeepFix; Convolutional Network; Eye Fixation Prediction; Salient Object Segmentation; Convolutional Neural Networks (CNNs); Saliency Unified; Computational and Data Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Srinivas, K. S. S. (2016). Visual Flow Analysis and Saliency Prediction. (Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ernet.in/handle/2005/2930 ; http://etd.ncsi.iisc.ernet.in/abstracts/3792/G27785-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Srinivas, Kruthiventi S S. “Visual Flow Analysis and Saliency Prediction.” 2016. Thesis, Indian Institute of Science. Accessed May 21, 2018. http://etd.iisc.ernet.in/handle/2005/2930 ; http://etd.ncsi.iisc.ernet.in/abstracts/3792/G27785-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Srinivas, Kruthiventi S S. “Visual Flow Analysis and Saliency Prediction.” 2016. Web. 21 May 2018.

Vancouver:

Srinivas KSS. Visual Flow Analysis and Saliency Prediction. [Internet] [Thesis]. Indian Institute of Science; 2016. [cited 2018 May 21]. Available from: http://etd.iisc.ernet.in/handle/2005/2930 ; http://etd.ncsi.iisc.ernet.in/abstracts/3792/G27785-Abs.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Srinivas KSS. Visual Flow Analysis and Saliency Prediction. [Thesis]. Indian Institute of Science; 2016. Available from: http://etd.iisc.ernet.in/handle/2005/2930 ; http://etd.ncsi.iisc.ernet.in/abstracts/3792/G27785-Abs.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

6. Srinivas, Kruthiventi S S. Visual Flow Analysis and Saliency Prediction.

Degree: 2016, Indian Institute of Science

 Nowadays, we have millions of cameras in public places such as traffic junctions, railway stations etc., and capturing video data round the clock. This humongous… (more)

Subjects/Keywords: Visual Flow Analysis; Saliency Prediction; Visual Saliency; Static Flow Analysis; Surveillance Videos; Dynamic Flow Analysis; DeepFix; Convolutional Network; Eye Fixation Prediction; Salient Object Segmentation; Convolutional Neural Networks (CNNs); Saliency Unified; Computational and Data Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Srinivas, K. S. S. (2016). Visual Flow Analysis and Saliency Prediction. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/2930

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Srinivas, Kruthiventi S S. “Visual Flow Analysis and Saliency Prediction.” 2016. Thesis, Indian Institute of Science. Accessed May 21, 2018. http://hdl.handle.net/2005/2930.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Srinivas, Kruthiventi S S. “Visual Flow Analysis and Saliency Prediction.” 2016. Web. 21 May 2018.

Vancouver:

Srinivas KSS. Visual Flow Analysis and Saliency Prediction. [Internet] [Thesis]. Indian Institute of Science; 2016. [cited 2018 May 21]. Available from: http://hdl.handle.net/2005/2930.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Srinivas KSS. Visual Flow Analysis and Saliency Prediction. [Thesis]. Indian Institute of Science; 2016. Available from: http://hdl.handle.net/2005/2930

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Technology, Sydney

7. Ding, Changxing. Robust face recognition.

Degree: 2016, University of Technology, Sydney

 Face recognition is one of the most important and promising biometric techniques. In face recognition, a similarity score is automatically calculated between face images to… (more)

Subjects/Keywords: Face recognition .; Face recognition algorithms.; Dual-Cross Patterns (DCP).; Multi-Directional Multi-Level Dual-Cross Patterns (MDML-DCPs).; Multimodal Deep Face Representation (MM-DFR).; Convolutional neural networks (CNNs).; Pose-invariant face recognition (PIFR) framework.; Patch-based face representation scheme.; Trunk-Branch Ensemble CNN (TBE-CNN).; Video-based face recognition (VFR).

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ding, C. (2016). Robust face recognition. (Thesis). University of Technology, Sydney. Retrieved from http://hdl.handle.net/10453/52706

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ding, Changxing. “Robust face recognition.” 2016. Thesis, University of Technology, Sydney. Accessed May 21, 2018. http://hdl.handle.net/10453/52706.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ding, Changxing. “Robust face recognition.” 2016. Web. 21 May 2018.

Vancouver:

Ding C. Robust face recognition. [Internet] [Thesis]. University of Technology, Sydney; 2016. [cited 2018 May 21]. Available from: http://hdl.handle.net/10453/52706.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ding C. Robust face recognition. [Thesis]. University of Technology, Sydney; 2016. Available from: http://hdl.handle.net/10453/52706

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.