Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Automorphic Representation)`

.
Showing records 1 – 11 of
11 total matches.

▼ Search Limiters

Harvard University

1. Raskin, Samuel David. Chiral Principal Series Categories.

Degree: PhD, Mathematics, 2014, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

►

This thesis begins a study of principal series categories in geometric *representation* theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker objects in…
(more)

Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

Chicago Manual of Style (16^{th} Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed January 19, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

MLA Handbook (7^{th} Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 19 Jan 2021.

Vancouver:

Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Jan 19]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

Council of Science Editors:

Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

2.
Moore, Daniel Ross.
An Intrinsic Theory of Smooth *Automorphic*
Representations.

Degree: PhD, Mathematics, 2018, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

► Our goal in this paper is to lay the foundation for a theory of smooth *automorphic* forms and representations on local and adelic reductive groups…
(more)

Subjects/Keywords: Mathematics; analytic number theory; automorphic representation theory; Schwartz functions; Casselman-Wallach

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moore, D. R. (2018). An Intrinsic Theory of Smooth Automorphic Representations. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

Chicago Manual of Style (16^{th} Edition):

Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Doctoral Dissertation, The Ohio State University. Accessed January 19, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.

MLA Handbook (7^{th} Edition):

Moore, Daniel Ross. “An Intrinsic Theory of Smooth Automorphic Representations.” 2018. Web. 19 Jan 2021.

Vancouver:

Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Internet] [Doctoral dissertation]. The Ohio State University; 2018. [cited 2021 Jan 19]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.

Council of Science Editors:

Moore DR. An Intrinsic Theory of Smooth Automorphic Representations. [Doctoral Dissertation]. The Ohio State University; 2018. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537

University of Oklahoma

3. Wagh, Siddhesh. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.

Degree: PhD, 2019, University of Oklahoma

URL: http://hdl.handle.net/11244/321131

► Muto, Narita and Pitale construct counterexamples to the Generalized Ramanujan Conjecture for GL(2,B) over the division quaternion algebra B with discriminant two via a lift…
(more)

Subjects/Keywords: Number Theory; Automorphic forms; Representation Theory; Maass forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wagh, S. (2019). MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/321131

Chicago Manual of Style (16^{th} Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Doctoral Dissertation, University of Oklahoma. Accessed January 19, 2021. http://hdl.handle.net/11244/321131.

MLA Handbook (7^{th} Edition):

Wagh, Siddhesh. “MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA.” 2019. Web. 19 Jan 2021.

Vancouver:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Internet] [Doctoral dissertation]. University of Oklahoma; 2019. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/11244/321131.

Council of Science Editors:

Wagh S. MAASS SPACE FOR LIFTING TO GL(2,B) OVER A DIVISION QUATERNION ALGEBRA. [Doctoral Dissertation]. University of Oklahoma; 2019. Available from: http://hdl.handle.net/11244/321131

University of Oklahoma

4. Shukla, Alok. On Klingen Eisenstein series with levels.

Degree: PhD, 2018, University of Oklahoma

URL: http://hdl.handle.net/11244/299326

► We give a *representation* theoretic approach to the Klingen lift generalizing the classical construction of Klingen Eisenstein series to arbitrary level for both paramodular and…
(more)

Subjects/Keywords: Mathematics; Automorphic Representation; Klingen Eisenstein Series with levels; Paramodular; Co-dimension formula for cusp forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shukla, A. (2018). On Klingen Eisenstein series with levels. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/299326

Chicago Manual of Style (16^{th} Edition):

Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Doctoral Dissertation, University of Oklahoma. Accessed January 19, 2021. http://hdl.handle.net/11244/299326.

MLA Handbook (7^{th} Edition):

Shukla, Alok. “On Klingen Eisenstein series with levels.” 2018. Web. 19 Jan 2021.

Vancouver:

Shukla A. On Klingen Eisenstein series with levels. [Internet] [Doctoral dissertation]. University of Oklahoma; 2018. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/11244/299326.

Council of Science Editors:

Shukla A. On Klingen Eisenstein series with levels. [Doctoral Dissertation]. University of Oklahoma; 2018. Available from: http://hdl.handle.net/11244/299326

University of Minnesota

5.
Zhang, Lei.
* Automorphic* forms on certain affine symmetric spaces.

Degree: PhD, Mathematics, 2011, University of Minnesota

URL: http://purl.umn.edu/109867

► In this thesis, we consider *automorphic* periods associated to certain affine symmetric spaces such as the symmetric pairs. In this thesis, we consider *automorphic* periods…
(more)

Subjects/Keywords: Automorphic forms; Distinguished tame supercuspidal representation; Gelfand pairs; Number theory; special value of L-function; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhang, L. (2011). Automorphic forms on certain affine symmetric spaces. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/109867

Chicago Manual of Style (16^{th} Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Doctoral Dissertation, University of Minnesota. Accessed January 19, 2021. http://purl.umn.edu/109867.

MLA Handbook (7^{th} Edition):

Zhang, Lei. “Automorphic forms on certain affine symmetric spaces.” 2011. Web. 19 Jan 2021.

Vancouver:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2021 Jan 19]. Available from: http://purl.umn.edu/109867.

Council of Science Editors:

Zhang L. Automorphic forms on certain affine symmetric spaces. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/109867

6. File, Daniel Whitman. On the degree 5 L-function for GSp(4).

Degree: PhD, Mathematics, 2010, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

► In this dissertation I establish a new integral *representation* for the degree five <i>L</i>-function for the group GSp_{4}. Let <i>F</i> be a number field and…
(more)

Subjects/Keywords: Mathematics; automorphic forms; representation theory; number theory

…proposed several conjectures relating *automorphic* *representation* theory to number theory [25… …determine whether
it is the L-function of an *automorphic* *representation*. Such a result is known as… …*representation* π = ⊗v πv of an adelic algebraic group G(A) is *automorphic*.
The converse… …to
the setting of *automorphic* representations. Their integral *representation* is unusual
in… …an *automorphic* *representation* of GSp4 (A), φ ∈ Vπ , ν an *automorphic*
character on…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

File, D. W. (2010). On the degree 5 L-function for GSp(4). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

Chicago Manual of Style (16^{th} Edition):

File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Doctoral Dissertation, The Ohio State University. Accessed January 19, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.

MLA Handbook (7^{th} Edition):

File, Daniel Whitman. “On the degree 5 L-function for GSp(4).” 2010. Web. 19 Jan 2021.

Vancouver:

File DW. On the degree 5 L-function for GSp(4). [Internet] [Doctoral dissertation]. The Ohio State University; 2010. [cited 2021 Jan 19]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891.

Council of Science Editors:

File DW. On the degree 5 L-function for GSp(4). [Doctoral Dissertation]. The Ohio State University; 2010. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1279567891

7.
Bajpai, Jitendra K.
On Vector-Valued *Automorphic* Forms.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2015, University of Alberta

URL: https://era.library.ualberta.ca/files/chh63sv954

► Let \rG be a genus 0 Fuchsian group of the first kind\,, w ∈ 2\Z and ρ : \rG \longrightarrow \mr{GL}_{d}(\C) be any admissible *representation*…
(more)

Subjects/Keywords: Automorphic Forms, Representation Theory; Fuchsian groups, Triangle groups; Vector-valued automorphic forms

…The
Borcherds lift associates vvmf for a Weil *representation* to *automorphic* forms
on… …vectorvalued *automorphic* forms (vvaf ) by showing that for any triangle group
G, defining a… …group of cusp c in G
ρ
the admissible multiplier, a *representation* ρ : G →
GLd (C)… …respect to the cusp ∞
X(τ ), Y(τ )
vector-valued *automorphic* forms
X[n… …developing the theory
of vector-valued *automorphic* forms (vvaf) of Fuchsian groups. In…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bajpai, J. K. (2015). On Vector-Valued Automorphic Forms. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/chh63sv954

Chicago Manual of Style (16^{th} Edition):

Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Doctoral Dissertation, University of Alberta. Accessed January 19, 2021. https://era.library.ualberta.ca/files/chh63sv954.

MLA Handbook (7^{th} Edition):

Bajpai, Jitendra K. “On Vector-Valued Automorphic Forms.” 2015. Web. 19 Jan 2021.

Vancouver:

Bajpai JK. On Vector-Valued Automorphic Forms. [Internet] [Doctoral dissertation]. University of Alberta; 2015. [cited 2021 Jan 19]. Available from: https://era.library.ualberta.ca/files/chh63sv954.

Council of Science Editors:

Bajpai JK. On Vector-Valued Automorphic Forms. [Doctoral Dissertation]. University of Alberta; 2015. Available from: https://era.library.ualberta.ca/files/chh63sv954

Kyoto University / 京都大学

8. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.

Degree: 博士(理学), 2016, Kyoto University / 京都大学

URL: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

新制・課程博士

甲第19548号

理博第4208号

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Thesis, Kyoto University / 京都大学. Accessed January 19, 2021. http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Web. 19 Jan 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Not specified: Masters Thesis or Doctoral Dissertation

Kyoto University

9. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms .

Degree: 2016, Kyoto University

URL: http://hdl.handle.net/2433/215374

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215374

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Thesis, Kyoto University. Accessed January 19, 2021. http://hdl.handle.net/2433/215374.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Web. 19 Jan 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Internet] [Thesis]. Kyoto University; 2016. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/2433/215374.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215374

Not specified: Masters Thesis or Doctoral Dissertation

University of Michigan

10.
Klosin, Krzysztof.
Congruences among *automorphic* forms on the unitary group U(2,2).

Degree: PhD, Pure Sciences, 2006, University of Michigan

URL: http://hdl.handle.net/2027.42/126079

► Let k be a positive integer divisible by 4, ℓ > k an odd prime, and f a normalized elliptic cuspidal eigenform of weight k…
(more)

Subjects/Keywords: Automorphic Forms; Bloch-kato Conjecture; Congruences; Galois Representation; Galois Representations; L-functions; Selmer Group; Unitary Group U(2,2)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Klosin, K. (2006). Congruences among automorphic forms on the unitary group U(2,2). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/126079

Chicago Manual of Style (16^{th} Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Doctoral Dissertation, University of Michigan. Accessed January 19, 2021. http://hdl.handle.net/2027.42/126079.

MLA Handbook (7^{th} Edition):

Klosin, Krzysztof. “Congruences among automorphic forms on the unitary group U(2,2).” 2006. Web. 19 Jan 2021.

Vancouver:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Internet] [Doctoral dissertation]. University of Michigan; 2006. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/2027.42/126079.

Council of Science Editors:

Klosin K. Congruences among automorphic forms on the unitary group U(2,2). [Doctoral Dissertation]. University of Michigan; 2006. Available from: http://hdl.handle.net/2027.42/126079

11. Xu, Bin. Endoscopic Classification of Representations of GSp(2n) and GSO(2n).

Degree: PhD, 2014, University of Toronto

URL: http://hdl.handle.net/1807/68169

► In 1989 Arthur conjectured a very precise description about the structure of *automorphic* representations of reductive groups using Arthur packets and endoscopy theory. In his…
(more)

Subjects/Keywords: Arthur packet; automorphic representation; endoscopy; multiplicity; similitude group; trace formula; 0405

…restriction of π̃ ∈ ψ̃ there exists a discrete *automorphic*
*representation* π of G, then
< ·, π̃… …e if and only if there exists a discrete *automorphic* *representation* π of
*representation* of… …*automorphic* *representation* of G,
its multiplicity is m(π) = 1 or 2, and m(π) = 2… …and there
Theorem 1.2.3. Suppose that π̃ is a discrete *automorphic* *representation* of G… …Arthur assert that all discrete *automorphic* representations π
of G are contained in a certain…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xu, B. (2014). Endoscopic Classification of Representations of GSp(2n) and GSO(2n). (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/68169

Chicago Manual of Style (16^{th} Edition):

Xu, Bin. “Endoscopic Classification of Representations of GSp(2n) and GSO(2n).” 2014. Doctoral Dissertation, University of Toronto. Accessed January 19, 2021. http://hdl.handle.net/1807/68169.

MLA Handbook (7^{th} Edition):

Xu, Bin. “Endoscopic Classification of Representations of GSp(2n) and GSO(2n).” 2014. Web. 19 Jan 2021.

Vancouver:

Xu B. Endoscopic Classification of Representations of GSp(2n) and GSO(2n). [Internet] [Doctoral dissertation]. University of Toronto; 2014. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/1807/68169.

Council of Science Editors:

Xu B. Endoscopic Classification of Representations of GSp(2n) and GSO(2n). [Doctoral Dissertation]. University of Toronto; 2014. Available from: http://hdl.handle.net/1807/68169