Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Behavior architectures). Showing records 1 – 3 of 3 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of St. Andrews

1. Kosikova, Tamara. Developing complexity using networks of synthetic replicators .

Degree: 2017, University of St. Andrews

Molecular recognition plays an essential role in the self-assembly and self-organisation of biological and chemical systems alike—allowing individual components to form complex interconnected networks. Within these systems, the nature of the recognition and reactive processes determines their functional and structural properties, and even small changes in their identity or orientation can exert a dramatic effect on the observed properties. The rapidly developing field of systems chemistry aims to move away from the established paradigm in which molecules are studied in isolation, towards the study of networks of molecules that interact and react with each other. Taking inspiration from complex natural systems, where recognition processes never operate in isolation, systems chemistry aims to study chemical networks with the view to examining the system-level properties that arise from the interactions and reactions between the components within these systems. The work presented in this thesis aims to advance the nascent field of systems chemistry by bringing together small organic molecules that can react and interact together to form interconnected networks, exhibiting complex behaviour, such as self-replication, as a result. Three simple building blocks are used to construct a network of two structurally similar replicators and their kinetic behaviour is probed through a comprehensive kinetic analysis. The selectivity for one of the recognition-mediated reactive processes over another is examined within the network in isolation as well as in a scenario where the network is embedded within a pool of exchanging components. The interconnected, two-replicator network is examined under far-from-equilibrium reaction-diffusion conditions, showing that chemical replicating networks can exhibit signs of selective replication—a complex phenomenon normally associated with biological systems. Finally, a design of a well-characterised replicator is exploited for the construction of a network integrating self-replication with a another recognition-directed process, leading to the formation of a mechanically-interlocked architecture—a [2]rotaxane. Advisors/Committee Members: Philp, Douglas (advisor).

Subjects/Keywords: Self-replication; Complexity; Reaction networks; Autocatalysis; Crosscatalysis; Reaction-diffusion environment; Dynamic covalent library; Rotaxane; Mechanically-interlocked architectures; Origin-of-life question; System-level behaviour

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kosikova, T. (2017). Developing complexity using networks of synthetic replicators . (Thesis). University of St. Andrews. Retrieved from http://hdl.handle.net/10023/10835

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kosikova, Tamara. “Developing complexity using networks of synthetic replicators .” 2017. Thesis, University of St. Andrews. Accessed January 24, 2020. http://hdl.handle.net/10023/10835.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kosikova, Tamara. “Developing complexity using networks of synthetic replicators .” 2017. Web. 24 Jan 2020.

Vancouver:

Kosikova T. Developing complexity using networks of synthetic replicators . [Internet] [Thesis]. University of St. Andrews; 2017. [cited 2020 Jan 24]. Available from: http://hdl.handle.net/10023/10835.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kosikova T. Developing complexity using networks of synthetic replicators . [Thesis]. University of St. Andrews; 2017. Available from: http://hdl.handle.net/10023/10835

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Perdikis, Dionysios. Functionnal organization of complex behavioral processes : Organisation fonctionnelle des processus complexes de comportement.

Degree: Docteur es, Contrôle perceptivo-moteur et apprentissage, 2011, Aix-Marseille 2

Selon des études comportementales, les comportements complexes sont des processus multi-échelles, souvent composés de sous-éléments (unités fonctionnelles ou primitives). Cette thèse propose des architectures fonctionnelles afin de représenter la structure dynamique des unités fonctionnelles ainsi que celle des comportements multi-échelles résultants. Dans un premier temps, des unités fonctionnelles sont modélisées comme des flux structurés de faible dimension dans l'espace de phase (modes de fonctionnement). Des dynamiques supplémen-taires (signaux opérationnels) opèrent sur ces modes de fonctionnement faisant émerger des comportements complexes et sont classifiés selon la séparation entre leur échelle temporelle et celle des modes. Ensuite, des mesures de complexité, appliquées sur des architectures dis-tinctes composant un mouvement simple, révèlent un compromis entre la complexité des modes de fonctionnement et celle des signaux opérationnels. Celui-ci dépend de la séparation entre leurs échelles temporelles et soutient l'efficacité des architectures utilisant des modes non triviaux. Dans un deuxième temps, une architecture pour le comportement séquentiel (ici l'écriture) est construite via le couplage des modes de fonctionnement (réalisant des lettres) et des signaux opérationnels, ceux-ci beaucoup plus lents ou beaucoup plus rapides. Ainsi, l'importance des interactions entre les échelles temporelles pour l'organisation du comporte-ment est illustrée. Enfin, les contributions des modes et des signaux sur la sortie de l'architec-ture sont déterminées. Ceci semble être uniquement possible grâce à l'analyse du flux de phase (c'est-à-dire, non pas à partir des trajectoires dans l'espace de phase ni des séries temporelles).

Behavioural studies suggest that complex behaviours are multiscale processes, which may be composed of elementary ones (units or primitives). Traditional approaches to cognitive mod-elling generally employ reductionistic (mostly static) representations and computations of simplistic dynamics. The thesis proposes functional architectures to capture the dynamical structure of both functional units and the composite multiscale behaviours. First, a mathe-matical formalism of functional units as low dimensional, structured flows in phase space is introduced (functional modes). Second, additional dynamics (operational signals), which act upon functional modes for complex behaviours to emerge, are classified according to the separation between their characteristic time scale and the one of modes. Then, complexity measures are applied to distinct architectures for a simple composite movement and reveal a trade off between the complexities of functional modes and operational signals, depending on their time scale separation (in support of the control effectiveness of architectures employing non trivial modes). Subsequently, an architecture for serial behaviour (along the example of handwriting) is demonstrated, comprising of functional modes implementing characters, and operational signals much slower…

Advisors/Committee Members: Jirsa, Viktor K. (thesis director).

Subjects/Keywords: Architectures fonctionnelles/cognitives; Flux de phase structurés sur des variétés; Hiérarchie des échelles de temps; Analyse dans l’espace des phases; Comportements multi-échelles/complexes; Unités fonctionnels/de comportement; Primitives moteurs; Functional/cognitive architectures; Structured phase flows on manifolds; Hierarchy of time scales; Phase space analysis; Multiscale/complex behaviours; Functional/behavioural units; Motor primitives; Motor programs; Serial/sequential behaviour; Cursi

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perdikis, D. (2011). Functionnal organization of complex behavioral processes : Organisation fonctionnelle des processus complexes de comportement. (Doctoral Dissertation). Aix-Marseille 2. Retrieved from http://www.theses.fr/2011AIX22050

Chicago Manual of Style (16th Edition):

Perdikis, Dionysios. “Functionnal organization of complex behavioral processes : Organisation fonctionnelle des processus complexes de comportement.” 2011. Doctoral Dissertation, Aix-Marseille 2. Accessed January 24, 2020. http://www.theses.fr/2011AIX22050.

MLA Handbook (7th Edition):

Perdikis, Dionysios. “Functionnal organization of complex behavioral processes : Organisation fonctionnelle des processus complexes de comportement.” 2011. Web. 24 Jan 2020.

Vancouver:

Perdikis D. Functionnal organization of complex behavioral processes : Organisation fonctionnelle des processus complexes de comportement. [Internet] [Doctoral dissertation]. Aix-Marseille 2; 2011. [cited 2020 Jan 24]. Available from: http://www.theses.fr/2011AIX22050.

Council of Science Editors:

Perdikis D. Functionnal organization of complex behavioral processes : Organisation fonctionnelle des processus complexes de comportement. [Doctoral Dissertation]. Aix-Marseille 2; 2011. Available from: http://www.theses.fr/2011AIX22050

3. Chao, Crystal. Timing multimodal turn-taking in human-robot cooperative activity.

Degree: PhD, Computer Science, 2015, Georgia Tech

Turn-taking is a fundamental process that governs social interaction. When humans interact, they naturally take initiative and relinquish control to each other using verbal and nonverbal behavior in a coordinated manner. In contrast, existing approaches for controlling a robot's social behavior do not explicitly model turn-taking, resulting in interaction breakdowns that confuse or frustrate the human and detract from the dyad's cooperative goals. They also lack generality, relying on scripted behavior control that must be designed for each new domain. This thesis seeks to enable robots to cooperate fluently with humans by automatically controlling the timing of multimodal turn-taking. Based on our empirical studies of interaction phenomena, we develop a computational turn-taking model that accounts for multimodal information flow and resource usage in interaction. This model is implemented within a novel behavior generation architecture called CADENCE, the Control Architecture for the Dynamics of Embodied Natural Coordination and Engagement, that controls a robot's speech, gesture, gaze, and manipulation. CADENCE controls turn-taking using a timed Petri net (TPN) representation that integrates resource exchange, interruptible modality execution, and modeling of the human user. We demonstrate progressive developments of CADENCE through multiple domains of autonomous interaction encompassing situated dialogue and collaborative manipulation. We also iteratively evaluate improvements in the system using quantitative metrics of task success, fluency, and balance of control. Advisors/Committee Members: Thomaz, Andrea L (advisor), Arkin, Ronald C. (committee member), Christensen, Henrik I. (committee member), Feigh, Karen M. (committee member), Sidner, Candace L. (committee member).

Subjects/Keywords: Turn-taking; Situated dialogue; Collaborative discourse; Collaborative manipulation; Multimodal interaction; Situated dialogue; Collaborative discourse; Collaborative manipulation; Multimodal interaction; Social interaction; Situated dialogue; Collaborative discourse; Collaborative manipulation; Multimodal interaction; Social interaction; Human-robot collaboration; Human-robot interaction; Embodied conversational agents; Behavior architectures; Timed Petri nets; Artificial intelligence; Autonomous systems

architectures for controlling multimodal behavior is BEAT [22], which was used to control… …104 6.4.1 Differences in robot behavior . . . . . . . . . . . . . . . . . . 104 6.4.2… …behavior . . . . . . . . . . . . . . . . . . . 108 Discussion… …subsystems . . . . . . . . . . . . . . . 184 10.1.7 Separation of domain content from behavior… …50 Visualization of behavioral actions, which are subgraphs of the Petri net behavior… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chao, C. (2015). Timing multimodal turn-taking in human-robot cooperative activity. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/54904

Chicago Manual of Style (16th Edition):

Chao, Crystal. “Timing multimodal turn-taking in human-robot cooperative activity.” 2015. Doctoral Dissertation, Georgia Tech. Accessed January 24, 2020. http://hdl.handle.net/1853/54904.

MLA Handbook (7th Edition):

Chao, Crystal. “Timing multimodal turn-taking in human-robot cooperative activity.” 2015. Web. 24 Jan 2020.

Vancouver:

Chao C. Timing multimodal turn-taking in human-robot cooperative activity. [Internet] [Doctoral dissertation]. Georgia Tech; 2015. [cited 2020 Jan 24]. Available from: http://hdl.handle.net/1853/54904.

Council of Science Editors:

Chao C. Timing multimodal turn-taking in human-robot cooperative activity. [Doctoral Dissertation]. Georgia Tech; 2015. Available from: http://hdl.handle.net/1853/54904

.