Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Bot detection). Showing records 1 – 13 of 13 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Rice University

1. Chen, Zhouhan. An Unsupervised Approach to Detect Spam Campaigns that Use Botnets on Twitter.

Degree: MS, Engineering, 2018, Rice University

 In recent years, Twitter has seen a proliferation of automated accounts or bots that send spam, offer clickbait, compromise security using malware, and attempt to… (more)

Subjects/Keywords: Bot detection; Spam detection; Social Network Analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, Z. (2018). An Unsupervised Approach to Detect Spam Campaigns that Use Botnets on Twitter. (Masters Thesis). Rice University. Retrieved from http://hdl.handle.net/1911/105662

Chicago Manual of Style (16th Edition):

Chen, Zhouhan. “An Unsupervised Approach to Detect Spam Campaigns that Use Botnets on Twitter.” 2018. Masters Thesis, Rice University. Accessed October 21, 2019. http://hdl.handle.net/1911/105662.

MLA Handbook (7th Edition):

Chen, Zhouhan. “An Unsupervised Approach to Detect Spam Campaigns that Use Botnets on Twitter.” 2018. Web. 21 Oct 2019.

Vancouver:

Chen Z. An Unsupervised Approach to Detect Spam Campaigns that Use Botnets on Twitter. [Internet] [Masters thesis]. Rice University; 2018. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/1911/105662.

Council of Science Editors:

Chen Z. An Unsupervised Approach to Detect Spam Campaigns that Use Botnets on Twitter. [Masters Thesis]. Rice University; 2018. Available from: http://hdl.handle.net/1911/105662


University of Guelph

2. Altman, Benjamin. Hiding Behind Cards: Identifying Bots and Humans in Online Poker .

Degree: 2013, University of Guelph

 As online gaming becomes more popular, it has also become increasingly important to identify and remove those who leverage automated player systems (bots). Manual bot(more)

Subjects/Keywords: poker; bots; bot detection; bot vs human; computer player; game bots; bot gameplay

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Altman, B. (2013). Hiding Behind Cards: Identifying Bots and Humans in Online Poker . (Thesis). University of Guelph. Retrieved from https://atrium.lib.uoguelph.ca/xmlui/handle/10214/6645

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Altman, Benjamin. “Hiding Behind Cards: Identifying Bots and Humans in Online Poker .” 2013. Thesis, University of Guelph. Accessed October 21, 2019. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/6645.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Altman, Benjamin. “Hiding Behind Cards: Identifying Bots and Humans in Online Poker .” 2013. Web. 21 Oct 2019.

Vancouver:

Altman B. Hiding Behind Cards: Identifying Bots and Humans in Online Poker . [Internet] [Thesis]. University of Guelph; 2013. [cited 2019 Oct 21]. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/6645.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Altman B. Hiding Behind Cards: Identifying Bots and Humans in Online Poker . [Thesis]. University of Guelph; 2013. Available from: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/6645

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indiana University

3. Varol, Onur. Analyzing Social Big Data to Study Online Discourse and Its Manipulation .

Degree: 2017, Indiana University

 The widespread use of social media helps people connect and share their opinions and experiences with millions of others, while simultaneously bringing new threats. This… (more)

Subjects/Keywords: Network Science; Social Media Analysis; Bot Detection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Varol, O. (2017). Analyzing Social Big Data to Study Online Discourse and Its Manipulation . (Thesis). Indiana University. Retrieved from http://hdl.handle.net/2022/21532

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Varol, Onur. “Analyzing Social Big Data to Study Online Discourse and Its Manipulation .” 2017. Thesis, Indiana University. Accessed October 21, 2019. http://hdl.handle.net/2022/21532.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Varol, Onur. “Analyzing Social Big Data to Study Online Discourse and Its Manipulation .” 2017. Web. 21 Oct 2019.

Vancouver:

Varol O. Analyzing Social Big Data to Study Online Discourse and Its Manipulation . [Internet] [Thesis]. Indiana University; 2017. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2022/21532.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Varol O. Analyzing Social Big Data to Study Online Discourse and Its Manipulation . [Thesis]. Indiana University; 2017. Available from: http://hdl.handle.net/2022/21532

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Cambridge

4. Gilani, Syed Zafar ul Hussan. Understanding the behaviour and influence of automated social agents .

Degree: 2018, University of Cambridge

 Online social networks (OSNs) have seen a remarkable rise in the presence of automated social agents, or social bots. Social bots are the new computing… (more)

Subjects/Keywords: computational social science; automated social agents; social bot characterisation; social bot detection; social bot typification; social bot information propagation; social bot influence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gilani, S. Z. u. H. (2018). Understanding the behaviour and influence of automated social agents . (Thesis). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/279022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gilani, Syed Zafar ul Hussan. “Understanding the behaviour and influence of automated social agents .” 2018. Thesis, University of Cambridge. Accessed October 21, 2019. https://www.repository.cam.ac.uk/handle/1810/279022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gilani, Syed Zafar ul Hussan. “Understanding the behaviour and influence of automated social agents .” 2018. Web. 21 Oct 2019.

Vancouver:

Gilani SZuH. Understanding the behaviour and influence of automated social agents . [Internet] [Thesis]. University of Cambridge; 2018. [cited 2019 Oct 21]. Available from: https://www.repository.cam.ac.uk/handle/1810/279022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gilani SZuH. Understanding the behaviour and influence of automated social agents . [Thesis]. University of Cambridge; 2018. Available from: https://www.repository.cam.ac.uk/handle/1810/279022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Kolluru, Katyayani Kiranmayee. A method to identify Record and Replay bots on mobile applications using Behaviometrics.

Degree: Electrical and Space Engineering, 2017, Luleå University of Technology

  Many banking and commerce mobile applications use two-factor authentication for userauthentication purposes which include both password and behavioral based authenticationsystems. These behavioral based authentication… (more)

Subjects/Keywords: Behaviometrics; Machine learning; bot detection; Engineering and Technology; Teknik och teknologier

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kolluru, K. K. (2017). A method to identify Record and Replay bots on mobile applications using Behaviometrics. (Thesis). Luleå University of Technology. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64468

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kolluru, Katyayani Kiranmayee. “A method to identify Record and Replay bots on mobile applications using Behaviometrics.” 2017. Thesis, Luleå University of Technology. Accessed October 21, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64468.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kolluru, Katyayani Kiranmayee. “A method to identify Record and Replay bots on mobile applications using Behaviometrics.” 2017. Web. 21 Oct 2019.

Vancouver:

Kolluru KK. A method to identify Record and Replay bots on mobile applications using Behaviometrics. [Internet] [Thesis]. Luleå University of Technology; 2017. [cited 2019 Oct 21]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64468.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kolluru KK. A method to identify Record and Replay bots on mobile applications using Behaviometrics. [Thesis]. Luleå University of Technology; 2017. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64468

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Mississippi State University

6. Akula, Ravi Kiran. Botnet detection using graph based feature clustering.

Degree: MS, Industrial and Systems Engineering, 2018, Mississippi State University

  Detecting botnets in a network is crucial because bot-activities impact numerous areas such as security, finance, health care, and law enforcement. Most existing rule… (more)

Subjects/Keywords: Cyber sequrity; graph based features; bot detection; Clustering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Akula, R. K. (2018). Botnet detection using graph based feature clustering. (Masters Thesis). Mississippi State University. Retrieved from http://sun.library.msstate.edu/ETD-db/theses/available/etd-10202017-112646/ ;

Chicago Manual of Style (16th Edition):

Akula, Ravi Kiran. “Botnet detection using graph based feature clustering.” 2018. Masters Thesis, Mississippi State University. Accessed October 21, 2019. http://sun.library.msstate.edu/ETD-db/theses/available/etd-10202017-112646/ ;.

MLA Handbook (7th Edition):

Akula, Ravi Kiran. “Botnet detection using graph based feature clustering.” 2018. Web. 21 Oct 2019.

Vancouver:

Akula RK. Botnet detection using graph based feature clustering. [Internet] [Masters thesis]. Mississippi State University; 2018. [cited 2019 Oct 21]. Available from: http://sun.library.msstate.edu/ETD-db/theses/available/etd-10202017-112646/ ;.

Council of Science Editors:

Akula RK. Botnet detection using graph based feature clustering. [Masters Thesis]. Mississippi State University; 2018. Available from: http://sun.library.msstate.edu/ETD-db/theses/available/etd-10202017-112646/ ;


University of New Mexico

7. Minnich, Amanda Jean. Spam, Fraud, and Bots: Improving the Integrity of Online Social Media Data.

Degree: Department of Computer Science, 2017, University of New Mexico

  Online data contains a wealth of information, but as with most user-generated content, it is full of noise, fraud, and automated behavior. The prevalence… (more)

Subjects/Keywords: Bot detection; anomaly detection; unsupervised methods; spam; Twitter; review spam; Artificial Intelligence and Robotics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Minnich, A. J. (2017). Spam, Fraud, and Bots: Improving the Integrity of Online Social Media Data. (Doctoral Dissertation). University of New Mexico. Retrieved from https://digitalrepository.unm.edu/cs_etds/85

Chicago Manual of Style (16th Edition):

Minnich, Amanda Jean. “Spam, Fraud, and Bots: Improving the Integrity of Online Social Media Data.” 2017. Doctoral Dissertation, University of New Mexico. Accessed October 21, 2019. https://digitalrepository.unm.edu/cs_etds/85.

MLA Handbook (7th Edition):

Minnich, Amanda Jean. “Spam, Fraud, and Bots: Improving the Integrity of Online Social Media Data.” 2017. Web. 21 Oct 2019.

Vancouver:

Minnich AJ. Spam, Fraud, and Bots: Improving the Integrity of Online Social Media Data. [Internet] [Doctoral dissertation]. University of New Mexico; 2017. [cited 2019 Oct 21]. Available from: https://digitalrepository.unm.edu/cs_etds/85.

Council of Science Editors:

Minnich AJ. Spam, Fraud, and Bots: Improving the Integrity of Online Social Media Data. [Doctoral Dissertation]. University of New Mexico; 2017. Available from: https://digitalrepository.unm.edu/cs_etds/85


University of Waterloo

8. Abou Daya, Abbas. BotChase: Graph-Based Bot Detection Using Machine Learning.

Degree: 2019, University of Waterloo

Bot detection using machine learning (ML), with network flow-level features, has been extensively studied in the literature. However, existing flow-based approaches typically incur a high… (more)

Subjects/Keywords: machine learning; supervised learning; unsupervised learning; graph; bot detection; BotChase; anomaly-based; normalization; two-phased system

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abou Daya, A. (2019). BotChase: Graph-Based Bot Detection Using Machine Learning. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14654

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Abou Daya, Abbas. “BotChase: Graph-Based Bot Detection Using Machine Learning.” 2019. Thesis, University of Waterloo. Accessed October 21, 2019. http://hdl.handle.net/10012/14654.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Abou Daya, Abbas. “BotChase: Graph-Based Bot Detection Using Machine Learning.” 2019. Web. 21 Oct 2019.

Vancouver:

Abou Daya A. BotChase: Graph-Based Bot Detection Using Machine Learning. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/10012/14654.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Abou Daya A. BotChase: Graph-Based Bot Detection Using Machine Learning. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14654

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New Mexico

9. Chavoshi, Nikan. Mining Temporal Activity Patterns On Social Media.

Degree: Department of Computer Science, 2018, University of New Mexico

  Social media provide communication networks for their users to easily create and share content. Automated accounts, called bots, abuse these platforms by engaging in… (more)

Subjects/Keywords: Social Media; Bot Detection; Time Series Mining; Data Mining; Artificial Intelligence and Robotics; Databases and Information Systems; Other Computer Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chavoshi, N. (2018). Mining Temporal Activity Patterns On Social Media. (Doctoral Dissertation). University of New Mexico. Retrieved from https://digitalrepository.unm.edu/cs_etds/92

Chicago Manual of Style (16th Edition):

Chavoshi, Nikan. “Mining Temporal Activity Patterns On Social Media.” 2018. Doctoral Dissertation, University of New Mexico. Accessed October 21, 2019. https://digitalrepository.unm.edu/cs_etds/92.

MLA Handbook (7th Edition):

Chavoshi, Nikan. “Mining Temporal Activity Patterns On Social Media.” 2018. Web. 21 Oct 2019.

Vancouver:

Chavoshi N. Mining Temporal Activity Patterns On Social Media. [Internet] [Doctoral dissertation]. University of New Mexico; 2018. [cited 2019 Oct 21]. Available from: https://digitalrepository.unm.edu/cs_etds/92.

Council of Science Editors:

Chavoshi N. Mining Temporal Activity Patterns On Social Media. [Doctoral Dissertation]. University of New Mexico; 2018. Available from: https://digitalrepository.unm.edu/cs_etds/92


KTH

10. Teljstedt, Erik Christopher. Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data.

Degree: Computer Science and Communication (CSC), 2016, KTH

In this thesis, we have studied the problem of detecting automated Twitter accounts related to the Ukraine conflict using supervised learning. A striking problem… (more)

Subjects/Keywords: bot detection; information operations; synthetically constructed training data; social media analysis; classification; learning systems; social networking (online); bot detection; classification performance; classification results; machine learning approaches; military conflicts; semi-automatic; automation; Computer Sciences; Datavetenskap (datalogi)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Teljstedt, E. C. (2016). Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192656

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Teljstedt, Erik Christopher. “Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data.” 2016. Thesis, KTH. Accessed October 21, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192656.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Teljstedt, Erik Christopher. “Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data.” 2016. Web. 21 Oct 2019.

Vancouver:

Teljstedt EC. Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data. [Internet] [Thesis]. KTH; 2016. [cited 2019 Oct 21]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192656.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Teljstedt EC. Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data. [Thesis]. KTH; 2016. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192656

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Ludena Romana, Dennis Arturo. Development and Evaluation of a Comprehensible DNS Query Traffic based Statistical Bot Detection System and a Portable Security Appliance : DNS クエリトラフィック トウケイガタ ボット ケンチ システム オヨビ ケイタイガタ セキュリティ ソウチ ノ カイハツ オヨビ ヒョウカ ケンキュウ; DNSクエリトラフィック統計型ボット検知システムおよび携帯型セキュリティ装置の開発および評価研究.

Degree: Kumamoto University / 熊本大学

 Recent worm attacks are not driven anymore by the single technical-challenge that represents getting inside a system or brake into a well-known organization security systems.… (more)

Subjects/Keywords: 25Computer; Security; Bot Detection System; virus; botnet; the DNS query traffic; Statistical Detection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ludena Romana, D. A. (n.d.). Development and Evaluation of a Comprehensible DNS Query Traffic based Statistical Bot Detection System and a Portable Security Appliance : DNS クエリトラフィック トウケイガタ ボット ケンチ システム オヨビ ケイタイガタ セキュリティ ソウチ ノ カイハツ オヨビ ヒョウカ ケンキュウ; DNSクエリトラフィック統計型ボット検知システムおよび携帯型セキュリティ装置の開発および評価研究. (Thesis). Kumamoto University / 熊本大学. Retrieved from http://hdl.handle.net/2298/21568

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ludena Romana, Dennis Arturo. “Development and Evaluation of a Comprehensible DNS Query Traffic based Statistical Bot Detection System and a Portable Security Appliance : DNS クエリトラフィック トウケイガタ ボット ケンチ システム オヨビ ケイタイガタ セキュリティ ソウチ ノ カイハツ オヨビ ヒョウカ ケンキュウ; DNSクエリトラフィック統計型ボット検知システムおよび携帯型セキュリティ装置の開発および評価研究.” Thesis, Kumamoto University / 熊本大学. Accessed October 21, 2019. http://hdl.handle.net/2298/21568.

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ludena Romana, Dennis Arturo. “Development and Evaluation of a Comprehensible DNS Query Traffic based Statistical Bot Detection System and a Portable Security Appliance : DNS クエリトラフィック トウケイガタ ボット ケンチ システム オヨビ ケイタイガタ セキュリティ ソウチ ノ カイハツ オヨビ ヒョウカ ケンキュウ; DNSクエリトラフィック統計型ボット検知システムおよび携帯型セキュリティ装置の開発および評価研究.” Web. 21 Oct 2019.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Ludena Romana DA. Development and Evaluation of a Comprehensible DNS Query Traffic based Statistical Bot Detection System and a Portable Security Appliance : DNS クエリトラフィック トウケイガタ ボット ケンチ システム オヨビ ケイタイガタ セキュリティ ソウチ ノ カイハツ オヨビ ヒョウカ ケンキュウ; DNSクエリトラフィック統計型ボット検知システムおよび携帯型セキュリティ装置の開発および評価研究. [Internet] [Thesis]. Kumamoto University / 熊本大学; [cited 2019 Oct 21]. Available from: http://hdl.handle.net/2298/21568.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

Council of Science Editors:

Ludena Romana DA. Development and Evaluation of a Comprehensible DNS Query Traffic based Statistical Bot Detection System and a Portable Security Appliance : DNS クエリトラフィック トウケイガタ ボット ケンチ システム オヨビ ケイタイガタ セキュリティ ソウチ ノ カイハツ オヨビ ヒョウカ ケンキュウ; DNSクエリトラフィック統計型ボット検知システムおよび携帯型セキュリティ装置の開発および評価研究. [Thesis]. Kumamoto University / 熊本大学; Available from: http://hdl.handle.net/2298/21568

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.


Brno University of Technology

12. Daniš, Daniel. Detekce malware pomocí analýzy DNS provozu .

Degree: 2016, Brno University of Technology

 Tato diplomová práce se zabýva návrhem a implementací nástroje pro detekci malwaru pomocí analýzy DNS provozu. Text práce je rozdělen na teoretickou a praktickou část.… (more)

Subjects/Keywords: DNS; detekce malware; botnet; GMAD; analýza síťových dat; C&C; bot master; fast-flux; domain-flux; blacklist; DNS; Malware detection; botnet; GMAD; Traffic analysis; C&C; bot master; fast-flux; domain-flux; blacklist

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daniš, D. (2016). Detekce malware pomocí analýzy DNS provozu . (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/61793

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Daniš, Daniel. “Detekce malware pomocí analýzy DNS provozu .” 2016. Thesis, Brno University of Technology. Accessed October 21, 2019. http://hdl.handle.net/11012/61793.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Daniš, Daniel. “Detekce malware pomocí analýzy DNS provozu .” 2016. Web. 21 Oct 2019.

Vancouver:

Daniš D. Detekce malware pomocí analýzy DNS provozu . [Internet] [Thesis]. Brno University of Technology; 2016. [cited 2019 Oct 21]. Available from: http://hdl.handle.net/11012/61793.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Daniš D. Detekce malware pomocí analýzy DNS provozu . [Thesis]. Brno University of Technology; 2016. Available from: http://hdl.handle.net/11012/61793

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Arizona State University

13. Morstatter, Fred. Discovering and Mitigating Social Data Bias.

Degree: Computer Science, 2017, Arizona State University

Subjects/Keywords: Artificial intelligence; Computer science; Engineering; bias; bot detection; cultural bias; data collection bias; malicious users; perceptual bias

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morstatter, F. (2017). Discovering and Mitigating Social Data Bias. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/45009

Chicago Manual of Style (16th Edition):

Morstatter, Fred. “Discovering and Mitigating Social Data Bias.” 2017. Doctoral Dissertation, Arizona State University. Accessed October 21, 2019. http://repository.asu.edu/items/45009.

MLA Handbook (7th Edition):

Morstatter, Fred. “Discovering and Mitigating Social Data Bias.” 2017. Web. 21 Oct 2019.

Vancouver:

Morstatter F. Discovering and Mitigating Social Data Bias. [Internet] [Doctoral dissertation]. Arizona State University; 2017. [cited 2019 Oct 21]. Available from: http://repository.asu.edu/items/45009.

Council of Science Editors:

Morstatter F. Discovering and Mitigating Social Data Bias. [Doctoral Dissertation]. Arizona State University; 2017. Available from: http://repository.asu.edu/items/45009

.