Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Automorphic Representation). Showing records 1 – 12 of 12 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Harvard University

1. Raskin, Samuel David. Chiral Principal Series Categories.

Degree: PhD, Mathematics, 2014, Harvard University

This thesis begins a study of principal series categories in geometric representation theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker objects in… (more)

Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

Chicago Manual of Style (16th Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 04, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

MLA Handbook (7th Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 04 Mar 2021.

Vancouver:

Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 04]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

Council of Science Editors:

Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305


Kyoto University / 京都大学

2. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.

Degree: 博士(理学), 2016, Kyoto University / 京都大学

新制・課程博士

甲第19548号

理博第4208号

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Thesis, Kyoto University / 京都大学. Accessed March 04, 2021. http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Web. 04 Mar 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University

3. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms .

Degree: 2016, Kyoto University

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215374

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Thesis, Kyoto University. Accessed March 04, 2021. http://hdl.handle.net/2433/215374.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Web. 04 Mar 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Internet] [Thesis]. Kyoto University; 2016. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2433/215374.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215374

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Moore, Daniel Ross. An Intrinsic Theory of Smooth Automorphic Representations.

Degree: PhD, Mathematics, 2018, The Ohio State University

 Our goal in this paper is to lay the foundation for a theory of smooth automorphic forms and representations on local and adelic reductive groups… (more)

Subjects/Keywords: Mathematics; analytic number theory; automorphic representation theory; Schwartz functions; Casselman-Wallach

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moore, D. R. (2018). An Intrinsic Theory of Smooth Automorphic Representations. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

Chicago Manual of Style (16th Edition):

Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Doctoral Dissertation, The Ohio State University. Accessed March 04, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.

MLA Handbook (7th Edition):

Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Web. 04 Mar 2021.

Vancouver:

Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Mar 04]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.

Council of Science Editors:

Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

5. File, Daniel Whitman. On the degree 5 L-function for GSp(4).

Degree: PhD, Mathematics, 2010, The Ohio State University

 In this dissertation I establish a new integral representation for the degree five <i>L</i>-function for the group GSp4. Let <i>F</i> be a number field and… (more)

Subjects/Keywords: Mathematics; automorphic forms; representation theory; number theory

…proposed several conjectures relating automorphic representation theory to number theory [25… …determine whether it is the L-function of an automorphic representation. Such a result is known as… …representation π = ⊗v πv of an adelic algebraic group G(A) is automorphic. The converse… …to the setting of automorphic representations. Their integral representation is unusual in… …an automorphic representation of GSp4 (A), φ ∈ Vπ , ν an automorphic character on… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

File, D. W. (2010). On the degree 5 L-function for GSp(4). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

Chicago Manual of Style (16th Edition):

File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Doctoral Dissertation, The Ohio State University. Accessed March 04, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.

MLA Handbook (7th Edition):

File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Web. 04 Mar 2021.

Vancouver:

File DW. On the degree 5 L-function for GSp(4). [Internet] [Doctoral dissertation]. The Ohio State University; 2010. [cited 2021 Mar 04]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.

Council of Science Editors:

File DW. On the degree 5 L-function for GSp(4). [Doctoral Dissertation]. The Ohio State University; 2010. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

6. Lachaussée, Guillaume. Autour de l'énumération des représentations automorphes cuspidales algébriques de GLₙ sur Q en conducteur > 1 : Around the enumeration of automorphic cuspidal algebraic representations of GLₙ over Q with conductor > 1.

Degree: Docteur es, Mathématiques fondamentales, 2020, université Paris-Saclay

Les représentations automorphes cuspidales du groupe linéaire sur le corps des rationnels sont, en un certain sens, "les objets finaux" de la théorie des formes… (more)

Subjects/Keywords: Représentation automorphe; Langlands; Formule explicite; Paramodulaire; Arthur; Automorphic representation; Langlands; Explicit formula; Paramodular; Arthur

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lachaussée, G. (2020). Autour de l'énumération des représentations automorphes cuspidales algébriques de GLₙ sur Q en conducteur > 1 : Around the enumeration of automorphic cuspidal algebraic representations of GLₙ over Q with conductor > 1. (Doctoral Dissertation). université Paris-Saclay. Retrieved from http://www.theses.fr/2020UPASM018

Chicago Manual of Style (16th Edition):

Lachaussée, Guillaume. “Autour de l'énumération des représentations automorphes cuspidales algébriques de GLₙ sur Q en conducteur > 1 : Around the enumeration of automorphic cuspidal algebraic representations of GLₙ over Q with conductor > 1.” 2020. Doctoral Dissertation, université Paris-Saclay. Accessed March 04, 2021. http://www.theses.fr/2020UPASM018.

MLA Handbook (7th Edition):

Lachaussée, Guillaume. “Autour de l'énumération des représentations automorphes cuspidales algébriques de GLₙ sur Q en conducteur > 1 : Around the enumeration of automorphic cuspidal algebraic representations of GLₙ over Q with conductor > 1.” 2020. Web. 04 Mar 2021.

Vancouver:

Lachaussée G. Autour de l'énumération des représentations automorphes cuspidales algébriques de GLₙ sur Q en conducteur > 1 : Around the enumeration of automorphic cuspidal algebraic representations of GLₙ over Q with conductor > 1. [Internet] [Doctoral dissertation]. université Paris-Saclay; 2020. [cited 2021 Mar 04]. Available from: http://www.theses.fr/2020UPASM018.

Council of Science Editors:

Lachaussée G. Autour de l'énumération des représentations automorphes cuspidales algébriques de GLₙ sur Q en conducteur > 1 : Around the enumeration of automorphic cuspidal algebraic representations of GLₙ over Q with conductor > 1. [Doctoral Dissertation]. université Paris-Saclay; 2020. Available from: http://www.theses.fr/2020UPASM018

7. Bajpai, Jitendra K. On Vector-Valued Automorphic Forms.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2015, University of Alberta

 Let \rG be a genus 0 Fuchsian group of the first kind\,, w ∈ 2\Z and ρ : \rG \longrightarrow \mr{GL}d(\C) be any admissible representation(more)

Subjects/Keywords: Automorphic Forms, Representation Theory; Fuchsian groups, Triangle groups; Vector-valued automorphic forms

…The Borcherds lift associates vvmf for a Weil representation to automorphic forms on… …vectorvalued automorphic forms (vvaf ) by showing that for any triangle group G, defining a… …group of cusp c in G ρ the admissible multiplier, a representation ρ : G → GLd (C)… …respect to the cusp ∞ X(τ ), Y(τ ) vector-valued automorphic forms X[n… …developing the theory of vector-valued automorphic forms (vvaf) of Fuchsian groups. In… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bajpai, J. K. (2015). On Vector-Valued Automorphic Forms. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/chh63sv954

Chicago Manual of Style (16th Edition):

Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Doctoral Dissertation, University of Alberta. Accessed March 04, 2021. https://era.library.ualberta.ca/files/chh63sv954.

MLA Handbook (7th Edition):

Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Web. 04 Mar 2021.

Vancouver:

Bajpai JK. On Vector-Valued Automorphic Forms. [Internet] [Doctoral dissertation]. University of Alberta; 2015. [cited 2021 Mar 04]. Available from: https://era.library.ualberta.ca/files/chh63sv954.

Council of Science Editors:

Bajpai JK. On Vector-Valued Automorphic Forms. [Doctoral Dissertation]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/chh63sv954


University of Michigan

8. Klosin, Krzysztof. Congruences among automorphic forms on the unitary group U(2,2).

Degree: PhD, Pure Sciences, 2006, University of Michigan

 Let k be a positive integer divisible by 4, ℓ > k an odd prime, and f a normalized elliptic cuspidal eigenform of weight k… (more)

Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079

Chicago Manual of Style (16th Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed March 04, 2021. http://hdl.handle.net/2027.42/126079.

MLA Handbook (7th Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 04 Mar 2021.

Vancouver:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2027.42/126079.

Council of Science Editors:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079


University of Minnesota

9. Zhang, Lei. Automorphic forms on certain affine symmetric spaces.

Degree: PhD, Mathematics, 2011, University of Minnesota

 In this thesis, we consider automorphic periods associated to certain affine symmetric spaces such as the symmetric pairs. In this thesis, we consider automorphic periods… (more)

Subjects/Keywords: Automorphic forms; Distinguished tame supercuspidal representation; Gelfand pairs; Number theory; special value of L-function; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, L. (2011). Automorphic forms on certain affine symmetric spaces. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/109867

Chicago Manual of Style (16th Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Doctoral Dissertation, University of Minnesota. Accessed March 04, 2021. http://purl.umn.edu/109867.

MLA Handbook (7th Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Web. 04 Mar 2021.

Vancouver:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2021 Mar 04]. Available from: http://purl.umn.edu/109867.

Council of Science Editors:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/109867


University of Oklahoma

10. Shukla, Alok. On Klingen Eisenstein series with levels.

Degree: PhD, 2018, University of Oklahoma

 We give a representation theoretic approach to the Klingen lift generalizing the classical construction of Klingen Eisenstein series to arbitrary level for both paramodular and… (more)

Subjects/Keywords: Mathematics; Automorphic Representation; Klingen Eisenstein Series with levels; Paramodular; Co-dimension formula for cusp forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shukla, A. (2018). On Klingen Eisenstein series with levels. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/299326

Chicago Manual of Style (16th Edition):

Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Doctoral Dissertation, University of Oklahoma. Accessed March 04, 2021. http://hdl.handle.net/11244/299326.

MLA Handbook (7th Edition):

Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Web. 04 Mar 2021.

Vancouver:

Shukla A. On Klingen Eisenstein series with levels. [Internet] [Doctoral dissertation]. University of Oklahoma; 2018. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/11244/299326.

Council of Science Editors:

Shukla A. On Klingen Eisenstein series with levels. [Doctoral Dissertation]. University of Oklahoma; 2018. Available from: http://hdl.handle.net/11244/299326


University of Oklahoma

11. Wagh, Siddhesh. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.

Degree: PhD, 2019, University of Oklahoma

 Muto, Narita and Pitale construct counterexamples to the Generalized Ramanujan Conjecture for GL(2,B) over the division quaternion algebra B with discriminant two via a lift… (more)

Subjects/Keywords: Number Theory; Automorphic forms; Representation Theory; Maass forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wagh, S. (2019). MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/321131

Chicago Manual of Style (16th Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed March 04, 2021. http://hdl.handle.net/11244/321131.

MLA Handbook (7th Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Web. 04 Mar 2021.

Vancouver:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/11244/321131.

Council of Science Editors:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/321131

12. Xu, Bin. Endoscopic Classification of Representations of GSp(2n) and GSO(2n).

Degree: PhD, 2014, University of Toronto

 In 1989 Arthur conjectured a very precise description about the structure of automorphic representations of reductive groups using Arthur packets and endoscopy theory. In his… (more)

Subjects/Keywords: Arthur packet; automorphic representation; endoscopy; multiplicity; similitude group; trace formula; 0405

…restriction of π̃ ∈ ψ̃ there exists a discrete automorphic representation π of G, then < ·, π̃… …e if and only if there exists a discrete automorphic representation π of representation of… …automorphic representation of G, its multiplicity is m(π) = 1 or 2, and m(π) = 2… …and there Theorem 1.2.3. Suppose that π̃ is a discrete automorphic representation of G… …Arthur assert that all discrete automorphic representations π of G are contained in a certain… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, B. (2014). Endoscopic Classification of Representations of GSp(2n) and GSO(2n). (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/68169

Chicago Manual of Style (16th Edition):

Xu, Bin. “Endoscopic Classification of Representations of GSp(2n) and GSO(2n).” 2014. Doctoral Dissertation, University of Toronto. Accessed March 04, 2021. http://hdl.handle.net/1807/68169.

MLA Handbook (7th Edition):

Xu, Bin. “Endoscopic Classification of Representations of GSp(2n) and GSO(2n).” 2014. Web. 04 Mar 2021.

Vancouver:

Xu B. Endoscopic Classification of Representations of GSp(2n) and GSO(2n). [Internet] [Doctoral dissertation]. University of Toronto; 2014. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/1807/68169.

Council of Science Editors:

Xu B. Endoscopic Classification of Representations of GSp(2n) and GSO(2n). [Doctoral Dissertation]. University of Toronto; 2014. Available from: http://hdl.handle.net/1807/68169

.