You searched for subject:(Bio Impedance Spectroscopy)
.
Showing records 1 – 6 of
6 total matches.
No search limiters apply to these results.

Indian Institute of Science
1.
Naik, Dinesh.
Development of Handheld Impedance Spectroscopy Instrument Suitable for Biological Tissue Characterization.
Degree: MSc Engg, Faculty of Engineering, 2017, Indian Institute of Science
URL: http://etd.iisc.ac.in/handle/2005/2813
► Impedance spectroscopy (IS) is a powerful and sophisticated tool to characterize intrinsic electrical properties of any materials and its interface, measuring the electric and transport…
(more)
▼ Impedance spectroscopy (IS) is a powerful and sophisticated tool to characterize intrinsic electrical properties of any materials and its interface, measuring the electric and transport properties of the materials, investigating the mechanism of electrochemical reaction etc. The fundamental principle of IS is the measurement of the
impedance (equivalent to resistance in DC analysis) of the system under investigation over a wide frequency range. The IS study provides quantitative information about the conductance, the dielectric coefficient, the static properties of the interfaces like contact resistance, and its dynamic change due to adsorption or charge transfer phenomenon. Commercial
Impedance analyzers that are available today are bulky and cannot be carried or deployed at remote locations for monitoring so easily, also such systems are expensive.
Though IS concept is not new, standard
Impedance analyzers are interfaced to the computer and require detailed analysis of the data by experts. Advancement in data conversion and signal processing is opening up opportunities for handheld smart devices. Hence it is felt that there is a need to develop a versatile low cost, portable (handheld)
impedance analyzer instrument which can be used to characterize non linear materials like semiconductors, biological objects, and electrochemical samples. The instrument should be capable accepting test parameters using a touch screen based keypad and display test results on a Graphical LCD for quick analysis. Hence a standalone handheld instrument is designed to work independently without any PC control.
The designed instrument consists of Digital Direct Synthesis (DDS) signal generator, a constant current source, Analog to digital convertor, Microcontroller to control frequency sweep parameters and acquire data, TFT Graphics LCD for displaying various plots, touch screen user interface to input sweep parameters and data storage section for offline analysis of obtained data. The instrument is designed to work on a battery or a regulated power supply. The instrument has options to display Nyquist plot, capacitance versus frequency plot, real and imaginary value of
impedance versus frequency plot etc.
Experimental investigations are conducted using this instrument on few passive components like resistor, inductor, capacitor and combinations. The instrument is also used to monitor the performance of polyimide based capacitive humidity sensor and its characteristics like sensitivity, linearity, repeatability and hysteresis. The measurement accuracy of the
impedance varies from 0.7% to 4.67% depending on the
impedance range.
Bio impedance measurements are carried out on biological samples like Banana and the measured values are compared with the standard LCR meter. The
bio impedance measurements are repeatable and comparable with the standard LCR meter readings and it is found to be within ±1% accuracy at the calibrated frequency.
The instrument is also validated using industry standard Gauge R & R procedure to understand the…
Advisors/Committee Members: Nagaraju, J (advisor).
Subjects/Keywords: Bio Impedance Spectroscopy; Tissue Impedance; Impedance Spectroscopy; Handheld Impedance Analyzer; Bio Impedance Measurement (BIS); Instrumentation
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Naik, D. (2017). Development of Handheld Impedance Spectroscopy Instrument Suitable for Biological Tissue Characterization. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2813
Chicago Manual of Style (16th Edition):
Naik, Dinesh. “Development of Handheld Impedance Spectroscopy Instrument Suitable for Biological Tissue Characterization.” 2017. Masters Thesis, Indian Institute of Science. Accessed April 13, 2021.
http://etd.iisc.ac.in/handle/2005/2813.
MLA Handbook (7th Edition):
Naik, Dinesh. “Development of Handheld Impedance Spectroscopy Instrument Suitable for Biological Tissue Characterization.” 2017. Web. 13 Apr 2021.
Vancouver:
Naik D. Development of Handheld Impedance Spectroscopy Instrument Suitable for Biological Tissue Characterization. [Internet] [Masters thesis]. Indian Institute of Science; 2017. [cited 2021 Apr 13].
Available from: http://etd.iisc.ac.in/handle/2005/2813.
Council of Science Editors:
Naik D. Development of Handheld Impedance Spectroscopy Instrument Suitable for Biological Tissue Characterization. [Masters Thesis]. Indian Institute of Science; 2017. Available from: http://etd.iisc.ac.in/handle/2005/2813

University of Manchester
2.
Tang, Jiawei.
Bio-Impedance Spectroscopy Analysis: Measurement and
Finite Element Based Cell Modelling.
Degree: 2020, University of Manchester
URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:326567
► Bio-impedance spectroscopy has been increasingly used for medical and food industrial applications as it provides information about cellular structure, composition and integrity of cell membranes…
(more)
▼ Bio-
impedance spectroscopy has been increasingly
used for medical and food industrial applications as it provides
information about cellular structure, composition and integrity of
cell membranes of biological samples. This study is focused on
analysing how
bio-
impedance spectrum is affected by cellular
structure (cell deformation, shape and orientation) and the
integrity of cell membranes during the frozen-thaw injury process.
Two measurement systems were designed and built: contact-electrode
measurement and non-contact induction measurement system. For the
former, the frequency range of measurement is 10 kHz to 10 MHz
while the frequency range for the latter is 400 kHz to 6 MHz. Both
systems can detect the change in
impedance spectrum of biological
samples (potato and meat) caused by the poration of the cell
membranes during the frozen-thaw injury process. A finite element
method (FEM) simulation solver was built and applied for the
simulation of BIS. Specifically, the poration of the cell membrane
was simulated and it was proved to cause the increase in equivalent
conductivity of the cell membrane and this is in agreement with the
experimental observation carried out in this thesis work and
previous studies reported in literature. The shape and orientation
effect of the cell was also simulated and the results were
explained with physical insights. In addition, a new acceleration
method for simulating thin cell membrane based on FEM was proposed
and implemented. The modelling method accelerates the computing
progress by reducing the number of meshing elements without
reducing the accuracy of the simulation in a significant manner in
comparison with analytical solutions. The accuracy of the
acceleration modelling (reduced-mesh model) was also validated by
the full-meshed FEM model to be within 0.4%-2% while the simulation
time was reduced up to 25%.
Advisors/Committee Members: PEYTON, ANTHONY AJ, Yin, Wuliang, Peyton, Anthony.
Subjects/Keywords: finite element method; bio-impedance spectroscopy; non-contact induction measurement; frozen-thaw effect
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Tang, J. (2020). Bio-Impedance Spectroscopy Analysis: Measurement and
Finite Element Based Cell Modelling. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:326567
Chicago Manual of Style (16th Edition):
Tang, Jiawei. “Bio-Impedance Spectroscopy Analysis: Measurement and
Finite Element Based Cell Modelling.” 2020. Doctoral Dissertation, University of Manchester. Accessed April 13, 2021.
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:326567.
MLA Handbook (7th Edition):
Tang, Jiawei. “Bio-Impedance Spectroscopy Analysis: Measurement and
Finite Element Based Cell Modelling.” 2020. Web. 13 Apr 2021.
Vancouver:
Tang J. Bio-Impedance Spectroscopy Analysis: Measurement and
Finite Element Based Cell Modelling. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2021 Apr 13].
Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:326567.
Council of Science Editors:
Tang J. Bio-Impedance Spectroscopy Analysis: Measurement and
Finite Element Based Cell Modelling. [Doctoral Dissertation]. University of Manchester; 2020. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:326567

University of Manchester
3.
Tang, Jiawei.
Bio-impedance spectroscopy analysis : measurement and finite element based cell modelling.
Degree: PhD, 2020, University of Manchester
URL: https://www.research.manchester.ac.uk/portal/en/theses/bioimpedance-spectroscopy-analysis-measurement-and-finite-element-based-cell-modelling(45c7f0ed-c7ae-4eb4-a572-5f25c6958777).html
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820124
► Bio-impedance spectroscopy has been increasingly used for medical and food industrial applications as it provides information about cellular structure, composition and integrity of cell membranes…
(more)
▼ Bio-impedance spectroscopy has been increasingly used for medical and food industrial applications as it provides information about cellular structure, composition and integrity of cell membranes of biological samples. This study is focused on analysing how bio-impedance spectrum is affected by cellular structure (cell deformation, shape and orientation) and the integrity of cell membranes during the frozen-thaw injury process. Two measurement systems were designed and built: contact-electrode measurement and non-contact induction measurement system. For the former, the frequency range of measurement is 10 kHz to 10 MHz while the frequency range for the latter is 400 kHz to 6 MHz. Both systems can detect the change in impedance spectrum of biological samples (potato and meat) caused by the poration of the cell membranes during the frozen-thaw injury process. A finite element method (FEM) simulation solver was built and applied for the simulation of BIS. Specifically, the poration of the cell membrane was simulated and it was proved to cause the increase in equivalent conductivity of the cell membrane and this is in agreement with the experimental observation carried out in this thesis work and previous studies reported in literature. The shape and orientation effect of the cell was also simulated and the results were explained with physical insights. In addition, a new acceleration method for simulating thin cell membrane based on FEM was proposed and implemented. The modelling method accelerates the computing progress by reducing the number of meshing elements without reducing the accuracy of the simulation in a significant manner in comparison with analytical solutions. The accuracy of the acceleration modelling (reduced-mesh model) was also validated by the full-meshed FEM model to be within 0.4%-2% while the simulation time was reduced up to 25%.
Subjects/Keywords: finite element method; bio-impedance spectroscopy; non-contact induction measurement; frozen-thaw effect
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Tang, J. (2020). Bio-impedance spectroscopy analysis : measurement and finite element based cell modelling. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/bioimpedance-spectroscopy-analysis-measurement-and-finite-element-based-cell-modelling(45c7f0ed-c7ae-4eb4-a572-5f25c6958777).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820124
Chicago Manual of Style (16th Edition):
Tang, Jiawei. “Bio-impedance spectroscopy analysis : measurement and finite element based cell modelling.” 2020. Doctoral Dissertation, University of Manchester. Accessed April 13, 2021.
https://www.research.manchester.ac.uk/portal/en/theses/bioimpedance-spectroscopy-analysis-measurement-and-finite-element-based-cell-modelling(45c7f0ed-c7ae-4eb4-a572-5f25c6958777).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820124.
MLA Handbook (7th Edition):
Tang, Jiawei. “Bio-impedance spectroscopy analysis : measurement and finite element based cell modelling.” 2020. Web. 13 Apr 2021.
Vancouver:
Tang J. Bio-impedance spectroscopy analysis : measurement and finite element based cell modelling. [Internet] [Doctoral dissertation]. University of Manchester; 2020. [cited 2021 Apr 13].
Available from: https://www.research.manchester.ac.uk/portal/en/theses/bioimpedance-spectroscopy-analysis-measurement-and-finite-element-based-cell-modelling(45c7f0ed-c7ae-4eb4-a572-5f25c6958777).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820124.
Council of Science Editors:
Tang J. Bio-impedance spectroscopy analysis : measurement and finite element based cell modelling. [Doctoral Dissertation]. University of Manchester; 2020. Available from: https://www.research.manchester.ac.uk/portal/en/theses/bioimpedance-spectroscopy-analysis-measurement-and-finite-element-based-cell-modelling(45c7f0ed-c7ae-4eb4-a572-5f25c6958777).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.820124
4.
Boutzen, Jocelyn.
Contribution à la modélisation d’interface biologique par spectroscopie d’impédance : application au suivi de l’épithélium pigmenté de la rétine durant sa croissance et face à diverses perturbations : Modelling of biological interfaces using impedance spectroscopy : application to the monitoring of retinal pigment epithelium during growth and facing various perturbations.
Degree: Docteur es, Electronique, Optronique et Systèmes, 2019, Université Paris-Est
URL: http://www.theses.fr/2019PESC2044
► Cette thèse porte sur l’étude de l’interface entre électrodes et cellules épithéliales de la rétine : l’épithélium pigmenté. Les cellules RPE (Retinal Pigment Epithelium) qui…
(more)
▼ Cette thèse porte sur l’étude de l’interface entre électrodes et cellules épithéliales de la rétine : l’épithélium pigmenté. Les cellules RPE (Retinal Pigment Epithelium) qui le constitue forment une monocouche qui à confluence est constituée de cellules de forme polygonale. Elles sont juxtaposées et en contact intime les unes avec les autres par la présence de jonctions serrées. Un épithélium pigmenté endommagé est souvent associé à des pathologies de la vision. La spectroscopie d’impédance est une méthode de mesure qui permet d’étudier de manière non destructive un milieu composé d’éléments diélectriques et conducteurs. Cette mesure s’applique particulièrement bien aux cellules épithéliales. On applique ceci à l’étude du tapis cellulaires. Les membranes cellulaires remplissent le rôle de milieu diélectrique alors que les milieux ioniques intra et extracellulaires peuvent être considérés conducteurs. On peut en première approche analyser le module de l’impédance mesurée à une fréquence donnée afin de suivre le développement des tissus. Par exemple dans le domaine des implants à électrodes les fréquences autour de 1 KHz sont couramment citées. On peut par la suite mesurer l’impédance dans une gamme de fréquence plus importante et appliquer un modèle composé de dipôles électriques aux mesures. L’analyse des paramètres extraits peut donner une interprétation plus fine de l’état du tapis cellulaire. Deux notions seront principalement abordées dans cette thèse. Tout d’abord l’étude de l’utilisation de l’élément à constante de phase (CPE) dans la représentation du tapis cellulaire. Ensuite dans le cadre de ce modèle on va étudier le tapis cellulaire face à différentes perturbations
This manuscript focuses on studying the interface between an electrode and epithelial cells of the retina: the Retinal Pigment Epithelium (RPE). The cells that are part of this epithelium develops until they form a monolayer of juxtaposed cells with close lateral contact involving the presence of tight junctions. A damaged epithelium is often associated with sight alterations.Impedance spectroscopy is a measurement method that allows to study materials containing both conducting and dielectric elements in a non–destructive way. We apply this technique to the RPE cells layer. Cells membranes are the dielectric part while the intra and extracellular mediums are the conductive parts of this material. In a first stage one can measure the impedance at a fixed frequency as a way to follow tissues development. As an example, the 1 KHz frequency is often considered in characterizing electrodes from implanted devices. One can also measure the impedance over a wider bandwidth and apply an electric model circuit to the data. The extracted parameters can give a better interpretation of the state of the cell layer. In this work, two part will be mainly investigated. First we will evaluate the use of a constant phase element in part of the electrical model describing the cell layer. Second, and considering the same model, we will observe the reaction of…
Advisors/Committee Members: Lissorgues, Gaëlle (thesis director).
Subjects/Keywords: Spectroscopie d'impédance; Bio-Électronique; Epithelium pigmenté de la rétine; Impedance spectroscopy; Bio-Electronics; Retinal pigment epithelium
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Boutzen, J. (2019). Contribution à la modélisation d’interface biologique par spectroscopie d’impédance : application au suivi de l’épithélium pigmenté de la rétine durant sa croissance et face à diverses perturbations : Modelling of biological interfaces using impedance spectroscopy : application to the monitoring of retinal pigment epithelium during growth and facing various perturbations. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2019PESC2044
Chicago Manual of Style (16th Edition):
Boutzen, Jocelyn. “Contribution à la modélisation d’interface biologique par spectroscopie d’impédance : application au suivi de l’épithélium pigmenté de la rétine durant sa croissance et face à diverses perturbations : Modelling of biological interfaces using impedance spectroscopy : application to the monitoring of retinal pigment epithelium during growth and facing various perturbations.” 2019. Doctoral Dissertation, Université Paris-Est. Accessed April 13, 2021.
http://www.theses.fr/2019PESC2044.
MLA Handbook (7th Edition):
Boutzen, Jocelyn. “Contribution à la modélisation d’interface biologique par spectroscopie d’impédance : application au suivi de l’épithélium pigmenté de la rétine durant sa croissance et face à diverses perturbations : Modelling of biological interfaces using impedance spectroscopy : application to the monitoring of retinal pigment epithelium during growth and facing various perturbations.” 2019. Web. 13 Apr 2021.
Vancouver:
Boutzen J. Contribution à la modélisation d’interface biologique par spectroscopie d’impédance : application au suivi de l’épithélium pigmenté de la rétine durant sa croissance et face à diverses perturbations : Modelling of biological interfaces using impedance spectroscopy : application to the monitoring of retinal pigment epithelium during growth and facing various perturbations. [Internet] [Doctoral dissertation]. Université Paris-Est; 2019. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2019PESC2044.
Council of Science Editors:
Boutzen J. Contribution à la modélisation d’interface biologique par spectroscopie d’impédance : application au suivi de l’épithélium pigmenté de la rétine durant sa croissance et face à diverses perturbations : Modelling of biological interfaces using impedance spectroscopy : application to the monitoring of retinal pigment epithelium during growth and facing various perturbations. [Doctoral Dissertation]. Université Paris-Est; 2019. Available from: http://www.theses.fr/2019PESC2044

Université de Lorraine
5.
Claudel, Julien.
Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines : Electric impedance spectroscopy by bio-sensor using micro-electrodes : Application to blood cells flow cytometry.
Degree: Docteur es, Systèmes électroniques, 2013, Université de Lorraine
URL: http://www.theses.fr/2013LORR0169
► Ce travail de thèse porte sur la réalisation et la validation d'un capteur pour la mesure d'impédance en cytométrie de flux associée à un dispositif…
(more)
▼ Ce travail de thèse porte sur la réalisation et la validation d'un capteur pour la mesure d'impédance en cytométrie de flux associée à un dispositif microfluidique pour des cellules sanguines dans la gamme de fréquences (100 kHz-10 MHz). Un premier chapitre introduit les propriétés électriques et diélectriques des tissus vivants. Les effets de chaque élément des cellules sur l'impédance globale mesurée sont décrits, ainsi que les modèles associés. Un état de l'art, sur les mesures de l'échelle macroscopique à la mesure unitaire de cellules, est exposé dans le second chapitre. Les mesures en cytométrie de flux et l'utilisation possible des actionneurs à ondes acoustiques de surface (SAW) y sont aussi étudiées. Le troisième chapitre concerne la modélisation analytique et la simulation par la méthode des éléments finis de cellules unitaires par des microélectrodes de différentes géométries. Les résultats de cette section ont permis de déterminer les meilleures géométries, leurs sensibilités, et leurs réponses. La fabrication du capteur est étudiée dans le quatrième chapitre. Les contraintes liées à la faisabilité par les techniques de micro-fabrication et la biocompatibilité des matériaux y sont développées. Des premiers tests de validation sur les écoulements y sont effectués. Le cinquième et dernier chapitre est centré sur la mesure de cellules et particules. Des tests de calibration ont été réalisés pour déterminer le facteur de forme des électrodes et les impédances parasites. Les mesures suivantes sur des cellules et particules ont permis de valider les résultats obtenus en simulation, ainsi que la discrimination des particules testées en fonction de leurs dimensions
This thesis focuses on the implementation and validation of a microfluidic bioimpedance sensor for cytometric measures in the frequency range ( 100kHz - 10MHz ) of biological cells ( blood cells) combined with a microfluidic device. The first chapter introduces the electrical and dielectric properties of living tissues and summarizes the state of the art. The effects of each element of the cells on the overall measured impedance are described, as well as the associated models. A state of the art, on the bioimpedance macroscopic measurements unit cell is outlined in the second chapter. Measurements by flow cytometry and the possible use of surface acoustic wave (SAW) devices as actuators are also studied. The third chapter deals with analytical modeling and simulation by the finite element method of unit cells by microelectrodes of different geometries. 3D simulations were done showing the best configuration for the electrodes design. The results of this section were used to determine the best geometry, their sensibilities, and their answers. The sensor design is described in the fourth chapter. Technological constraints related to its micro- fabrication techniques feasibility and biocompatibility of materials are developed. Flows validation tests were done and are described. The fifth and final chapter focuses on the measurement of cells and…
Advisors/Committee Members: Nadi, Mustapha (thesis director), Elmazria, Omar (thesis director).
Subjects/Keywords: Spectroscopie d'impédance; Bio-capteurs; Cellules unitaires; Microfluidique; Impedance spectroscopy; Bio-sensors; Single cells; Microfluidic; 660.6; 610.28
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Claudel, J. (2013). Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines : Electric impedance spectroscopy by bio-sensor using micro-electrodes : Application to blood cells flow cytometry. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2013LORR0169
Chicago Manual of Style (16th Edition):
Claudel, Julien. “Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines : Electric impedance spectroscopy by bio-sensor using micro-electrodes : Application to blood cells flow cytometry.” 2013. Doctoral Dissertation, Université de Lorraine. Accessed April 13, 2021.
http://www.theses.fr/2013LORR0169.
MLA Handbook (7th Edition):
Claudel, Julien. “Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines : Electric impedance spectroscopy by bio-sensor using micro-electrodes : Application to blood cells flow cytometry.” 2013. Web. 13 Apr 2021.
Vancouver:
Claudel J. Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines : Electric impedance spectroscopy by bio-sensor using micro-electrodes : Application to blood cells flow cytometry. [Internet] [Doctoral dissertation]. Université de Lorraine; 2013. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2013LORR0169.
Council of Science Editors:
Claudel J. Spectroscopie d'impédance électrique par biocapteur à micro-électrodes : application à la cytométrie de flux de cellules sanguines : Electric impedance spectroscopy by bio-sensor using micro-electrodes : Application to blood cells flow cytometry. [Doctoral Dissertation]. Université de Lorraine; 2013. Available from: http://www.theses.fr/2013LORR0169

Université de Lorraine
6.
Ngo, Thanh Tuan.
Contribution à la mesure de bioimpédance électrique de cellules biologiques par micro-capteurs interdigités : optimisation, conception et validation de capteurs : Contribution to the measurement of electrical bioimpedance of biological cells by interdigitated micro-sensors : Optimization, design and validation of sensors.
Degree: Docteur es, Systèmes électroniques, 2015, Université de Lorraine
URL: http://www.theses.fr/2015LORR0077
► Cette thèse porte sur la conception et la réalisation de micros capteurs à électrodes interdigitées pour la caractérisation des milieux biologiques dans la gamme de…
(more)
▼ Cette thèse porte sur la conception et la réalisation de micros capteurs à électrodes interdigitées pour la caractérisation des milieux biologiques dans la gamme de fréquences : 100 kHz - 10 MHz. L'objectif principal de ce travail est l’optimisation géométrique de la structure d’un capteur à électrodes interdigitées afin d’élargir la plage fréquentielle de mesure en réduisant les effets de polarisation. Le premier chapitre synthétise les données fondamentales relatives au comportement électrique des tissus biologiques ainsi que leurs propriétés électriques notamment en basses fréquences. Le deuxième chapitre concerne une approche théorique pour l’optimisation du capteur pour élargir la bande de fréquence utile de mesure ; ce chapitre recommande également une nouvelle méthode pour déterminer les paramètres de la double couche à la surface en contact entre les électrodes et le milieu biologique. Dans le troisième chapitre nous proposons une modélisation tridimensionnelle du système d’électrodes chargé par un modèle du milieu biologique sous le logiciel ConventorWare®. Les résultats de simulation sont discutés. Les résultats obtenus nous permettent d’évaluer l'influence des paramètres géométriques de la structure interdigitée du capteur ainsi que les propriétés diélectriques du milieu sur l’impédance bioélectrique. Les facteurs d’influence en fonction de la fréquence sont ainsi maîtrisés lors de la conception d’u capteur interdigité destiné à la mesure de bioimpédance. Dans le quatrième chapitre, les dispositifs ainsi que la conception et la fabrication des composants développés au cours de cette thèse sont décrits. Dans le dernier chapitre, les mesures expérimentales effectuées avec de très faibles volumes de différentes solutions (solutions étalons, sang humain) par cinq micros capteurs à électrodes interdigitées. Les mesures sur les échantillons ainsi que la validation des théories d’optimisation ont été élaborées et discutées. Enfin nous avons comparé nos résultats à des valeurs publiées dans la littérature et nous avons justifié expérimentalement la théorie d’optimisation développée.
This thesis focuses on the design and realization of interdigitated sensors for the electrical characterization of the biological medium within the frequency range: 100 kHz - 10 MHz. The main objective of this thesis is to optimize the geometry of the sensor structure according to the specificities of the interdigitated electrodes structure. This optimization leads to widen the measurement frequency range by reducing the effects of polarization at low frequency. The first chapter synthesizes the basics and fundamentals relative to the electric behavior of biological tissues as well as to their electric properties. The second chapter concerns a theoretical approach for the optimization of the sensor to widen the useful frequency band of measurement; this chapter also presents a new method to determine the parameters of the double layer at the contact interface between the electrodes and the biological medium. A three-dimensional…
Advisors/Committee Members: Nadi, Mustapha (thesis director), Kourtiche, Djilali (thesis director).
Subjects/Keywords: Spectroscopie d’impédance électrique; Bio-Impédance; Microélectrodes; Capteurs à électrodes interdigitées; Biocapteur; Spectroscopy of electric impedance; Bio-Impedance; Microelectrodes; Sensors with interdigitated electrodes; Biosensor; 621.381 536; 572.437
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Ngo, T. T. (2015). Contribution à la mesure de bioimpédance électrique de cellules biologiques par micro-capteurs interdigités : optimisation, conception et validation de capteurs : Contribution to the measurement of electrical bioimpedance of biological cells by interdigitated micro-sensors : Optimization, design and validation of sensors. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2015LORR0077
Chicago Manual of Style (16th Edition):
Ngo, Thanh Tuan. “Contribution à la mesure de bioimpédance électrique de cellules biologiques par micro-capteurs interdigités : optimisation, conception et validation de capteurs : Contribution to the measurement of electrical bioimpedance of biological cells by interdigitated micro-sensors : Optimization, design and validation of sensors.” 2015. Doctoral Dissertation, Université de Lorraine. Accessed April 13, 2021.
http://www.theses.fr/2015LORR0077.
MLA Handbook (7th Edition):
Ngo, Thanh Tuan. “Contribution à la mesure de bioimpédance électrique de cellules biologiques par micro-capteurs interdigités : optimisation, conception et validation de capteurs : Contribution to the measurement of electrical bioimpedance of biological cells by interdigitated micro-sensors : Optimization, design and validation of sensors.” 2015. Web. 13 Apr 2021.
Vancouver:
Ngo TT. Contribution à la mesure de bioimpédance électrique de cellules biologiques par micro-capteurs interdigités : optimisation, conception et validation de capteurs : Contribution to the measurement of electrical bioimpedance of biological cells by interdigitated micro-sensors : Optimization, design and validation of sensors. [Internet] [Doctoral dissertation]. Université de Lorraine; 2015. [cited 2021 Apr 13].
Available from: http://www.theses.fr/2015LORR0077.
Council of Science Editors:
Ngo TT. Contribution à la mesure de bioimpédance électrique de cellules biologiques par micro-capteurs interdigités : optimisation, conception et validation de capteurs : Contribution to the measurement of electrical bioimpedance of biological cells by interdigitated micro-sensors : Optimization, design and validation of sensors. [Doctoral Dissertation]. Université de Lorraine; 2015. Available from: http://www.theses.fr/2015LORR0077
.