Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Banach lattices). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of North Texas

1. Huff, Cheryl Rae. Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices.

Degree: 1999, University of North Texas

 The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and… (more)

Subjects/Keywords: uniform exhaustivity; Banach lattices; mathematics; Banach lattices.; Measure theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huff, C. R. (1999). Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc278330/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Huff, Cheryl Rae. “Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices.” 1999. Thesis, University of North Texas. Accessed August 06, 2020. https://digital.library.unt.edu/ark:/67531/metadc278330/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Huff, Cheryl Rae. “Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices.” 1999. Web. 06 Aug 2020.

Vancouver:

Huff CR. Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices. [Internet] [Thesis]. University of North Texas; 1999. [cited 2020 Aug 06]. Available from: https://digital.library.unt.edu/ark:/67531/metadc278330/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Huff CR. Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices. [Thesis]. University of North Texas; 1999. Available from: https://digital.library.unt.edu/ark:/67531/metadc278330/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

2. O'Brien, Michael J. Unbounded Norm Convergence in Banach Lattices.

Degree: MS, Department of Mathematical and Statistical Sciences, 2016, University of Alberta

 In this thesis we describe basic properties of unbounded norm convergence (un-convergence) and investigate its relationship with other convergences in Banach lattices. In particular, we… (more)

Subjects/Keywords: Unbounded norm convergence; Banach lattices; Convergence in measure; Un-topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

O'Brien, M. J. (2016). Unbounded Norm Convergence in Banach Lattices. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/c6969z102r

Chicago Manual of Style (16th Edition):

O'Brien, Michael J. “Unbounded Norm Convergence in Banach Lattices.” 2016. Masters Thesis, University of Alberta. Accessed August 06, 2020. https://era.library.ualberta.ca/files/c6969z102r.

MLA Handbook (7th Edition):

O'Brien, Michael J. “Unbounded Norm Convergence in Banach Lattices.” 2016. Web. 06 Aug 2020.

Vancouver:

O'Brien MJ. Unbounded Norm Convergence in Banach Lattices. [Internet] [Masters thesis]. University of Alberta; 2016. [cited 2020 Aug 06]. Available from: https://era.library.ualberta.ca/files/c6969z102r.

Council of Science Editors:

O'Brien MJ. Unbounded Norm Convergence in Banach Lattices. [Masters Thesis]. University of Alberta; 2016. Available from: https://era.library.ualberta.ca/files/c6969z102r


Texas Tech University

3. Jang, Ruey-jen. The ideal structure of the algebraic eigenspace to the spectral radius of eventually compact, reducible, positive linear operators.

Degree: Mathematics, 1990, Texas Tech University

 The classical Perron-Frobenius theory, concerning the distribution of Eigen-values of a nonnegative square matrix A, has been applied in recent years to study the positivity… (more)

Subjects/Keywords: Positive operators; Eigenvectors; Banach lattices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jang, R. (1990). The ideal structure of the algebraic eigenspace to the spectral radius of eventually compact, reducible, positive linear operators. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/8848

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jang, Ruey-jen. “The ideal structure of the algebraic eigenspace to the spectral radius of eventually compact, reducible, positive linear operators.” 1990. Thesis, Texas Tech University. Accessed August 06, 2020. http://hdl.handle.net/2346/8848.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jang, Ruey-jen. “The ideal structure of the algebraic eigenspace to the spectral radius of eventually compact, reducible, positive linear operators.” 1990. Web. 06 Aug 2020.

Vancouver:

Jang R. The ideal structure of the algebraic eigenspace to the spectral radius of eventually compact, reducible, positive linear operators. [Internet] [Thesis]. Texas Tech University; 1990. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/2346/8848.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jang R. The ideal structure of the algebraic eigenspace to the spectral radius of eventually compact, reducible, positive linear operators. [Thesis]. Texas Tech University; 1990. Available from: http://hdl.handle.net/2346/8848

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. MADE TANTRAWAN. ORDER CLOSEDNESS OF CONVEX SETS IN BANACH LATTICES.

Degree: 2020, National University of Singapore

Subjects/Keywords: order convergence; closedness; convex sets; Banach lattices; Banach-Saks

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

TANTRAWAN, M. (2020). ORDER CLOSEDNESS OF CONVEX SETS IN BANACH LATTICES. (Thesis). National University of Singapore. Retrieved from https://scholarbank.nus.edu.sg/handle/10635/168811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

TANTRAWAN, MADE. “ORDER CLOSEDNESS OF CONVEX SETS IN BANACH LATTICES.” 2020. Thesis, National University of Singapore. Accessed August 06, 2020. https://scholarbank.nus.edu.sg/handle/10635/168811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

TANTRAWAN, MADE. “ORDER CLOSEDNESS OF CONVEX SETS IN BANACH LATTICES.” 2020. Web. 06 Aug 2020.

Vancouver:

TANTRAWAN M. ORDER CLOSEDNESS OF CONVEX SETS IN BANACH LATTICES. [Internet] [Thesis]. National University of Singapore; 2020. [cited 2020 Aug 06]. Available from: https://scholarbank.nus.edu.sg/handle/10635/168811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

TANTRAWAN M. ORDER CLOSEDNESS OF CONVEX SETS IN BANACH LATTICES. [Thesis]. National University of Singapore; 2020. Available from: https://scholarbank.nus.edu.sg/handle/10635/168811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Uniwersytet im. Adama Mickiewicza w Poznaniu

5. Panfil, Agata. Lokalna struktura geometryczna wybranych funkcyjnych przestrzeni Banacha .

Degree: 2016, Uniwersytet im. Adama Mickiewicza w Poznaniu

 W rozprawie przedstawione są wyniki dotyczące pewnych lokalnych własności geometrycznych w wybranych klasach krat Banacha, tj. symetrycznych przestrzeniach Banacha wraz z ich szczególnymi przypadkami -… (more)

Subjects/Keywords: Lokalna struktura geometryczna przestrzeni; Przestrzenie symetryczne; Przestrzenie Calderona-Łozanowskiego; Problem najlepszej lokalnej zdominowanej aproksymacji; Siatki Banacha; Local geometric structure; Banach lattices; Symmetric spaces; Calderon-Lozanovskii spaces; Local best dominated approximation problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Panfil, A. (2016). Lokalna struktura geometryczna wybranych funkcyjnych przestrzeni Banacha . (Doctoral Dissertation). Uniwersytet im. Adama Mickiewicza w Poznaniu. Retrieved from http://hdl.handle.net/10593/23540

Chicago Manual of Style (16th Edition):

Panfil, Agata. “Lokalna struktura geometryczna wybranych funkcyjnych przestrzeni Banacha .” 2016. Doctoral Dissertation, Uniwersytet im. Adama Mickiewicza w Poznaniu. Accessed August 06, 2020. http://hdl.handle.net/10593/23540.

MLA Handbook (7th Edition):

Panfil, Agata. “Lokalna struktura geometryczna wybranych funkcyjnych przestrzeni Banacha .” 2016. Web. 06 Aug 2020.

Vancouver:

Panfil A. Lokalna struktura geometryczna wybranych funkcyjnych przestrzeni Banacha . [Internet] [Doctoral dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2016. [cited 2020 Aug 06]. Available from: http://hdl.handle.net/10593/23540.

Council of Science Editors:

Panfil A. Lokalna struktura geometryczna wybranych funkcyjnych przestrzeni Banacha . [Doctoral Dissertation]. Uniwersytet im. Adama Mickiewicza w Poznaniu; 2016. Available from: http://hdl.handle.net/10593/23540


University of Florida

6. Šikić, Hrvoje, 1959-. Superprocesses.

Degree: 1993, University of Florida

Subjects/Keywords: Banach space; Brownian motion; Conceptual lattices; Infinitesimals; Laplace transformation; Linear transformations; Markov chains; Markov processes; Mathematics; Semigroups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Šikić, Hrvoje, 1. (1993). Superprocesses. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/AA00003679

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Šikić, Hrvoje, 1959-. “Superprocesses.” 1993. Thesis, University of Florida. Accessed August 06, 2020. https://ufdc.ufl.edu/AA00003679.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Šikić, Hrvoje, 1959-. “Superprocesses.” 1993. Web. 06 Aug 2020.

Vancouver:

Šikić, Hrvoje 1. Superprocesses. [Internet] [Thesis]. University of Florida; 1993. [cited 2020 Aug 06]. Available from: https://ufdc.ufl.edu/AA00003679.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Šikić, Hrvoje 1. Superprocesses. [Thesis]. University of Florida; 1993. Available from: https://ufdc.ufl.edu/AA00003679

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.